首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
本文利用不同型号手机、通过不同拍摄角度获取冬小麦拔节期冠层图像,并对其图像进行色彩参数的提取、处理与分析,与传统小麦氮素营养指标进行相关性分析,筛选出敏感色彩参数,对二者进行拟合建模,建立了冬小麦氮素营养诊断指标体系和推荐施肥指标体系,为作物精准施肥提供参考。研究结果表明,在获取冬小麦冠层图像时,适宜从逆光俯视的角度拍摄,不同型号的手机拍照获取的冠层图像色彩参数没有明显差异,冠层图像色彩参数中可见光大气阻抗植被指数(VARI)及红光标准化值[R/(R+G+B)]与传统诊断指标叶片SPAD值、茎基部硝酸盐浓度均有显著的相关关系;其中VARI最为敏感,可作为冬小麦氮素营养诊断的色彩参数指标,诊断方程为冬小麦茎基部硝酸盐浓度=1.481×106×VARI4.987,依据此给出了不同VARI值下的冬小麦营养状况以及推荐施氮量。并基于此研究成果进行了手机软件开发,建立了一款针对冬小麦氮素营养诊断与推荐施肥的软件,为基于手机相机开展冬小麦氮素营养诊断与推荐施肥技术的推广与应用提供了技术支撑。  相似文献   

2.
数字图像技术在夏玉米氮素营养诊断中的应用   总被引:9,自引:5,他引:4  
基于6个不同水平的氮肥田间试验,采用数码相机获取夏玉米6叶期和10叶期的冠层图像,分析了不同供氮水平下夏玉米冠层图像色彩参数指标与施氮量、叶片SPAD值、植株硝酸盐浓度、植株全氮含量、0~90cm土壤硝态氮含量之间的关系。结果表明:在6叶期,玉米冠层数字图像色彩参数指标B/(R+G+B)、G/B、R/B、B/L均与施氮量、叶片SPAD值、植株硝酸盐浓度、植株全氮含量、0~90cm土壤硝态氮含量存在极显著的线性相关关系,其中B/(R+G+B)与各营养参数的相关关系最好,其次是B/L。因此,运用数字图像技术进行玉米的氮素营养诊断是可行的。夏玉米6叶期冠层图像色彩参数指标与上述营养参数间的相关性明显高于10叶期,可作为应用数字图像技术进行氮素营养诊断的关键时期,而蓝光标准化值[B/(R+G+B)]是进行夏玉米氮素营养诊断的最佳冠层图像色彩参数指标。  相似文献   

3.
数字图像诊断技术在冬小麦氮素营养诊断中的应用   总被引:8,自引:3,他引:5  
本文应用数码相机获取冬小麦冠层图像并对其进行相应色彩参数处理, 结合土壤、植株快速测试技术, 分析了色彩参数与传统氮素营养参数之间的数量关系, 研究了应用数字图像技术进行冬小麦氮素营养诊断的可行性, 建立了应用数字图像技术诊断冬小麦氮素营养状况的图像获取方法, 筛选出了适宜于冬小麦氮素营养诊断的最佳色彩参数以及最佳诊断时期, 建立了冬小麦氮素营养诊断指标体系和推荐施肥方程。研究结果表明, 数字图像技术可以作为冬小麦氮素营养诊断的方法。数字图像获取时, 可将数码相机与冬小麦冠层呈30°~60°角度进行拍摄。在冬小麦拔节期和孕穗期多数冠层图像色彩参数与施氮量、叶片SPAD 值、植株硝酸盐浓度、植株全氮含量、0~90 cm 土壤硝态氮含量之间存在显著或极显著相关关系; 在众多色彩参数中, 拔节期冠层图像绿光标准化值G/(R+G+B)与各项氮素指标的相关性最好, 可作为冬小麦氮素营养诊断的最佳色彩参数指标;拔节期可作为应用数字图像技术进行氮素诊断的关键时期。  相似文献   

