首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
控制性交替隔沟灌溉对甜椒农田蒸散特征的影响   总被引:3,自引:0,他引:3  
在张掖地区进行甜椒田间试验,利用农田水量平衡方法计算农田蒸散量,用微型棵间蒸发器测定不同沟灌方式的农田土壤棵间蒸发,在此基础上分析了不同沟灌方式下甜椒农田蒸散、土壤棵间蒸发、蒸发占蒸散的比例及其随叶面积指数和表层土壤含水量的变化关系、灌溉后土壤蒸发的变化过程.结果表明:交替隔沟灌溉在不影响作物蒸腾的条件下减少了表层土壤的湿润面积、减少了棵间土壤蒸发、提高了作物水分利用效率.  相似文献   

2.
夏玉米棵间土面蒸发与蒸发蒸腾比例研究   总被引:13,自引:7,他引:13  
利用连续4年的大型称重式蒸渗仪和小型棵间蒸发器的测定资料,研究了不同灌溉定额条件下夏玉米生长期间的逐日蒸发蒸腾和棵间蒸发过程。结果表明,夏玉米总的蒸发蒸腾量在年际间变化较大,其中叶面蒸腾总量变化较大,在158.44~233.99 mm;棵间蒸发总量变化较小,在171.43~181.52 mm,棵间蒸发量占蒸发蒸腾量的比例(E/ET)在43.57%~52.52%之间。降水和灌溉以及气象因素对夏玉米生育期棵间蒸发的影响较小,而对叶面蒸腾的影响较大。得出充分灌溉和非充分灌溉条件下,棵间蒸发占蒸发蒸腾的比例与叶面积指数的相关系数分别达到0.85和0.77以上。  相似文献   

3.
沟灌夏玉米棵间土壤蒸发规律的试验研究   总被引:17,自引:11,他引:17  
棵间土壤蒸发是农田土壤耗水的重要组成部分。该文采用两种规格的微型棵间蒸发皿(Micro-Lysimeter)分别测定沟灌夏玉米田沟、垄土面蒸发量,并对沟灌条件下夏玉米棵间土壤蒸发与作物蒸腾变化规律进行了试验研究,分析了相对棵间土壤蒸发强度与土壤含水率的关系以及棵间土壤蒸发强度与作物叶面积指数的关系。结果表明,沟灌条件下夏玉米棵间土壤蒸发量占全生育总耗水量的33.06%~34.35%,棵间土壤相对蒸发强度与表层土壤含水率和作物叶面积指数之间均呈现良好的指数函数关系,灌溉或降雨后2~3 d内土壤蒸发强度较大,受大气蒸发力影响明显。因此,在不影响作物蒸腾的条件下减少表层土壤的湿润面积和湿润次数是减少棵间土壤蒸发、提高作物水分利用效率的主要技术途径与措施。  相似文献   

4.
不同水分处理旱稻农田蒸散特征和水分利用效率   总被引:2,自引:1,他引:1  
该文通过2001~2004年4年北京地区早稻田间试验,利用农田水量平衡方法计算了早稻农田蒸散量,用微型棵间蒸渗仪测定了不同土壤水分条件下农田土壤棵间蒸发,在此基础上分析了不同水分处理旱稻生长期间的农田蒸散特征、土壤棵间蒸发特征和水分利用效率.结果表明:北京地区早稻出苗~成熟的农田蒸散量为574~630 mm,年际间略有波动;日蒸散强度孕穗~抽穗期最高,平均为9.8 mm/d,该阶段为旱稻需水关键期;在出苗~拔节期间土壤棵间蒸发量占农田蒸散量比例最大,在此生育阶段应采取适当措施降低土壤蒸发无效消耗,提高水分利用效率;限量灌溉处理中以前期适当胁迫,后期充分灌溉处理的水分利用效率最高.  相似文献   

