首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
甜玉米氮素积累和分配的基因型差异   总被引:5,自引:2,他引:3  
为了解甜玉米高产品种氮素积累和分配的规律,阐明不同生育阶段氮素积累和分配的基因型差异,及其对产量形成及氮素利用效率的作用,分析了22个甜玉米品种在同一施氮水平下拔节期、开花期和鲜食期的植株氮素积累量和分配量。结果表明,甜玉米品种不同阶段的氮素积累和分配存在着显著的基因型差异。随着生育进程的推进,植株氮素含量逐渐下降,氮素积累量逐渐上升,不同生育阶段的氮素积累量以拔节到开花期最高;氮素在开花前主要分布在叶片中,在开花后开始由叶片逐渐向果穗转移。到鲜食期,甜玉米不同品种果穗中氮素分配量最高,占全株氮素总积累量的41.32%,其次为子粒,氮素分配量占全株氮素积累量的28.53%。高产品种拔节—鲜食期氮素积累量高,鲜果穗高产品种在鲜食期叶片和子粒中的氮素分配较高,鲜子粒高产品种在鲜食期叶片和雄穗中氮素分配量较高且轴中氮素分配量较低。鲜果穗氮素利用效率高的品种主要是由于其减少了开花—鲜食期的氮素积累量,其次是减少了拔节—开花期的氮素积累量,且其在鲜食期叶片、轴和叶鞘中的氮素分配量较少。鲜子粒氮素利用效率和各阶段的氮素积累量及鲜食期各器官的氮素分配量无显著相关关系。  相似文献   

2.
甜玉米氮素吸收利用的基因型差异   总被引:10,自引:5,他引:5  
以近年来育成的22个甜玉米品种为材料,在同一供氮水平下对其氮素吸收利用的基因型差异进行了研究。结果表明,不同品种产量、氮素积累量和氮素利用效率都存在着显著差异。氮素积累量变幅为126.6~243.8 kg/hm2,鲜果穗和鲜子粒氮素利用效率的变幅分别为43.5~62.0 kg/kg和28.4~46.0 kg/kg。聚类分析结果看出,鲜果穗、鲜子粒均表现为高产、氮素积累量大、氮素利用效率高的品种是金凤5号、穗美9701和金师王,其氮素积累量均值为214.4kg/hm2,鲜果穗和鲜子粒的氮素利用效率分别为50.8kg/kg和38.2kg/kg。通径分析表明,氮素积累量对不同品种产量的作用大于氮素利用效率对产量的作用,说明鲜食甜玉米品种的高产关键在于改良品种的氮素积累量,并在此基础上提高氮素的利用效率。  相似文献   

3.
为了解糯玉米氮素积累进程的变化规律,阐明不同生育时期氮素积累的基因型差异及其对产量形成的作用,分析了31个糯玉米品种在同一施氮水平下四叶期、拔节期、大口期(12叶期)、开花(吐丝)期、鲜穗采收期和成熟期的植株氮素积累量。结果表明,植株氮素含量随生育进程逐渐下降,植株氮素积累量随生育进程的增加呈不对称的S型曲线变化,可用Richards方程拟合。不同品种各生育时期的氮素含量和积累量均存在显著差异。鲜穗高产品种主要在大口至开花阶段增加了吸氮量;而鲜子粒及成熟子粒高产品种主要在大口至开花,其次在开花至鲜穗采收阶段增加了吸氮量。通径分析表明,氮素积累过程主要影响氮素积累总量的高低,而对氮素利用效率影响较小。氮素积累过程S型曲线的Richards方程特征参数品种间差异显著。最大积累速率大、活跃积累期长、快增期的积累速率大和持续时间长对提高品种的氮素吸收总量有利。属于高产、氮素吸收量大、氮素利用效率高的基因型有6个品种,其大口至开花及开花至鲜穗采收阶段的吸氮量平均值分别为1.136和0.554.g/plant,比其它品种分别高24.3%和37.8%;最大积累速率和快增期的积累速率分别为0.068和0.059.g/(d.plant),比其它品种分别高15.8%和15.9%。活跃积累期和快增期的持续时间平均值分别为63.4和29.5.d,比其它品种分别延长了1.9和0.9d。  相似文献   