4.
本文利用手机相机获取玉米6叶期和9叶期的冠层图像,对图像进行色彩参数的提取与处理,分析了不同生长时期、不同品种间色彩参数的差异性,以及色彩参数与传统玉米氮素营养指标的相关性,选择出适宜的敏感色彩参数,对色彩参数与氮素营养指标进行拟合建模,建立了玉米氮素营养诊断体系,并推荐了不同产量目标下的施肥量,为实现利用智能手机田间拍照进行氮素营养诊断和精准推荐施肥提供参考。结果表明,在玉米6叶期,冠层图像色彩参数与传统氮素营养指标间的相关性优于9叶期,可作为应用数字图像分析技术进行氮素营养诊断的诊断时期;不同品种玉米的冠层图像色彩参数间无显著差异。B/(R+G+B)和G/(R+G+B)与传统氮素诊断指标——叶片SPAD值、第1完全展开叶叶脉硝酸盐浓度均显著相关,且B/(R+G+B)更为敏感,因此可作为玉米氮素营养诊断的色彩参数指标,诊断方程为:玉米叶脉硝酸盐浓度=1.73×10~(10)×[B/(R+G+B)]~(9.43)。并依此给出了不同B/(R+G+B)值下的玉米营养状况以及不同目标产量下的推荐施氮量。本研究结果可为基于手机相机开展玉米氮素营养诊断与推荐施肥技术的推广与应用提供技术支撑。  相似文献   

5.
【目的】 近年来应用无人机进行作物生长、营养和植保信息的快速提取受到广泛关注,但其对作物全生育期营养状况的动态诊断需要明确适宜的色彩参数。本研究通过田间氮水平试验,以无人机为平台利用可见光光谱对夏玉米不同生育期的冠层氮素营养进行监测,对基于可见光RGB图像的色彩参数与传统氮素诊断指标的相关性进行分析,并比较色彩参数的变异系数以探明夏玉米不同生育时期氮素营养诊断的最佳色彩参数。 【方法】 于2015年6—10月,在河北省中国农业大学曲周试验基地设置不同氮水平田间试验,以夏玉米郑单958为供试作物,设5个施氮水平:0、102、145、189和250 kg/hm2 (分别以CK、70%OptN、OptN、130%OptN、ConN表示),4次重复。分别在夏玉米六叶期 (V6)、十叶期 (V10)、吐丝期 (VT)、籽粒建成期 (R2)、乳熟期 (R4) 应用无人机可见光遥感技术获取夏玉米冠层图像,采用Adobe Photoshop软件经过一些图像处理后选用直方图程序提取图像的红光值R、绿光值G、蓝光值B、亮度值L,研究由此计算的12个色彩参数与传统氮素诊断指标 (植株氮浓度、生物量和吸氮量) 的相关性,结合相关系数和变异系数的大小综合分析筛选夏玉米不同生育时期氮素营养诊断的最佳色彩参数。 【结果】 红光值 (R)、绿光值 (G)、亮度值 (L)、绿光标准化值[G/(R + G + B)]、蓝光标准化值[B/(R + G + B)]、绿光与红光的比值 (G/R)、绿光与蓝光的比值 (G/B)、绿光与亮度的比值 (G/L)、红绿蓝植被指数 (RGBVI) 等在不同生育时期均与夏玉米的植株氮浓度、生物量和吸氮量有很好且一致的相关性,结合图像色彩参数的变异系数综合分析后,G/(R + G + B)、G/L在各生育时期与夏玉米常规的氮营养诊断指标有极显著的相关性 (P < 0.01),相关系数介于0.641~0.944之间,且变异系数小而稳定,介于0.93%~4.30%之间,优于其他光谱参数,可作为基于无人机可见光技术用于各时期氮素营养动态诊断的最佳色彩参数。 【结论】 应用无人机可见光遥感进行夏玉米氮素营养动态诊断具有结果可靠、便捷、高效、非破坏性的优点,本研究结果对应用该技术进行较大区域的作物氮素营养动态诊断提供了科学依据。   相似文献   