5.
间作种植模式下冬小麦棵间蒸发变化规律及估算模型研究   总被引:16,自引:4,他引:16  
采用微型蒸渗仪(Micro-lysimeter)观测了单作和间作两种不同种植模式下冬小麦棵间土壤蒸发,分析了两种不同种植模式下棵间土壤蒸发的变化规律,探讨了影响麦田棵间土壤蒸发的主要因素,在此基础上对单作和间作麦田采用多元回归分析,建立了两种种植模式下估算棵间土壤蒸发的数学模型,所建模型模拟精度较高,模拟值与实测值吻合较好。  相似文献   

6.
日光温室白菜棵间土壤蒸发变化规律试验研究   总被引:1,自引:0,他引:1  
土壤蒸发在农田水量平衡和能量平衡计算中占有重要地位。本文采用微型蒸渗仪测定温室白菜的棵间土壤蒸发,对白菜棵间土壤蒸发的变化规律及其与太阳辐射、气温和相对湿度等主要气象因子的关系进行了试验研究和分析。研究结果表明:温室白菜棵间土壤蒸发随着白菜生育期的推移有减小的趋势,棵间土壤蒸发量占全生育期总耗水量的39.57%~42.03%,棵间土壤蒸发与太阳辐射、气温和相对湿度等主要气象因子均呈现良好的指数关系,本研究对合理制定温室白菜的灌溉制度具有重要的参考价值。  相似文献   

7.
日光温室萝卜棵间土壤蒸发规律试验   总被引:4,自引:0,他引:4  
土壤蒸发在农田水量平衡和能量平衡计算中占有重要地位。该文采用微型蒸渗仪测定温室萝卜的棵间土壤蒸发,对萝卜棵间土壤蒸发的变化规律及其与太阳辐射、气温和相对湿度等主要气象因子的关系进行了试验研究和分析。研究结果表明:温室萝卜棵间土壤蒸发随着萝卜生育期的推移有减小的趋势,棵间土壤蒸发量占全生育期总耗水量的37.73%~41.71%,棵间土壤蒸发与太阳辐射、气温和相对湿度等主要气象因子均呈现良好的指数关系,该研究对合理制定温室萝卜的灌溉制度具有重要的参考价值。  相似文献   

8.
灌溉后不同处理方式对土壤水分蒸发过程的影响   总被引:1,自引:0,他引:1  
土壤蒸发是土壤损失水分的重要途径,在北方旱区土壤蒸发失水量可达同期降水量的50%或更多,小麦全生育期棵间土壤蒸发占农田蒸散量的66%。因此,研究土壤水分蒸发过程和减少土壤表面水分蒸发途径对于寻找高效合理的水资源利用方式具有重要意义。利用称重式蒸渗仪初步研究了灌溉后不同处理措施对土壤水分蒸发过程的影响。结果表明,秸秆覆盖和高留茬对土壤水分蒸发的抑制作用主要表现在灌溉后土壤含水量较高的阶段内;天气晴朗条件下日蒸发强度在10:30左右即达最大值,秸秆覆盖和高留茬处理使其出现时间滞后;土壤含水量较高时松土对土壤水分蒸发无抑制作用,而在土壤含水量降低到一定程度时松土能明显抑制土壤水分蒸发。  相似文献   

9.
棵间土壤蒸发是塔克拉玛干沙漠公路防护林耗水的重要组成部分。应用Micro-Lysimeters测定了1个灌溉周期内咸水滴灌下距林木不同位置处的土壤蒸发量。分析了土壤蒸发与水面蒸发的关系,通过一维平差处理对防护林土壤蒸发量进行了估算。结果表明,塔里木沙漠公路防护林棵间土壤蒸发具有明显的季节变化特征。试验初期棵间土壤蒸发量:根基部>距根基50cm处>距根基100cm处;第5d以后,根基50cm处>根基部>距根基100cm处。林地土壤蒸发随土壤含水量的减低呈整体下降趋势。通过估算,咸水滴灌下整个防护林年土壤蒸发总量为2.63×106 m3,占总灌水量的21.43%,生长季蒸发量占全年蒸发量的92.28%。  相似文献   