4.
为了解糯玉米氮素积累进程的变化规律,阐明不同生育时期氮素积累的基因型差异及其对产量形成的作用,分析了31个糯玉米品种在同一施氮水平下四叶期、拔节期、大口期(12叶期)、开花(吐丝)期、鲜穗采收期和成熟期的植株氮素积累量。结果表明,植株氮素含量随生育进程逐渐下降,植株氮素积累量随生育进程的增加呈不对称的S型曲线变化,可用Richards方程拟合。不同品种各生育时期的氮素含量和积累量均存在显著差异。鲜穗高产品种主要在大口至开花阶段增加了吸氮量;而鲜子粒及成熟子粒高产品种主要在大口至开花,其次在开花至鲜穗采收阶段增加了吸氮量。通径分析表明,氮素积累过程主要影响氮素积累总量的高低,而对氮素利用效率影响较小。氮素积累过程S型曲线的Richards方程特征参数品种间差异显著。最大积累速率大、活跃积累期长、快增期的积累速率大和持续时间长对提高品种的氮素吸收总量有利。属于高产、氮素吸收量大、氮素利用效率高的基因型有6个品种,其大口至开花及开花至鲜穗采收阶段的吸氮量平均值分别为1.136和0.554 g/plant,比其它品种分别高24.3%和37.8%;最大积累速率和快增期的积累速率分别为0.068和0.059 g/(d.plant),比其它品种分别高15.8%和15.9%。活跃积累期和快增期的持续时间平均值分别为63.4和29.5 d,比其它品种分别延长了1.9和0.9d。  相似文献   

5.
不同时期追氮对冬小麦植株氮素积累及转运特性的影响   总被引:2,自引:2,他引:2  
采用盆栽和大田相结合,并应用15N示踪技术,研究了不同时期追氮对两个不同穗型冬小麦品种植株氮素积累及转运特性的影响。结果表明,成熟期小麦植株各部位氮素积累量和分配比例均表现为子粒茎鞘+叶根系或颖壳+穗轴;子粒中氮素积累量以拔节期追氮处理最高,氮素在子粒中的分配比例以抽穗期追氮最高,在根系中的分配比例则以全部底施处理最高。小麦植株吸收追施15N的比例为16.45%~26.6%,兰考矮早八和豫麦49-198分别以返青期追氮和拔节期追氮吸收的比例最高;子粒中氮素来自15N的比例均以返青期追氮最高,分别为27.16%和22.20%,但和拔节期追氮处理差异不显著。随着追氮时期推迟,氮的花后同化量、花后贡献率增加,而花前贡献率呈下降趋势;全氮对子粒贡献率表现为花前转运的贡献大于花后同化的贡献,但抽穗期追氮处理中,15N对子粒的贡献率表现为花后同化率大于花前转运贡献率。综合考虑子粒产量、蛋白质含量以拔节期追氮较为合适。  相似文献   

6.
研究了在群体水培条件下,3种氮素水平(5、15和25mg.kg-1)对6种不同氮效率利用基因型迟熟中粳水稻物质生产与分配的影响。结果表明:氮素水平、基因型对水稻氮素干物质生产效率(NUEdm)、氮素籽粒生产效率(NUEg)均有极显著的影响。6种不同氮效率基因型可分成氮高效和氮低效利用型2类。NUEdm在2类基因型水稻中总体上均随着氮素水平升高呈现上升趋势;而NUEg在氮低效基因型中表现为随氮素浓度升高而先升后降。在水稻的4个关键生育期,不同氮素水平、2类基因型之间水稻干物质积累量差异显著。成熟期,氮素水平对水稻茎鞘、根、穗的干物质分配比例影响显著,对叶片干物质分配比例影响不显著。相同氮素水平下,就平均值而言,水稻茎鞘、叶片、根系干物质比例均表现为氮低效基因型>氮高效基因型,而穗的干物质比例均表现为氮高效基因型>氮低效基因型。氮素水平对不同基因型水稻产量影响显著,同一氮素水平下均表现为氮高效型基因型水稻产量显著高于氮低效型基因型,且施氮量越大差异越大。相关分析表明,水稻各关键生育期的干物质生产量、产量、每穗粒数均与氮素水平、基因型的NUEg、NUEdm显著或极显著相关,与成熟期水稻各器官干物质分配比例相关性则相对较弱。  相似文献   