6.
应用数字图像进行小麦氮素营养诊断中图像分析方法的研究   总被引:12,自引:2,他引:10  
简便、快速、经济地诊断作物氮素营养状况是实施氮肥用量调控的关键。利用数码相机对作物冠层进行拍照, 通过图像处理软件获得作物色彩参数, 根据色彩参数与作物氮素营养状况的关系可以对其氮素丰缺进行诊断。针对作物数字图像色彩参数的获取方法, 结合小麦多水平氮肥试验, 采用遥感软件PCI Geomatics的非监督分类功能, 将小麦图像分为土壤、反光叶面和不反光叶面, 与Adobe Photoshop 软件普通图像处理方法对照, 比较分析了小麦图像不同类别叶片的8 种色彩参数与SPAD 值及植株全氮的相关性。结果表明, 返青期小麦反光叶面的G/R 与R/(R+G+B)色彩参数能较好地反映小麦的氮素营养状况; 拔节期不反光叶面和反光叶面的R/(R+G+B)色彩参数与植株全氮相关性较好。利用普通图像处理软件获得色彩参数的方法有待改进, 图像分类后能够提高其色彩参数对作物氮素营养诊断的准确性。  相似文献   

7.
基于无人机数码影像的冬小麦叶面积指数探测研究   总被引:18,自引:1,他引:17  
叶面积指数(LAI)是评价作物长势的重要农学参数之一,利用遥感技术准确估测作物叶面积指数(LAI)对精准农业意义重大。目前,数码相机与无人机系统组成的高性价比遥感监测系统在农业研究中已取得一些成果,但利用无人机数码影像开展作物LAI估测研究还少有尝试。为论证利用无人机数码影像估测冬小麦LAI的可行性,本文以获取到的3个关键生育期(孕穗期、开花期和灌浆期)冬小麦无人机数码影像为数据源,利用数字图像转换原理构建出10种数字图像特征参数,并系统地分析了3个生育期内两个冬小麦品种在4种氮水平下的LAI与数字图像特征参数之间的关联性。结果表明,在LAI随生育期发生变化的同时,10种数字图像特征参数中R/(R+G+B)和本文提出的基于无人机数码影像红、绿、蓝通道DN值以及可见光大气阻抗植被指数(VARI)计算原理构建的数字图像特征参数UAV-based VARIRGB也有规律性变化,说明冬小麦的施氮差异不仅对LAI有影响,也对某些数字图像特征参数有一定影响;在不同条件(品种、氮营养水平以及生育期)下的数字图像特征参数与LAI的相关性分析中,R/(R+G+B)和UAV-based VARIRGB与LAI显著相关。进而,研究评价了R/(R+G+B)和UAV-based VARIRGB构建的LAI估测模型,最终确定UAV-based VARIRGB为估测冬小麦LAI的最佳参数指标。结果表明UAV-based VARIRGB指数模型估测的LAI与实测LAI拟合性较好(R2=0.71,RMSE=0.8,P0.01)。本研究证明将无人机数码影像应用于冬小麦LAI探测是可行的,这也为高性价比无人机遥感系统的精准农业应用增添了新成果和经验。  相似文献   