10.
利用2a实测的冬小麦田间土壤剖面含水率和棵间蒸发数据,修正了基础作物系数和土壤物理参数等指标,率定了SIMDual_Kc双作物模型,并验证了其在豫北地区冬小麦田的适用性。结果表明,修订后的SIMDual_Kc模型模拟豫北地区冬小麦有效根层的土壤含水率和棵间蒸发量与实测值具有很好的一致性,误差较小。冬小麦整个生育期的棵间蒸发量占总腾发量的比例约为35%,分时期计算,此比值在生育前期明显高于生育后期。生育前期棵间蒸发量占总腾发量的比例高达73%,快速生长期该比例降至约30%,生育中期棵间蒸发比例最低,约为7.5%,生育后期棵间蒸发比例又升至约35.5%。研究结果可为地表覆盖、节水灌溉方式和适宜灌溉频率等减少棵间蒸发的技术措施研发与应用提供必要的理论支持。  相似文献   

11.
冬小麦相对蒸散(农田蒸散量ET与自由水面蒸发量ET_0之比)表征冬小麦受土壤水分和作物生长状况制约下的耗水规律。冬小麦生长季利用大型蒸渗仪测定农田蒸散,用E601型水面蒸发器测定水面蒸发,并用平行观测方法测定叶面积指数,分析冬小麦相对蒸散与叶面积指数和表层土壤含水量的关系,并建立了冬小麦返青~收获期相对蒸散与叶面积指数和0~60cm表层土壤含水量的经验公式为。在田间条件下由RE和ET_0推算出小麦耗水量ET,并可用于冬小麦适时、适量灌溉管理。  相似文献   

12.
基于SIMDualKc模型估算西北旱区冬小麦蒸散量及土壤蒸发量   总被引:1,自引:5,他引:1  
为研究西北旱区冬小麦蒸散和土壤蒸发规律,以及土壤蒸发比例与其影响因子的关系,利用2 a冬小麦小区控水试验实测数据,对SIMDual Kc模型进行了参数校正和验证,对比大型称重式蒸渗仪的实测蒸散量值(或水量平衡法计算值)与模型模拟值。用建立的模型模拟精度评价标准对模拟值和实测值的误差进行评价。用经参数校验的模型模拟冬小麦农田土壤蒸发,并与微型蒸渗仪的实测值进行对比。基于通径分析方法研究气象因子(最低气温、最高气温、平均相对湿度、2 m处风速、太阳辐射量)和作物因子(地面覆盖度)与土壤蒸发比例的关系。结果表明,该研究建立的模型模拟精度评价标准能够较为全面地评价模型精度;SIMDual Kc模型可以较好地模拟西北旱区不同灌溉制度下冬小麦蒸散量和土壤蒸发量的变化过程,且在模拟长时段累积值时具有较高精度;拔节-灌浆期是冬小麦的需水关键期,冬小麦全生育期土壤蒸发比例呈现出生长中期生长后期快速生长后期生长初期的规律;灌水仅在短时间内影响土壤蒸发,地面覆盖度是影响土壤蒸发的最主要因子;在实测数据不充足的情况下,可以将地面覆盖度和蒸散量作为输入变量,用该研究确定的土壤蒸发比例与地面覆盖度的回归模型计算土壤蒸发量,该模型在计算不同水分条件下冬小麦农田土壤蒸发量时表现出较高的计算精度,决定系数在0.721~0.902之间,可以作为计算土壤蒸发量的简便方法。研究可为西北旱区冬小麦农田节水和灌溉决策提供理论依据。  相似文献   