7.
以湘油15 为材料,应用15N 示踪技术,在盆栽条件下设置两个施氮水平,通过比较研究油菜初花期、盛花期、终花期、角果发育期、成熟期的干物质积累、氮素积累和分配以及15N 丰度,以揭示油菜生育后期根系对氮肥的吸收特性和氮素的再分配规律,为油菜高效氮肥管理和高产栽培提供理论依据。结果表明:在油菜发育后期,根的氮素累积量变化不大,茎的氮素累积量的变化呈现单峰模式,在盛花期达到最大值。叶片氮素积累量从初花期到终花期显著下降;角果粒氮素积累量呈S 形曲线,终花期之前缓慢增加,终花期至结果发育期快速增加,其后略有增加;茎秆中氮素积累量从盛花期开始缓慢降低;角果皮在终花期积累至最高,其后逐渐下降;角果果瓣在终花期后略有降低,但变幅不大。在低施氮水平(T1 处理)下,油菜生育后期有61.98% 的氮素来自土壤,38.02% 的来自肥料,所有器官中氮素来源于土壤中的比例高于来自肥料中的比例;在高施氮水平(T2 处理)下,油菜生育后期总积累的氮素来自肥料氮的比例为52.69%,高于来自土壤的比例(47.31%),其中角果粒和茎秆中积累的氮素来自肥料的比例显著高于来自土壤的比例,根、角果皮和角果果瓣中积累的氮素来自肥料和土壤的比例相接近。油菜生育后期对氮素仍然有较大的需求量,也具有较强的氮素吸收与累积能力。  相似文献   

8.
不同类型专用小麦氮素吸收积累差异研究   总被引:17,自引:7,他引:17  
2000至2002年在田间条件下,研究3个不同类型专用小麦品种(强筋小麦皖麦38、中筋小麦扬麦10号和弱筋小麦宁麦9号)氮素吸收积累差异。试验结果表明,成熟期植株含氮率与子粒含氮率均以强筋小麦皖麦38最高,弱筋小麦宁麦9号最低。成熟期植株氮积累量为皖麦38最高,子粒氮积累量为扬麦10号最高。不同品种不同生育阶段吸收的氮素占一生总氮量的比例不同,弱筋小麦宁麦9号在出苗拔节期氮积累量占整个生育期中的比例较其它品种高,而强筋小麦皖麦38在开花成熟期较其它两个品种高。结果还表明,不同类型专用小麦品种每生产百公斤子粒所需吸收的氮量也不相同。  相似文献   

9.
叶面不同施氮量对大豆氮素吸收与分配的影响   总被引:1,自引:0,他引:1  
为研究大豆叶面氮素吸收与分配规律,以黑龙江省三江平原大豆主栽品种合丰50为试验材料,采用15N示踪法在大豆R5期进行叶面施氮处理,研究大豆不同器官对氮素同化吸收及积累分配情况。结果表明:当施氮量超过4.5kg·hm-2(N3)条件下,大豆植株各器官干物质量、氮素含量、氮素积累量均不再显著增加。子粒干物重在4个施氮量(N1、N2、N3、N4)条件下分别比无氮处理增加2.51%,5.01%,9.55%和0.51%,在4.5kg·hm-2(N3)条件下最高,为21.8g/株。同一施氮量条件下,大豆不同器官15N积累量为子粒茎叶荚皮叶柄根;在不同施氮量条件下,15N在各器官积累量随施氮量增加而增加,在4.5kg·hm-2(N3)条件下达到最高值,子粒15N积累量为8.17mg/株。从N1到N3处理增加施氮量降低了15N在子粒中的分配比例,但提高了15N在叶片中的分配比例,同时提高了15N在子粒中的积累量。本研究从理论上证明了在大豆R5期进行叶面施氮时,氮素主要积累于子粒中,从而有利于子粒干物质积累,最终获得增产。  相似文献   