8.
于2018和2019年在宁夏平吉堡农场进行滴灌水肥一体化氮肥梯度试验,以天赐19为试验材料,设6个氮素水平,即 0 (N0)、90(N1)、180(N2)、270(N3)、360(N4)和450(N5)kg·hm−2,在玉米拔节期(V6)、小喇叭口期(V10)、大喇叭口期(V12)、吐丝期(R1)和乳熟期(R3)利用无人机搭载数码相机获取玉米冠层图像,利用Matlab编写代码开发的数字图像识别系统提取玉米冠层图像红光值R、绿光值G、蓝光值B,研究基于此计算的10个冠层图像参数指标与氮素营养指标间的相关性,筛选出稳定性好且敏感度高的图像色彩参数,构建玉米氮素营养诊断指标与图像参数间关系模型并进行验证,以探究利用无人机图像进行宁夏引黄灌区滴灌玉米拔节-乳熟期氮素营养动态估测的可行性。结果表明:冠层图像参数指标绿光与红光比值(G/R)、绿光标准化值(NGI)、红绿蓝植被指数(RGBVI)与植株氮含量和叶片氮含量相关性高且变异系数小,可作为氮素营养诊断的潜在最佳色彩参数;将最佳色彩参数与植株氮含量和叶片氮含量分别进行回归模型构建,幂函数模型可以更好地预估玉米氮素营养状况;利用2019年相同氮素试验进行模型验证,发现NGI与植株氮浓度和叶片氮浓度实测值与估测值的R2分别为0.738和0.689,检验指标RMSE为2.594和3.014,nRMSE为13.125%和13.347%,预测精度和准确性高于G/R和RGBVI。故选择NGI作为滴灌玉米拔节−乳熟期氮素营养动态诊断的最优参数,参数NGI与植株氮浓度的关系模型(NP=4.967×106NGI14.26)R2为0.707,与叶片氮浓度的关系模型(NL=1.707×106NGI12.88)R2为0.654。说明应用无人机图像技术可以较好地对宁夏引黄灌区玉米拔节−乳熟期氮素营养状况进行动态估测,构建的氮素营养诊断模型可为宁夏引黄灌区滴灌玉米氮肥精准配施提供理论依据。  相似文献   

9.
应用数字图像技术进行水稻氮素营养诊断   总被引:12,自引:1,他引:11  
【目的】研究田间试验条件下水稻不同生育期冠层图像色彩参数(G、NRI、NGI、NBI、G/R和G/B)及植株氮素营养指标(叶片含氮量、植株全氮含量、生物量、氮素累积量和冠层NDVI值)的时空变化特征,并分析两者间的相关性,确立水稻氮素营养诊断的最佳色彩参数和方程模型,为探明数码相机在水稻上的适宜性及精确诊断水稻氮素营养状况提供理论基础。【方法】于2013年5月9月在湖北省武汉市华中农业大学试验基地(30°28'08'N,114°21'36'E)采用不同施氮处理的田间试验,以籼型两系杂交稻"两优6326"为供试作物,设置4个施氮水平:0、75、150和225 kg/hm2(分别以N0、N75、150和N225表示),3次重复,随机区组排列。分别在水稻分蘖期、拔节期、孕穗期和灌浆期采用数码相机(Nikon-D700,1200万像素)获取水稻冠层图像,应用Adobe photoshop7.0软件直方图程序提取图像的红光值R、绿光值G和蓝光值B,研究数码相机进行水稻氮素营养诊断色彩参数,确定植株氮素营养指标诊断模型。【结果】较对照(N0)相比,分蘖期、拔节期、孕穗期和灌浆期3个施氮处理水稻地上部生物量、叶片含氮量、植株全氮含量、氮素累积量、冠层NDVI值和成熟期产量增幅分别平均为40.7%98.0%、42.4%72.4%、36.2%85.3%、125.5%209.1%、51.3%60.6%和60.1%117.0%,差异显著。水稻不同生育期各冠层数字化指标G、NRI、NGI、NBI、G/R和G/B与上述氮素营养参数相关性差异较大,且以数字图像红光标准化值NRI表现最佳,建议作为应用数码相机进行水稻氮素营养诊断的最佳冠层图像色彩参数指标。进一步分析表明,可以用统一的线性回归方程来描述不同生育期、不同氮素水平下水稻植株氮素营养指标随冠层色彩参数NRI的变化模式。【结论】数码相机进行水稻氮素营养诊断测试结果稳定,具有快速、便捷、非破坏性等优点,冠层色彩参数NRI与水稻氮素营养指标和产量之间均表现出较好的相关性,满足氮素营养无损诊断的需求,对实时、快速监测水稻长势状况及氮素营养丰缺水平具有较高的可行性,有望发展成为新时期作物氮素营养无损诊断技术的潜力。  相似文献   