13.
基于蒸发皿水面蒸发量制定冬小麦喷灌计划   总被引:2,自引:1,他引:1  
该研究拟利用直径为20cm的标准蒸发皿,制定简单易行的喷灌冬小麦灌溉计划。试验于2005-2006年和2006-2007年冬小麦生长季节,在中国科学院通州农田水循环和节水灌溉试验基地进行。以布置在冠层上20 cm直径蒸发皿水面蒸发量(E)为基础,研究了不同水面蒸发量倍数(分别为0.25、0.50、0.75、1.00和1.25倍,以及不灌水对照处理)灌溉水量条件下,喷灌水量对土壤水分、冬小麦生长、产量、耗水量和水分利用效率的影响,分析了利用水面蒸发量制定喷灌灌溉计划的可行性。试验结果显示,喷灌条件下土壤水分主要在0~60 cm土层内变化。当灌溉水量小于0.25E时,冬小麦叶面积指数和生物量较小,而大于1.00E也会抑制冬小麦生长。喷灌条件下冬小麦单个生育期内的耗水量在 312~508 mm内变化,耗水量随着灌水量的增加而增加。喷灌0.50E~0.75E时,冬小麦产量和水分利用效率最高或者接近于最高;灌水量较小(≤0.25E)和较大(≥1.00E)时均会降低产量。建议在北京地区冬小麦返青后,喷灌水量可采用0.50~0.75倍的20 cm蒸发皿水面蒸发量,灌水间隔可采用5~7 d。  相似文献   

14.
造墒与播后镇压对小麦冬前耗水和生长发育的影响   总被引:4,自引:0,他引:4  
为明确造墒和播后镇压对小麦冬前耗水和群体与个体特征及产量的影响,为确定播后镇压技术和提高小麦水分利用效率提供依据,分别于2013—2014年和2014—2015年小麦生长季在河北省衡水市选用当地小麦品种‘衡4399’,分9月15日(I9.15)、9月20日(I9.20)、9月25日(I9.25)和9月30日(I9.30)4期造墒,以不造墒为对照(CK),每期处理又设每延米0 kg(G0)、95 kg(G95)和120 kg(G120)3个水平镇压的冬小麦田间试验。冬前对土壤水分和小麦幼苗生长情况进行动态监测,翌年成熟期考察产量性状并测产。结果表明,播种时土壤水分含量高,冬前阶段农田蒸散量也高。同一造墒不同镇压处理比较,I9.30处理以G95田间蒸散量最低,其他处理均以G120蒸散量最低,处理间差异显著。对苗情的影响,同一造墒不同镇压比较,苗期单株生物量、叶面积、群体总茎数以G120与G95处理较高,以G0处理较低,处理间显著水平不同;同一镇压不同造墒处理间比较,不造墒的CK总茎数显著减少,产量显著较低,且年际变化不稳定。造墒与镇压对穗数影响较大,其中造墒处理穗数显著高于CK,镇压处理对穗数的影响表现一致:G120G95G0。以上处理对产量与对穗数的影响一致:造墒处理间产量差异水平不同,但以CK最低;镇压处理间产量差异不显著,但以G0最低。造墒和镇压对产量的交互作用不显著。综上可见,墒情适宜是小麦播后镇压的基础,镇压又是提墒壮苗的保障。河北地区小麦造墒水提前到9月20—25日,播种后采用95 kg×m~(-1)镇压器便于田间操作且镇压效果较好。  相似文献   

15.
新乡地区冬小麦缺水量适宜估算模式研究   总被引:2,自引:2,他引:0  
作物缺水量是确定灌溉需水量和制定灌溉制度的基础依据。利用新乡地区连续两个冬小麦生长季(2005~2006年、2006~2007年)田间试验资料建立了冬小麦生育期叶面积指数增长模型、需水量估算模型和土壤入渗模型。在此基础上, 根据新乡地区51年(1951~2001年)的逐日气象资料, 采用土壤水分平衡法, 综合考虑作物蒸散、降水和灌溉等因素, 模拟冬小麦各生长季降水有效利用状况, 分析研究该地区连续50个冬小麦生长季降水量与相应时间段有效降水量间的相互关系, 确定不同时间尺度下有效降水量估算模式。最后, 以确定的作物需水量和有效降水量估算模式为基础, 提出河南新乡地区不同时间尺度下的冬小麦缺水量适宜估算模式。  相似文献   

