首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
在集约化水产养殖过程中,饲料投喂是控制养殖成本,提高养殖效率的关键。室外环境复杂多变且难以控制,适用于此环境的移动设备计算能力较弱,通过识别鱼类摄食状态实现智能投喂仍存在困难。针对此种现象,该研究选取了轻量级神经网络MobileNetV3-Small对鲈鱼摄食状态进行分类。通过水上摄像机采集水面鲈鱼进食图像,根据鲈鱼进食规律选取每轮投喂后第80~110秒的图片建立数据集,经训练后的MobileNetV3-Small网络模型在测试集的准确率达到99.60%,召回率为99.40%,精准率为99.80%,F1分数为99.60%。通过与ResNet-18, ShuffleNetV2和MobileNetV3-Large深度学习模型相比,MobileNetV3-Small模型的计算量最小为582 M,平均分类速率最大为39.21帧/s。与传统机器学习模型KNN(K-Nearest Neighbors)、SVM(Support Vector Machine)、GBDT(Gradient Boosting Decision Tree)和Stacking相比,MobileNetV3-Small模型的综合准确率高出12.74、23.85、3.60和2.78个百分点。为进一步验证该模型有效性,在室外真实养殖环境进行投喂试验。结果显示,与人工投喂相比,基于该分类模型决策的鲈鱼投喂方式的饵料系数为1.42,质量增加率为5.56%。在室外真实养殖环境下,MobileNetV3-Small模型对鲈鱼摄食状态有较好的分类效果,基于该分类模型决策的鲈鱼投喂方式在一定程度上能够代替养殖人员进行决策,为室外集约化养殖环境下的高效智能投喂提供了参考。  相似文献   

2.
基于水下机器视觉的大西洋鲑摄食行为分类   总被引:6,自引:6,他引:0  
根据鱼群摄食行为状态进行水产养殖精准投喂控制,是有效提高饵料利用率降低水体污染的关键技术。目前,大多数基于机器视觉的鱼类摄食行为研究都是在实验室对真实养殖环境进行模拟并采用水上摄像机获取数据,由于光照条件和养殖环境的影响,该数据无法反映大西洋鲑在实际生产状况下的摄食行为,因此应用范围有限。为解决此问题,该研究提出一种基于真实工厂化养殖环境的鱼类摄食行为分类算法。该算法使用水下观测方式并采用视频序列作为样本,首先利用变分自动编码器对视频序列样本进行逐帧编码以产生所有帧对应的高斯均值和方差向量,分别联立所有均值和方差向量得到均值特征矩阵和方差特征矩阵。然后将特征矩阵输入到卷积神经网络中,实现对鱼群的摄食行为分类。试验结果表明,在真实的工厂化养殖环境下,该研究所提出的方法综合准确率达到了89%,与已有的基于单张图像的鱼类摄食行为分类方法相比,综合准确率提高了14个百分点,召回率提高了15个百分点。研究结果可为基于鱼类摄食行为的鱼饵精准投喂控制提供参考。  相似文献   

3.
鱼类养殖是通过人工方式在水中养殖各种鱼类的经济活动。鱼类养殖可以在淡水、海水或者盐碱水环境中进行,通过各种监测技术和设备来培育和管理鱼的生长和繁殖。传统的鱼类养殖监测方法存在效率低和准确性差等问题。近年来,基于深度学习的视觉技术的发展为鱼类养殖监测提供了新的解决方案。该文阐述了基于深度学习的视觉技术在鱼类养殖监测中的应用,并从鱼体测量、鱼类计数、鱼类摄食、鱼类游泳行为和鱼病诊断5个方面分别对研究进展进行梳理。在此基础上总结了鱼类养殖监测在数据采集与传输、建立鱼类养殖监测数据集、超规模参数模型、终端监测设备边缘计算、数字孪生、智能监测业务化应用不足等问题和展望,旨在为深度学习在鱼类养殖监测中的推广应用提供科学参考。  相似文献   