10.
基于无人机高光谱的冬小麦氮素营养监测   总被引:11,自引:10,他引:1  
为了实现小区域尺度上的作物氮素营养状况遥感监测,该研究利用无人机搭载Cubert UHD185成像光谱仪对2016 -2017年关中地区的冬小麦进行遥感监测,通过分析冠层光谱参数与植株氮含量、地上部生物量和氮素营养指数的相关性,筛选出对三者均敏感的光谱参数,结合多元线性逐步回归、偏最小二乘回归和随机森林回归建立抽穗期冬小麦氮素营养指数(Nitrogen Nutrition Index,NNI)估测模型,并与单个光谱参数建立的冬小麦氮素营养指数模型进行比较。结果表明,任意两波段光谱指数对氮素营养指数更为敏感,与氮素营养指数均达到了极显著性相关;基于差值光谱指数和红边归一化指数的单个光谱参数构建的模型具有粗略估算氮素营养指数的能力,相对预测偏差分别为1.53和1.56;基于随机森林回归构建的多变量冬小麦氮素营养指数估算模型具有极好的预测能力,模型决定系数为0.79,均方根误差为0.13,相对预测偏差为2.25,可以用来进行小区域范围内的冬小麦氮素营养指数遥感填图,为冬小麦氮素营养诊断、产量和品质监测及后期田间管理提供科学依据。  相似文献   

11.
王志敏  林青  王松禄  徐绍辉 《土壤》2015,47(3):496-502
以青岛市大沽河下游地区冬小麦–夏玉米轮作农田为对象,通过田间试验和室内分析,研究了不同深度土壤和地下水中NO3–-N在一个轮作周期内的动态变化特征,探讨了不同氮肥施用量和灌溉量对土壤-地下水系统中NO3–-N时空分布的影响,并基于土壤水动力学和溶质运移理论对土壤中NO3–-N运移过程进行了数值模拟。模拟结果表明:小麦季施氮(N)量达到380 kg/hm2,玉米季施氮量达到290 kg/hm2时,季末剖面深度130~160 cm土壤NO3–-N含量超过10 mg/kg;由地下水NO3–-N月累计量估算模型得出,NO3–-N在6月和8月向浅部地下水的淋失量最大,分别为7.20、7.67 mg/L。  相似文献   

12.
通过田间试验研究了春小麦、冬小麦、春玉米和夏玉米四种作物氮、磷施用量。结果表明,随作物和地区不同.各种作物氮肥最适施用量变异很大,其中,冬小麦氮肥最适施用量为100~155.4kghm-2,春小麦为158.7~187.8kghm-2,夏玉米为121~228kghm-2。而磷肥最适施用量变化不大,仅春小麦略有差异,为71.9~94.4kghm-2。该研究结果为通过快速营养诊断的方法指导作物追肥提供了依据。  相似文献   

13.
施氮量对潮土区冬小麦-夏玉米轮作农田氮磷淋溶的影响   总被引:1,自引:0,他引:1  
潮土是我国华北地区主要土壤类型之一,潮土区是我国冬小麦-夏玉米作物的主要产区,研究不同施氮量潮土氮磷淋溶特征对于指导区域农田面源污染防控具有重要意义。本研究设置3个施肥处理,即传统施氮(CON)、优化施氮(OPT)和优化再减氮(OPTJ),利用田间渗漏池法,研究潮土冬小麦-夏玉米轮作农田硝态氮及总磷淋溶特征。结果表明:2016—2018年,冬小麦-夏玉米轮作周年不同施肥处理90cm土层年淋溶水量79.0~102.5 mm,不同淋溶事件间土壤淋溶液硝态氮浓度波动较大, CON、OPT和OPTJ处理单次淋溶事件硝态氮浓度分别为18.9~208.7(平均为72.7) mg·L~(-1)、9.0~99.2 (平均为33.8) mg·L~(-1)、4.7~55.5 (平均为15.4) mg·L~(-1)。本研究区域冬小麦-夏玉米轮作模式的氮素淋溶风险较高,磷素淋溶风险较低。传统施氮处理(CON)下农田硝态氮的平均淋溶量和表观淋失系数分别为66.4 kg·hm~(-2)和10.3%,而总磷(TP)为0.06 kg·hm~(-2)和0.04%。氮肥减施会显著降低氮素淋失,OPT和OPTJ处理的氮素淋溶减排率可达56.3%和78.9%。两个年度CON、OPT和OPTJ处理硝态氮平均表观淋失系数分别为10.3%、6.2%和4.9%,随着施氮量的增加,硝态氮淋失系数动态增加。氮淋溶具有较大的年际变化,降雨量高的2018年比降雨少的2017年硝态氮淋溶量多57.0%。两个年度CON、OPT和OPTJ处理总磷平均淋溶量分别为0.06 kg·hm~(-2)、0.06 kg·hm~(-2)和0.08 kg·hm~(-2)。适量减施氮肥会增加作物产量, OPT处理的作物产量是CON处理的1.08倍。然而,过量减施则会带来减产风险, OPTJ处理氮肥减施56%,作物产量比CON处理降低2.0%~8.1%。总之,潮土区农田硝态氮淋溶风险较大,适量减施氮肥能够在保证作物产量的基础上显著降低氮素淋失损失。  相似文献   