10.
不同年代玉米品种氮素利用效率与其根系特征的关系   总被引:6,自引:1,他引:5  
【目的】玉米品种根系构型及解剖结构决定着其氮素利用的效率。研究不同年代推广的玉米品种根系构型与解剖结构的演进规律,可为选育高产氮素高效利用型玉米新品种提供理论依据。 【方法】以20世纪80年代至今推广的8个玉米品种掖单13号(YD13)、农大108(ND108)、郑单958(ZD958)、先玉335(XY335)、京科968(JK968)、中单909(ZD909)、登海605(DH605)、登海618(DH618)为试验材料,进行大田和土柱栽培两种试验。大田试验施氮量为N 236.25 kg/hm2和不施氮,土柱试验为N 4.5和1.5 g/plant,定期取样测定根系相关指标、干物质及氮素积累与分配。 【结果】近代玉米品种籽粒产量和氮素积累量均显著高于早期品种,高氮处理2000's以后品种(JK968、ZD909、DH605、DH618)较之前的4个品种分别增加14.7%和11.7%,低氮条件下分别增加16.1%和20.6%;高氮处理,1990's玉米品种ND108、ZD958根系干重较1980's品种YD13平均减少54.2%,2000's以后的品种JK968、ZD909、DH605、DH618较1990's玉米品种平均增加23.2%,但仍少于YD13;次生胚根数目随品种更替呈现逐渐增加趋势;根系皮层通气组织(RCA)占根系横截面积的比例随品种更替呈现增加趋势,而根系皮层细胞层数(CCFN)和细胞大小(CCS)虽有差异,但并无明显变化趋势;2000's以后品种D95(95%的根系干重所达到的土层深度)较之前品种增加23.7%,表明近代品种根系下扎能力增强,在深层土壤中的根系分布比例增加。在同一氮素水平下,根干重、D95、RCA%与氮素积累量呈显著线性正相关,根系呼吸速率和氮素积累量呈显著线性负相关。 【结论】现代玉米品种的氮素吸收量与氮素利用效率显著高于早期品种,在低氮条件下优势更明显。随品种更替,次生胚根数目增多,利于玉米苗期的生长;根系总量呈现先减少后增加的趋势,根系下扎能力明显增强,深层土壤中根系显著增加。现代玉米品种根系RCA占根系横截面积比例显著增加,减少了根系呼吸消耗,有利于产量的提高。  相似文献   

11.
土壤盐分对油菜氮素积累、运转及利用效率的影响   总被引:1,自引:0,他引:1  
【目的】比较不同盐分含量条件下油菜产量、品质等性状差异,初步探讨盐分含量对油菜氮素积累、运转及利用效率的影响机制。 【方法】以杂交油菜宁杂 1818 和盐油杂 3 号为材料,在盐分含量为 2.7 g/kg (低盐) 和 4.4 g/kg (高盐) 的土壤上连续两年进行了田间试验。在初花期和成熟期取样,定期收集田间落叶,测定植株干物质积累量、氮素含量及籽粒品质,计算了不同盐分含量土壤条件下油菜氮素积累、运转及氮素籽粒生产效率。 【结果】高盐土壤上油菜的初花期和成熟期时间较低盐土壤的推迟 3~4 天,产量、总生物量和氮素积累总量显著降低,宁杂 1818 和盐油杂 3 号两年产量平均下降幅度分别为 23.6% 和 26.1%。与低盐土壤相比,高盐土壤上油菜籽粒含油量显著降低,蛋白质含量显著增加,宁杂 1818 和盐油杂 3 号两年油分含量平均下降幅度均为 4.6%,蛋白质含量平均增加幅度分别为 6.4% 和 9.4%。盐分含量对根系和叶片的氮素运转率影响较小。高盐土壤上油菜茎枝中的氮素运转率和氮素籽粒生产效率较低盐土壤的低,宁杂 1818 和盐油杂 3 号茎枝氮素运转率两年平均下降幅度均约为 14.2%,氮素籽粒生产效率平均下降幅度分别为 6.8% 和 9.3%。 【结论】高盐土壤上油菜的产量、总生物量、氮素积累总量以及籽粒含油量较低盐土壤显著降低,籽粒蛋白质含量显著增加。高盐土壤上油菜茎枝中氮素运转率的显著降低是导致油菜氮素籽粒生产效率降低的重要因素之一。  相似文献   

12.
施氮量对棉铃干物质和氮累积及分配的影响   总被引:4,自引:1,他引:3  
以高品质棉(科棉1号)和常规棉(美棉33B)品种为材料,2005年在江苏徐州(11711E, 3415N)、2007年在河南安阳(11413E, 3604N)设置施氮量(低氮N 0 kg/hm2,适氮N 240 kg/hm2,高氮N 480 kg/hm2)试验,研究施氮量对棉铃干物质、氮累积分配和棉铃(纤维、棉子)品质的影响。结果表明:施氮可改变棉铃各部分干物质和氮素的累积特征,进而影响棉铃重和棉铃品质。在本试验N 240 kg/hm2水平下,单铃棉子和纤维的干物质累积量最大,棉铃各部分(铃壳、纤维、棉子)氮含量适中、氮累积量最高,最终铃重最大,棉纤维和棉子品质最优;在不施氮(N 0 kg/hm2)时,棉铃干物质和氮快速累积期开始较早、累积速率较低,最终干物质和氮累积量均较低,铃重最低,棉纤维和棉子品质最差。在N 480 kg/hm2水平下,棉铃各部分(铃壳、纤维、棉子)的氮含量和累积量提高,且在成熟棉铃中棉纤维干物质的分配系数下降,棉子中的氮分配系数提高,最终棉子中蛋白质含量上升,铃重和棉纤维比强度、棉子油分含量均降低。综上所述,施氮量过低影响棉铃干物质和氮素的累积,而施氮量过高则主要影响棉铃干物质和氮素在铃壳、棉子和纤维间的分配,二者均导致最终的铃重降低、棉纤维和棉子品质变劣。  相似文献   