4.
池塘养殖全自动精准投饲系统设计与应用   总被引:2,自引:1,他引:2  
目前池塘养殖过程中需要人工搬运饲料,劳动强度大、人工成本高。现有投饲设备缺少称量和自动控制功能,存在投饲量控制不精准、自动化程度低、难以集成管控等问题。为此,该研究设计了一种全自动精准投饲系统,主要由机械设备、自动控制系统、信息管理系统等组成。基于"控制在本地、管理在云端"原则确定了系统结构。采用大料仓投饲机和散装饲料实现饲料出厂、运输、装料和投料全程机械化作业。开发了基于可编程逻辑控制器和称重传感器的自动控制系统,实现设备全自动运行和投饲量精准控制。控制系统与信息管理系统对接,实现投饲管控与企业生产经营管理的一体化。通过对视频监控设备的集成实现投饲过程的可视化监控。该系统在某大型养殖企业投入生产应用,建立了800 hm2的全自动投饲养殖示范基地,基本实现投饲过程的无人化作业。与传统小型投饲机、人工搬运和加装饲料的投饲方式相比,该系统可以减少劳动力成本70%、节约饲料用量3%,有效降低成本,取得了良好经济效益,具有实际工程应用价值。  相似文献   

5.
为精准判别工厂化循环水养殖池中鱼类摄食行为动态,实现精准投喂,该研究提出一种基于傅里叶频谱特征提取并通过支持向量机分类的鱼类摄食行为判断方法。首先,对采集到的工厂化循环水养殖池中鱼群的摄食影像作水花前景提取,并从空域转化至频域;然后,在频域内构建环形滤波器,通过频谱滤波确定特征向量提取范围(更明显表征图像灰度变化剧烈程度的频谱区域),并提取区间内幅值,以此表征鱼类摄食欲望的强弱,从而可以实现鱼类摄食行为的判断。统计每一区间所得幅值样本之和并以此构建特征向量集,并将所得特征向量训练支持向量机。结果表明,该研究所提出的方法在工厂化养殖鱼类摄食行为判断方面具有很好的效果,判断准确率可达99.24%,研究结果能以极高准确率判断鱼类摄食行为,为指导精确投喂提供科学依据。  相似文献   

6.
黄颡鱼养殖高产新技术   总被引:1,自引:0,他引:1  
来兵 《南方农业》2011,(4):70-72
黄颡鱼属底层鱼类,肉质鲜嫩少刺,商品价值高。规模养殖对池塘建设、鱼种投放、饲料、水质等都有一定的要求,文章根据养殖实践,就黄颡鱼养殖基础设施准备、鱼苗鱼种放养规格、放养个体大小、饲料选择、科学投喂、病害防治等技术进行了介绍。  相似文献   

7.
针对传统池塘养殖多依靠经验粗放式投喂而导致生产效率低、环境压力大、养殖风险高的问题,该研究提出一种适配池塘养殖的精准投喂系统。该系统主要包括水质监测、决策控制、驱动执行和远程监控等模块。以影响鱼类摄食需求的关键因子溶解氧、温度、体质量等为输入参数,以摄食需求量为输出参数,基于蚁群优化算法的模糊PID控制技术实现精准投喂。为验证系统的实用性和有效性,以精养草鱼为对象开展池塘养殖对比试验,从调控性能、生长性能、经济效益和环境效益等方面进行综合评价。结果表明:所提出的精准投喂系统控制性能稳定可靠,控制误差小于7%,与传统投喂系统相比,Nash-Sutcliffe效率系数(NNS)提高至0.913,均方根误差(RRMSE)降低16.10。草鱼生长参数不存在显著差异性(P>0.05),但饵料系数显著降低11.73%(P<0.05),养殖收益提高1.46万元/hm2,吨产减排约241.40 kg。所研制的精准投喂系统具有较好的综合应用性能,可为其他养殖模式、鱼类精准投喂设施研发提供参考和技术支持。  相似文献   