14.
采用密闭室间歇通气法研究优化施肥条件下华北冬小麦/夏玉米体系的土壤氨挥发损失。结果表明,肥料氮素氨挥发损失主要发生在施肥后的14 d 内, 冬小麦和夏玉米两个生长季氨挥发损失总量及其损失率均表现出随施氮量的降低而降低,玉米季氨挥发损失高于小麦季。习惯施肥小麦季和玉米季氨挥发总量是氮肥减量后移的2.28和2.03倍,而氮肥减量后移处理的小麦和玉米产量显著高于习惯施肥。氮肥后移可节省氮肥30%,是降低氨挥发损失的理想施肥方式。  相似文献   

15.
过量施氮对旱地土壤碳、氮及供氮能力的影响   总被引:14,自引:8,他引:6  
【目的】过量施氮会影响土壤有机碳、氮的组成与数量,进而改变土壤供氮能力,但关于西北旱地长期过量施用氮肥后土壤有机碳、氮及土壤供氮能力变化的研究尚缺乏。本文在长期定位试验的基础上,通过分析不同氮肥水平特别是过量施氮条件下土壤硝态氮,有机碳、氮和微生物量碳、氮的变化,探讨长期过量施氮对土壤有机碳、氮及供氮能力的影响。【方法】长期定位试验位于陕西杨凌西北农林科技大学农作一站。在施磷(P2O5)100kg/hm2的基础上,设5个氮水平,施氮量分别为N 0、80、160、240、320 kg/hm2。重复4次,小区面积40 m2,完全随机区组排列。种植冬小麦品种为小堰22。本文选取其中3处理,以不施氮为对照(N0)、施氮量N 160 kg/hm2为正常施氮(N160),施氮量N 320 kg/hm2为过量施氮(N320),分别于2012年6月小麦收获后和10月下季小麦播前采集土壤样品,进行测定分析。【结果】过量施氮导致下季小麦播前0—300 cm各土层硝态氮含量显著增加,平均由对照的2.8 mg/kg增加到15.5 mg/kg;同时,0—60 cm和0—300 cm土层的硝态氮累积量分别由对照的47.2和108.9 kg/hm2增加到76.5和727.7 kg/hm2。过量施氮也增加了夏闲期间0—300 cm土层土壤有机氮矿化量,由对照的72.4 kg/hm2增加到130.7 kg/hm2。但过量施氮未显著增加土壤的有机碳含量,却显著增加了土壤有机氮含量,过量施氮0—20、20—40 cm土层土壤有机碳分别为9.24和5.39 g/kg,有机氮分别为1.05和0.71 g/kg,较对照增加52.2%和54.3%。同样,过量施氮未显著影响0—20、20—40 cm土层土壤微生物量碳含量,其平均含量分别为253和205 mg/kg,却显著提高了0—20、20—40 cm土层土壤微生物量氮含量,由对照的24.1和7.5 mg/kg提高到43.6和16.1 mg/kg。【结论】过量施氮可以显著增加旱地土壤剖面中的硝态氮累积量、夏闲期氮素矿化量、小麦播前土壤氮素供应量和土壤微生物量氮含量,但对土壤有机碳和微生物量碳没有显著性影响,同时过量施氮增加了土壤硝态氮淋溶风险,故在有机质含量低的黄土高原南部旱地冬小麦种植中不宜施用高量氮肥,以减少土壤氮素残留和农业投入,达到保护环境和培肥土壤的目的。  相似文献   