13.
2009~2010年度在我国油菜主产区采用多点田间试验研究了施用控释尿素(Controlled release urea, CRU)对油菜籽产量、氮肥利用率及土壤无机氮含量的影响,以期为CRU在油菜上的施用提供理论依据。结果表明,CRU一次性基施可以保证后期氮素供应,明显促进油菜的生长发育,与普通尿素一次性基施处理(UB)相比,油菜叶片的SPAD值、株高及花期绿叶数明显增加。油菜籽产量增加了7.1%~19.7%,影响产量的构成因素主要有总角果数、分支数和第一节位高。油菜的氮素积累量增加16.9%~27.3%,氮肥利用率提高12.2~17.7个百分点,试验后耕层土壤(030 cm)的硝态氮含量升高了149.3%~296.1%,无机氮含量升高了40.5%~145.9%。CRU处理与尿素分次施用处理(UD)相比,生长指标、油菜籽产量和干物质量均没有明显差异,氮积累量和氮肥利用率有增加趋势。可见,CRU一次性基施可以达到普通尿素分期施用的效果。  相似文献   

14.
遮荫条件下氮肥运筹对棉花生长和氮素积累的影响   总被引:2,自引:0,他引:2  
【目的】果棉间作下棉花贪青晚熟现象明显,霜前花率低,产量下降严重,而合理的氮肥追施可以调控作物生育进程,优化各器官生物量和氮素的积累分配。为此,本文探讨果棉间作下棉花适宜的氮肥追施模式,以期为间作棉合理施氮提供理论依据。【方法】以中棉所49为材料,采用裂区设计,主区为遮荫50%(S50)与不遮荫(CK),副区为3个氮肥追施方式,即N1(氮肥前移)、 N2(正常追肥)、 N3(氮肥前移比例大于N1),总施氮量N 320 kg/hm2,随机追施量为160 kg/hm2,追施时期与比例见表1。研究其对棉花生物量、 氮素动态累积特征的影响。【结果】遮荫50%(S50)与不遮荫(CK)相比,营养器官生物量理论最大值和最大生长速率较大; 生殖器官生物量理论最大值、 最大生长速率和生长特征值较小; 总氮快速积累提前5~8 d; 单株铃数、 单铃重和衣分显著降低,皮棉产量平均减少35.61%。遮荫50%时,以N1处理地上部营养器官和生殖器官生物量进入快速增长期的起始日和结束日、 最大生长速率出现日提早,生殖器官生物量理论最大值表现为N1>N2>N3; 氮积累量理论最大值、 快速积累持续时间及生长特征值最大; 有利于营养器官对氮的净吸收、 净转移和对棉纤维的贡献; 单株铃数、 单铃重最高,皮棉产量比N2、 N3提高18.90%和29.07%。不遮荫时,以N2处理地上部营养器官生物量的最大生长速率和生长特征值最大; 氮积累量理论最大值、 氮快速积累持续时间及生长特征值也最大; 皮棉产量比N1、 N3提高13.03%和23.67%。【结论】遮荫50%条件下,氮肥追施适度前移(N1),即提前至盛蕾期(6月中下旬)开始追肥,在盛铃期(8月上旬)前结束,可改善遮荫条件下棉花快速生长期的生长特征值,显著增加生物量和氮素积累量,有利于营养器官对氮的净吸收、 净转移和对棉纤维的贡献,最终增加单株铃数、 单铃重和产量。  相似文献   