8.
采用单一饲料的玉米、麦麸、米糠以及由它们配制成的粗蛋白质含量分别为13.5%、15.1%和16.5%的三种配合饲料共六种饲料搭配投喂模式,研究其对养殖中华真地鳖效果的影响。结果表明:(1)中华真地鳖分别摄食三种配合饲料后的生长速度均比三种单一饲料的要快,其中以投喂粗蛋白质含量为15.1%组的生长速度最快。(2)分别投喂三种单一饲料的中华真地鳖,除玉米组外的其余两组,其饲料成本均明显低于三种配合饲料各组,并且以投喂麦麸组所取得的经济效益最显著。  相似文献   

9.
在工厂化循环水养殖中,准确识别鱼类摄食强度是实现精准投喂的前提和关键。水质、视觉、声音等单模态数据均可用于评估摄食强度,但单一模态往往具有片面性,难以完全反映全局特征,存在识别精度低、可移植性差等问题。多模态方法通过融合不同模态的特征,可为摄食强度量化提供新的手段。基于此,为融合鱼类摄食中的“水质-声音-视觉”信息,实现高精度的鱼类摄食强度量化,该研究在多模态Transformer(multimodal transformer,MulT)的基础上,提出一种多模态融合的鱼类摄食强度识别算法Fish-MulT。首先,从输入的水质、声音和视觉数据中提取特征向量;其次,利用多模态转移模块(multimodal transfer module,MMTM)对输入的特征向量进行融合,得到3种融合向量;然后对融合向量添加自适应权重并相加,得到融合模态;最后,利用融合模态将MulT算法中各模态分支的跨模态Transformer(cross-modal transformer)从2个优化为1个。试验结果表明,与MulT算法相比,本文算法的鱼类摄食强度识别准确率由93.30%提高到95.36%,参数量减少38%。与水质、声音和视觉单模态相比,准确率分别提高68.56%、21.65%和3.61%。可用于制定精准投喂策略,并为开发智能投喂系统提供技术支持。  相似文献   

10.
超高密度全封闭循环水养殖系统设计及运行效果分析   总被引:11,自引:7,他引:4  
为进一步研究循环水养殖系统在高密度养殖生产过程中的水质变化情况、鱼类生长情况及应用推广价值,该文构建了一套超高密度全封闭循环水养殖系统,设计3条水处理环路,集成了鱼池双排水、竖流沉淀、转鼓式微滤机、移动床生物过滤、多腔喷淋式纯氧混合装置、二氧化碳脱气等高效水处理技术和装备。提出一种基于投饲量的循环水养殖系统设计计算方法,重点考虑氨氮、溶解氧和总悬浮颗粒物3个水质指标。使用该系统养殖吉富罗非鱼6个月,试验研究结果显示:鱼类生长情况良好,最高养殖密度104.2kg/m3。饵料系数1.4,成活率92.2%。水质检测结果显示:氨氮浓度维持在平均(1.09±0.55)mg/L;溶解氧维持在4~9mg/L范围内;pH值6.45~7.41。经济性分析研究结果表明,系统养殖运行成本约为25元/kg,略高于市场价格。但是,从环境成本考虑,系统的节水效果显著,日耗水仅为0.3~0.5m3。通过适当的精简并挑选合适的养殖品种,完全可以实现规模化的生产。  相似文献   

11.
为解决妊娠母猪按个体定量饲喂及剩料难以控制等问题,以妊娠母猪为试验对象,设计了一种妊娠母猪自动饲喂机电控制系统。采用低频(134.2 KHz)RFID(radio frequency identification)标识及无线局域网技术,实现对母猪个体的自动识别与数据交换;利用全机械式通道,实现单头母猪进入与离开的自动连锁设计;通过嵌入式芯片(ARM LPC1766)的模块饲喂器控制,配合下料直流无刷电机的单圈旋转以及与接近传感器触发的协同工作,实现对预设饲喂量的准确投料及剩料的前移控制设计。试验结果表明,预设的日饲喂量可以2次饲喂完成,不论饲喂的内、外环境应激如何,出现剩料比例仅为2.1%;不同妊娠期(前期、中期及后期)的母猪,可以实施有差异的精确饲喂。该文为妊娠母猪自动饲喂系统方面的研究提供参考。  相似文献   