16.
Midseason fertilizer nitrogen (N) rates based on predicted yields can be projected if the quantity of N accumulated in winter wheat (Triticum aestivum L.) and corn (Zea mays L.) is known especially early in the growing season. This study was conducted in 2006 and 2007 to establish the amount of N accumulated in corn and winter wheat over the entire growing season. Plots representing three N fertilization rates 0, 45, and 90 kg ha?1 at Stillwater and 0, 67, and 112 kg ha?1 at Lahoma were selected from two long-term wheat experiments located at research stations in Stillwater and Lahoma, Oklahoma. For corn, three N fertilization rates 0, 112 and 224 kg ha?1 at Lake Carl Blackwell and 0, 56 and 112 kg ha?1 at Perkins were selected from N studies, located at research stations near Lake Carl Blackwell and Perkins, Oklahoma. Sequential aboveground biomass samples were collected from 1 m2 area of wheat and 1.5 m long row (0.76 cm spacing) for corn throughout their respective growing seasons. In general, this work showed that more than 45% of the maximum total N accumulated could be found in corn plants by growth stage V8 (8th leaf collar fully unfolded). For winter wheat, more than 61% of the maximum total N accumulated at later stages of growth could be accounted for by Feekes growth stage 5 (F5, leaf strongly erected). Our findings are consistent with those of others showing that yield potential can be predicted at mid-season since such a large percentage of the total N accumulated was accounted for early on in the growing cycle of either wheat or corn.  相似文献   

17.
土壤类型对于农田氨挥发影响较大,而关于砂姜黑土农田氨挥发特征及排放系数研究相对较少,不利于区域性农田土壤氨排放清单的准确评估。基于此,选取豫南典型砂姜黑土为研究对象,设置不施肥(CK)、传统施肥(TR)、优化施肥(OPT)、再优化施肥(ZOPT)和缓控肥(HK)5种施肥处理,利用密闭海绵法,探究砂姜黑土农田不同施肥方式下冬小麦-夏玉米轮作土壤氨挥发特征,并尝试确定氨排放系数。结果表明:砂姜黑土传统施肥条件下冬小麦季土壤氨挥发量为11.1 kg·hm-2,夏玉米季氨挥发量为13.4 kg·hm-2,说明夏玉米季是砂姜黑土冬小麦-夏玉米轮作农田氨的高排放时期。对比不同处理的氨挥发量,发现ZOPT和HK处理冬小麦季和夏玉米季的氨挥发量显著低于其他处理(P<0.05),其次为OPT处理,TR处理的氨挥发量最高。HK处理的氨排放系数最低,其中冬小麦季和夏玉米季分别为1.7%和1.5%,显著低于其他处理(P<0.05);其次为ZOPT和OPT处理,其氨排放系数冬小麦季分别为2.1%和2.6%,夏玉米季分别为2.6%和3.6%;TR处理的氨排放系数最高,冬小麦季和夏玉米季分别为3.6%和4.7%。不同施肥处理氨挥发量与施肥量的拟合结果表明,随施肥量增加,冬小麦-夏玉米轮作农田氨挥发显示出较强的线性增长趋势,其中夏玉米季和冬小麦季的R2分别为0.934和0.931,说明该区域砂姜黑土传统施肥量的氨挥发未出现明显的激发性增长现象。本研究结果可为砂姜黑土区冬小麦-夏玉米轮作农田氮肥利用率的提高和氮排放清单的估算提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号