15.
探索不同氮肥基追比水平下杂交棉的氮素吸收、干物质积累及产量的变化规律,为南疆杂交棉高产高效栽培技术提供理论依据。以兆丰1号和鲁棉研30号为试验材料,设3个氮肥基追比处理(N1,基肥∶追肥=0∶10;N2,基肥∶追肥=2∶8;N3,基肥∶追肥=4∶6),研究了氮肥基追比对杂交棉氮素吸收、干物质积累及产量的影响。结果显示,随着氮肥追肥比例的减少,植株生物量和氮素吸收量先升后降。其中N1处理不利于棉株干物质积累和氮素的吸收,显著降低了累积速率,使棉花生育期提前、衰老加快;N2处理提高了干物质快速积累速率,延长了快速积累持续时间,增加了开花后生物量积累、氮素吸收量以及花后同化物与氮素向生殖器官中的转运;N3处理由于追肥比例较少,开花后干物质与氮素的积累量以及花铃期干物质与养分向生殖器官中的分配比例减少。本试验条件下,两个杂交棉品种的基肥∶追肥=2∶8处理的棉花干物质及氮素累积最为协调,并能同步增加单株结铃数和铃重,进而实现增产。  相似文献   

16.
不同小麦品种氮、硫积累特性与子粒品质的关系   总被引:1,自引:1,他引:0  
依据小麦子粒含硫量和N/S比值的差异,用聚类分析的方法,将供试的12个小麦品种分为3 组:高N/S比组、中N/S比组和低N/S比组。研究不同类型小麦氮硫积累特性及其与子粒品质的关系,结果表明,小麦植株的氮素积累量与硫素积累量呈极显著正相关,氮素收获指数与硫素收获指数之间无显著线性相关关系。高N/S比组品种具有较高的氮素积累量或氮素收获指数,但硫素收获指数或硫素积累量相应较低;中N/S比组品种氮素收获指数高,硫素收获指数亦高;低N/S比组品种硫素积累量和硫素收获指数均较高,但氮素收获指数较低,植株体积累的氮素和硫素在子粒中分配比例的不同是品种间子粒N/S比值差异的重要原因。不同N/S比组品种比较,子粒谷蛋白含量、谷蛋白含量与醇溶蛋白含量比值、面团形成时间和稳定时间存在显著差异,且与子粒N/S比值呈极显著二次曲线关系,适宜的N/S比有利于子粒谷蛋白的积累及子粒品质的形成。  相似文献   

17.
施氮量对不同花生品种积累氮素来源和产量的影响   总被引:12,自引:1,他引:11  
利用盆栽试验和15N示踪技术,研究了不同施氮量对两个花生品种氮素积累来源和产量的影响。结果表明,两个花生品种的茎、叶片,果针、幼果,根的干物重均表现出随着施氮量的增加而增加的趋势。大花生品种花育17号的荚果产量随着施氮量的增加而增加,而小花生品种白沙1016在施N 0~90 kg/hm2范围内表现为随着施氮量的增加显著增加,但过多施氮(N 135 kg/hm2)荚果产量反而下降,说明两品种对氮肥的增产效应存在差异。两个花生品种均随着施氮量的增加吸收土壤氮和生物固氮量而增加,表明增施氮肥促进了花生植株对土壤氮的吸收和对大气氮的固定。在施氮量0~135 kg/hm2下,花生吸收土壤氮的比例在41.85%~48.63%之间,吸收肥料氮的比例在0%~13.93%之间; 生物固氮的比例在41.25%~56.85%之间。吸收肥料氮的比例随着施氮量的增加而增大,生物固氮的比例随着施氮量的增加而减小。  相似文献   

18.
施氮量对夏玉米碳氮代谢和氮利用效率的影响   总被引:32,自引:7,他引:25  
本试验研究了施氮量(0、90、180、270 kg/hm2)对夏播玉米CF008、金海5号和郑单958碳氮积累、运转及氮肥利用的影响。结果表明,3个品种的茎叶碳氮积累量、成熟期地上部总氮量均为在施氮量180 kg/hm2或270 kg/hm2下较高,但是最终碳氮运转率、氮素吸收效率、氮素利用效率和氮肥利用率均在施氮量90 kg/hm2下较高。本试验中,碳运转率与产量呈正相关,氮运转率与氮肥利用率呈正相关,表明较高的碳氮运转率可以促进产量和氮肥利用率的提高。本研究在施氮量90 kg/hm2下,CF008和金海5号茎鞘的C/N值在吐丝期和成熟期分别为22.11~22.91、35.66~54.23,叶片的C/N值分别为4.32~5.11、9.06~10.57;在施氮量90~180 kg/hm2下,3个品种夏玉米产量达到了10688~11461 kg/hm2;CF008和金海5号的氮肥利用率达到了31.55%~49.33%,而郑单958的氮肥利用率仅为15.11%~19.20%。  相似文献   