12.
河蟹养殖船载自动均匀投饵系统设计及效果试验   总被引:3,自引:5,他引:3  
针对目前河蟹养殖投饵喂料劳动强度大、自动化程度低、投饲饵料分布不均匀等问题,该文提出了一种空气螺旋桨风力驱动船载自动投饵系统及均匀投饵方法。该系统由空气螺旋桨风力驱动船、自动投饵装置、ARM(advanced RISC machine)主控制器、GPRS(general packet radio service)通信模块和GPS(global positioning system)导航装置等组成。采用空气螺旋桨风力驱动,可解决常规作业船水下螺旋桨吸卷缠绕水草影响行驶问题;利用喂料器落料流速可控、抛料器抛幅可调、料仓内剩余饵料量可测的自动投饵装置,可解决投饵喂料分布不均匀问题。该系统以S3C2440为主控制器,通过GPRS通信模块M590接收作业指令。该文对投饵装置抛料器、饲料颗粒斜抛运动、饵料在水面上的累积密度分布进行建模,建立投饵均匀度目标函数,采用遗传算法GA进行最优运行参数求解,确定船载自动投饵系统最优运行参数:当饵料分布密度期望值为9 g/m2时,2个相邻投饵行程宽度的最优值为8.21 m,自动投饵装置投饵扇角的最优值为80°,喂料器单位时间内落料量的最优值为32.01 g/s,下方投饵行程船速的最优值为0.43 m/s,上方投饵行程船速的最优值为0.43 m/s,抛盘转速的最优值为1 480 r/min;并通过GPS导航装置BD982实现路径跟踪,完成自动均匀投饵作业。对饲料颗粒斜抛运动、饵料平均累积密度和分布密度均方差等进行仿真,在水平地面上与人工抛洒饵料进行对比试验,并在池塘内进行投饵试验,结果表明,该系统可使投饲饵料分布均匀度较人工投饵提高3倍以上,投饲饵料分布密度均值与设定值的相对误差为5.11%,为适应河蟹昼伏夜出的生活习性,可在夜晚进行投饲,使用1套该船载自动投饵系统能够精细管理6.67 hm2左右河蟹养殖池塘,相当于5个农村劳动力投饵喂料,节省人力提高效率,提高饲料的利用率15%以上,能使饲料节约15%以上,产量提高20%以上;同时,该船载自动投饵系统可以定时定量均匀投饲,保证养殖的河蟹个头大小均等,提高产值,大幅提高养殖面积增加效益。该文可为河蟹养殖全池自动均匀投饵喂料和其他水产养殖中需要沿池或全池自动均匀投饲研究提供重要参考。  相似文献   