16.
喷灌对冠层水汽交换的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
以冬小麦为研究对象,研究了喷灌对冠层内外水汽交换的影响。研究结果表明喷灌影响了冠层内外水汽交换的过程。喷灌对冠层顶部的蒸发力影响不显著,对冠层内的蒸发力影响较大,喷灌冠层内的农田蒸发力小于地面灌冠层内同一高度的农田蒸发力。在地面灌和喷灌同时灌溉的情况下,地面灌农田的土面蒸发量大于喷灌农田;与白天相比,夜间地面灌和喷灌农田的土面蒸发都大大减少。喷灌农田的作物蒸散量通常小于地面灌农田。喷灌小麦晚上出现凝结水的量大于地面灌农田。  相似文献   

17.
华北平原冬小麦-夏玉米一年两熟种植模式为维护国家粮食安全发挥了重要作用。但冬小麦生长期正处于华北平原降水较少的干旱季节,实现高产依赖于灌溉,是华北平原地下水超采的主导因素之一。随着国家地下水限采政策的实施,在地下水超采区如何稳定冬小麦的种植面积和产量是面临的一个重要问题。本文通过综述以往研究并结合典型地点田间试验结果,从冬小麦种植可减少休闲期土壤蒸发损失、具有的深根系系统可充分利用土壤储水、可利用微咸水替代淡水灌溉、通过限水灌溉发展优质麦生产、冬春形成覆盖层美化和防沙尘效应等方面论述了华北平原种植冬小麦的优势,提出华北平原冬小麦生产需要转变传统高耗水高产量理念,充分发挥冬小麦抗旱、耐盐能力强的特点,在不实施大规模压缩冬小麦种植面积条件下,通过冬小麦限水灌溉和微咸水利用满足对地下水压采需求,充分发挥华北平原冬小麦种植冬春防风沙、美化环境的生态功能,同时满足区域口粮安全的保障功能。  相似文献   

18.
土壤扩蓄增容肥对冬小麦棵间蒸发和水分利用效率的影响   总被引:3,自引:0,他引:3  
利用农田水量平衡公式计算了冬小麦耗水量,用微型蒸渗仪测定了农田土壤棵间蒸发状况,在此基础上通过对比试验研究了土壤扩蓄增容肥条件下不同水分处理冬小麦生长期间农田棵间蒸发与水分利用效率.结果表明,施加土壤扩蓄增容肥后冬小麦生育期平均耗水量较对照平均减少了491.67 m3/h㎡,可明显降低冬小麦棵间蒸发,同时可降低播种到拔节期阶段棵间蒸发占阶段耗水量的比例;灌水量2250 m3/h㎡3理(T2)水分利用效率达2.62 kg/m3;灌水量1950 m3/h㎡的处理(T3)可增产32.68%.  相似文献   

19.
Maize (Zea mays L.), a staple crop grown from June to September during the rainy season on the North China Plain, is usually inter-planted in winter wheat (Triticum aestivum L.) fields about one week before harvesting of the winter wheat. In order to improve irrigation efficiency in this region of serious water shortage, field studies in 1999 and 2001, two dry seasons with less than average seasonal rainfall, were conducted with up to five irrigation applications to determine evapotranspiration, calculate the crop coefficient, and optimize the irrigation schedule with maize under mulch, as well as to establish the effects of irrigation timing and the number of applications on grain yield and water use efficiency (WUE) of maize. Results showed that with grain production at about 8 000 kg ha^-1 the total evapotranspiration and WUE of irrigated maize under mulch were about 380-400 mm and 2.0-2.2 kg m^-3, respectively. Also in 2001 WUE of maize with mulch for the treatment with three irrigations was 11.8% better than that without mulch. In the 1999 and 2001 seasons, maize yield significantly improved (P = 0.05) with four irrigation applications, however, further increases were not significant. At the same time there were no significant differences for WUE with two to four irrigation applications. In the 2001 season mulch lead to a decrease of 50 mm in the total soil evaporation, and the maize crop coefficient under mulch varied between 0.3-1.3 with a seasonal average of 1.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号