19.
【目的】草害是影响油菜产量主要因素之一,研究大田条件下直播油菜播种量和施氮量对油菜和杂草生物量的调控作用,揭示其氮素竞争规律,为提高直播油菜产量提供种植管理依据。 【方法】于2014年10月至2015年4月在华中农业大学校内试验基地开展田间试验,试验设置三个播种量为1.5、4.5、7.5 kg/hm2和五个氮梯度为0、60、120、180、240 kg/hm2,在油菜地上部生物量最大时,调查了杂草和油菜的生物量、氮素含量和氮素积累量,运用Shannon指数分析杂草均匀度,计算不同处理油菜与杂草在生物量和氮素积累上的竞争关系。 【结果】增加油菜播种量和施氮量可以提高油菜生物量和氮素积累量,与播种量1.5 kg/hm2相比,播种量为4.5和7.5 kg/hm2的所有氮用量处理油菜平均生物量分别提高了23.3%和45.2%,平均氮素积累量分别提高了21.2%和39.2%;与不施氮相比,用量从低到高各施氮处理油菜生物量平均分别增加了0.9、1.7、2.2和2.7倍,氮素积累量平均分别增加了1.0、2.0、3.5和4.4倍。杂草的生物量和氮素积累量随油菜播种量的增加而降低,播种量4.5和7.5 kg/hm2的各氮肥处理平均生物量比播种量1.5 kg/hm2的杂草平均生物量分别降低了16.8%和25.8%,杂草氮素积累量分别降低了17.3%和29.4%;而杂草生物量和氮素积累量随氮肥用量的增加而提高,但提高的幅度远低于油菜。相同处理的杂草氮含量高于油菜,且二者的氮含量均随施氮水平提高而增加,但油菜对氮肥的响应大于杂草,最高施氮处理油菜平均含氮量比对照增加了46.2%,相应的杂草氮含量增幅只有24.1%。油菜与杂草的氮素积累量比值在播种量为1.5 kg/hm2时均小于1,增加播种量,比值增大,在7.5 kg/hm2处理中施氮处理比值均大于1,施氮240 kg/hm2处理高达2.2,说明高密高氮可以提高油菜的氮素竞争力。施氮会改变杂草种群结构,杂草群落的均匀度随氮肥用量增加而降低。 【结论】油菜生物量和氮素积累量对施氮量和播种量的敏感度大于杂草,通过增施氮肥和提高播种量可以提高油菜的氮素竞争力,抑制杂草的生长。  相似文献   

20.
Low nitrogen (N) supply may change assimilate partitioning between plant organs. We measured the effect of N supply on partitioning of recently assimilated 13C and recently absorbed 15N between generative and vegetative plant organs of two maize genotypes (Zea mays L.) 14 d after silking, i.e., during the lag phase of kernel growth. Furthermore, net partitioning of dry matter and N were assessed during grain filling. Plants were grown in a greenhouse in large containers. Our hypothesis was that N deficiency reduces grain set due to low partitioning of carbon (C) and N to the grains during the lag phase and reduces grain yield also because of excessive remobilization of N from the leaves during grain filling. During the lag phase, low N supply increased partitioning of recently assimilated photosynthates towards stem and roots at the expense of partitioning towards reproductive organs. However, despite of diminished sink strength of the reproductive organs for photosynthates, sugar concentrations in the grains of N‐deficient plants were increased, indicating that kernel set and potential kernel weight were not limited by low C supply at the end of the lag phase. In contrast to C, partitioning of recently absorbed N towards the reproductive organs was increased at low N supply at the expense of partitioning towards the roots. This indicates different mechanisms for the regulation of C and N distribution within the plant. During grain filling, biomass partitioning between plant organs was more affected by genotype than by rate of N supply. Nitrogen accumulation in the grains substantially exceeded total N uptake in the plant after flowering. Excess N accumulation in the grains was covered mainly by depletion of stem N at high N supply and by depletion of leaf N at low N supply. However, high concentrations of nonstructural carbohydrates in the stem at maturity indicated that grain yield of N‐deficient plants was not limited by low source strength of N‐depleted leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号