13.
奶牛饲喂自动机电控制系统的设计与试验   总被引:3,自引:1,他引:2  
为开展奶牛精准饲喂及采食行为学研究,设计了一种集自动识别、饲喂、数据自动采集、数据分析与处理于一体的奶牛饲喂自动机电控制系统。该系统包括机械装置、电子识别系统、料槽称质量系统、中央控制系统、现场数据存贮及远程数据提取与分析系统等几部分。其中,机械装置包括料斗、支撑座、栏杆和阻挡单元等;电子识别系统包括阅读天线及料门启闭的气动装置;料槽称质量系统除支撑座外,还有嵌入的质量传感器及线路;中央控制系统包括微处理器、看门狗复位电路、读卡器电路、称质量数据采集电路、数据通信电路、数据收发器电路及外围驱动与稳压电路等。现场数据存贮电路接受来自各个饲喂系统的中央控制系统发送的采食行为数据,其主板结构与中央控制系统基本一致,预设可存贮记录数为14 000条,且采用堆栈数据存贮模式。远程PC端数据提取与分析系统实时管理采食行为数据,并提供多功能的数据挖掘分析。系统测试结果表明,对牛只低频RFID(134 kHz)电子耳标的识读率为100%,料及槽的计量范围为0.01~200 kg,最低称量精度10 g,实际称量相对误差≤0.15%,同时满足奶牛对最大采食量及精准饲喂对计量的需求。系统的采食行为试验表明,奶牛的日均采食次数、采食时间及采食量等采食行为均差异显著(P0.05),符合奶牛的采食行为特点。具体地,奶牛日均采食次数10~13次,日均采食时间5.38 h,而奶牛个体实际采食量与NRC(National Research Council)模型预测的采食量有-4.76%~7.83%的偏差,可能是由各种内外部因素及NRC模型的普适度造成的,有待进一步研究。总之,该系统能较好地实现奶牛个体的精细化饲喂,为研究奶牛的采食行为特点提供了在线、智能化的自动数据采集与分析平台。  相似文献   

14.
哺乳母猪自动饲喂机电控制系统的优化设计及试验   总被引:6,自引:4,他引:2  
随着中国规模化、集约化种猪场数字化智能饲喂需求的快速增加,为解决哺乳母猪少吃多餐且随哺乳日龄变化采食量动态增加的饲喂控制需求,该研究以哺乳母猪为试验对象,将机电系统、无线网络技术、Android技术、SQL Lite网络数据库、电子数据交换与哺乳母猪的营养供给模型集成起来,设计了一种哺乳母猪自动饲喂控制智能系统。研究结果表明,组成一个哺乳母猪智能系统的主要部件包括供料线、缓冲料仓、料位控制筒、料位调控杆、下料控制线管、螺旋输送机、中央控制箱、下料触发器、料槽及下料管道等,而且通过在系统的微处理器内存预设的采食量模型与雨刷电机精确旋转的电子控制技术相结合,实现了对预设饲喂量的准确投料;还通过储料仓的料位控制机构及设置的人工观察孔,可控制缓冲料仓的合理贮料量,尤其对泌乳早期(0~10 d)母猪的存贮料量最佳为大约10 d单头母猪的理论采食量,以保持日粮的新鲜度及减少结拱;预设的采食量的动态投料控制量基本符合哺乳母猪实际采食变化规律,且实际采食量的变化轨迹收敛于对数曲线。基于智能自动饲喂系统中采食量模型计算出不同泌乳日期的预测采食量,按4次/d的饲喂频率及变化的投料比例(30%,25%,25%及20%)进行定时与定量投喂,与人工饲喂对比,能显著促进哺乳仔猪采食量的增加(P0.05),以及极显著提高哺乳仔猪的平均体质量日增加量(P0.01)。此外,考虑安装、清理料槽及母猪采食的方便性,建议母猪饲喂器的触发器安装高度大约为10 cm。总之,该文设计的哺乳母猪电子自动饲喂系统无需传感器及电子标识技术的应用,适合在中国中、小型的种猪繁育场的哺乳舍推广应用,且系统设备及相应的软件系统的部署方便。进一步指出,母猪自动饲喂器除需要验证哺乳母猪的采食特性及哺乳的仔猪的断奶性能外,在未来还需要观察母猪的返情率甚至断奶商品猪的成活率等指标,从整个母猪的利用年限评价智能饲喂设备的优劣。  相似文献   

15.
基于升降套筒体积调整的海蟹养殖定量投饵机设计   总被引:1,自引:1,他引:0  
为满足工厂化循环水养殖的需要,该文通过触摸屏后端控制单片机升降套筒调整体积定量设计了一套自动投饵机,克服了常用称重法的精度易受振动影响、行走式投饵设备称质量和行走不能同时进行的缺点,在保证性能的同时简化了结构、提高了效率。对系统投饵精度性能测试结果表明:该系统能够定时完成启停和控制过程,在设定投饵量在5~7 g/次时,误差控制在8%以内;设定投饵量在9~13 g时,误差不超过4%,可以满足工厂化海产养殖的需求。该研究可为今后海蟹类单筐养殖科学化、智能化提供参考价值。  相似文献   

16.
生鲜饵料离散式投饵机设计与试验   总被引:1,自引:1,他引:0  
针对目前专为生鲜饵料设计的投饵机种类较少,且凶猛肉食性水产生物生鲜饵料喂养过程中密集投喂易引起夺食致伤致死的现象,该研究以虎斑乌贼为例,基于离心式投饵原理,提出生鲜饵料离散式投饵机设计思路,设计以西门子PLC为控制核心,MCGS触摸屏为人机交互界面的自动投饵机。该投饵机设计了适用于生鲜饵料的振动分筛盘实现生鲜饵料逐条抛投,拥有饵料抛投速度、方向、仰角的实时可控的子系统以及多段程投饵模式,实现离散式投饵。投饵机基础性能测试和投饵模式验证试验结果表明,多段程投饵模式可实现纵向抛投距离1.8~8.0 m,横向抛投距离0~3.9 m,抛投面积约26 m~2范围内的饵料离散抛投,覆盖81.2%的8 m×4 m室内养殖池;该投饵机转盘转速小于900 r/min时,平均饵料破碎率低于3.3%,转速高于900 r/min时饵料破碎率激增,最大有效抛投距离10.5 m。该研究可为今后生鲜饵料投饵机和离散式投喂提供参考。  相似文献   

17.
种猪生产性能测定系统开发与性能测试   总被引:1,自引:1,他引:0  
为开展种猪生产性能的智能化、自动化测定及开展种猪采食行为学研究,该研究设计了一种集自动识别、体质量感知、采食行为数据自动采集、数据分析与处理于一体的种猪生产性能智能测定系统。该系统主要由猪只耳标识别模块、精准下料控制模块、料槽及猪只个体称质量模块、现场数据通讯模块及远程中央控制模块组成。系统机械部分主要包括饲喂站的竖直侧墙、称质量平台、活动挡板、下料机构、料仓、控制盒、出料口开关及耳标识读器等组成。电路控制系统包括微处理器(LPC1766,内核为ARM Cortex-M3内核的微控制器)、RS232读卡器接口、数据存储芯片(预设存储256 KB数据)、看门狗电路、称质量电路、外围驱动电路、JTAG接口电路及稳压电源电路。系统性能测试结果表明:1)测量精度如下:饲喂下料没有范围限制,取决于喂料仓的储料状态,单次下料量及动态误差为93±2g;猪只体质量秤量程为0~200 kg,计量精度为10 g,称量动态误差占猪只体质量的0.5%以下,符合测定需求;2)对40头种公猪后裔的生长肥育猪饲喂测试结果表明,在25~60 kg体质量范围内,自由采食日均次数10~12次,日均采食时间78min,测试期间料肉比(FCR)为2.33:1,且生长规律符合Gompertz曲线,通过该模型预测的日增质量下降的拐点发生111~117d之间,对应的拐点体质量在63~64 kg范围内。上述实际观察及预测结果较好地反映了测定对象的生产性能,开发的软件及硬件系统达到了种猪生产性能测定的要求;3)系统下料控制部分,首次采用雨刷电机取代早期采用的步进电机,不仅成本下降,尤其结合圆柱式刮板下料机构,降低了单次下料量,改善了下料的精度;4)系统核心芯片采用进口器件,电路设计采用多重冗余和保护电路,软件的编写采用了多重功能验证,并通过长期可靠性测试;软件和硬件的冗余设计,提高了控制系统的可靠性,消除来自电源、电机、电磁波干扰,该测定系统具有极高的可靠性;测定的数据通过计算机系统可长期保存或升迁,便于数据量的积累和开展种猪选育的大数据挖掘分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号