首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】研究长期秸秆还田与施肥对作物产量和土壤肥力的影响,为该种植模式下作物最佳养分管理提供技术支撑。【方法】自2005年起在成都平原的广汉市开展了水稻-油菜轮作下连续秸秆覆盖还田+免耕与不同施肥的长期定位试验。试验为随机区组设计,共有8个处理,3次重复。这8个处理包括对照(只施化肥、 无秸秆覆盖)和秸秆覆盖还田下4个氮肥用量、 2个磷肥用量和3个钾肥用量的7个组合处理。自2005年起每季收获时采集植株样本,分析不同处理下水稻和油菜的农艺形状与产量变化情况,2010年水稻收获后采取耕层(05 cm、 515 cm和1530 cm)土样,分析不同处理的土壤肥力演化趋势。【结果】在稻-油轮作下,同一处理水稻和油菜产量受气候变化影响存在显著的年度间差异。秸秆还田对水稻产量的影响始于覆盖后的第三年,即秸秆覆盖处理的水稻产量显著高于相同施氮量的无覆盖对照处理,油菜秸秆覆盖条件下的减磷和减钾处理的水稻产量相当或高于对照处理。按此计算,秸秆还田在水稻季每公顷可节约大约N 60 kg和K2O 90 kg。在油菜季,稻草覆盖似乎不能明显减少氮肥投入,减磷处理的油菜产量始终最低。因此,施用充足的磷肥成为油菜高产的关键,该结果为稻-油轮作制度中磷肥的合理分配提供了科学依据,即磷肥应重点施在油菜上,水稻上可少施或不施磷肥。在油菜季,秸秆还田每公顷能节约大约N 30 kg和K2O 90 kg。连续秸秆覆盖+免耕使土壤有机质和氮、 磷、 钾养分在05 cm土层聚集,但对下层土壤影响不大; 减磷、 减钾处理使土壤磷、 钾耗竭,但无覆盖对照处理的土壤钾耗竭大于减钾处理;在磷钾施肥量不变的情况下,增加氮肥施用量降低了土壤速效钾与有效磷含量。长期秸秆覆盖还田+免耕能显著改善05 cm土层的土壤物理性状,即降低土壤容重,增加孔隙度、 非水稳性和水稳性团聚体的数量,但增加了下层土壤的容重和降低了土壤孔隙度。【结论】长期秸秆覆盖还田+免耕能显著提高水稻-油菜轮作下的作物产量,减少肥料投入和提高表层土壤肥力水平,但油菜季必须注意施用足够的磷肥以保证油菜籽高产的需要。  相似文献   

2.
Several studies have reported how tillage and cropping systems affect quantity, quality, and distribution of soil organic matter (SOM) along the profile. However, the effect of soil management on the chemical structure of SOM and on its hydrophobic and hydrophilic components has been little investigated. In this work, the long‐term (19 years) effects of two cropping systems (wheat monoculture and wheat/faba bean rotation) and three tillage managements (conventional, reduced, and no tillage) on some chemical characteristics of SOM and their relationships with labile carbon (C) pools were evaluated. Soil samples were taken from the topsoil (0–15 cm) of a Chromic Haploxerert (central Sicily, Italy). After 19 years of different tillage and cropping systems management, total organic C significantly differed among treatments with the labile organic C pools showing the greater amount in no till and in wheat/faba bean plots. Hydrophobic and hydrophilic components of SOM, determined by diffuse reflectance infrared Fourier transform spectroscopy, were mainly affected by cropping system, whereas aromatic components of SOM by tillage. Soil organic matter components and characteristics showed significant correlations with the soil biochemical parameters, confirming the expected synergism between chemical and biochemical properties. This study demonstrated that (i) no tillage and crop rotation improve the chemical and biochemical properties of SOM of Vertisols under semiarid environment; and (ii) tillage management and cropping systems have affected, after 19 years, more the chemical and biochemical properties of SOM than its quantity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
不同耕作和施肥措施对潮土生物学特性的影响   总被引:1,自引:1,他引:0  
对山东禹城综合试验站免耕潮土试验田中不同耕作和施肥措施对土壤潮土生物学特性的影响进行了研究,结果表明:免耕和秸秆还田可以显著增加潮土中细菌、真菌和放线菌的数量,也可以显著增加土壤蔗糖酶和脲酶的活性,尤其是土壤表层。不同施肥措施对土壤生物学特性有显著影响,分次施肥要优于集中施肥,免耕秸秆还田可以提高土壤生物学特性,优化土壤微环境。  相似文献   

4.
A field experiment was conducted from 1983 to 1992 in Tsukuba, Japan to investigate the effects of tillage on soil conditions and crop growth in a light-colored Andosol. Three tillage methods (NT: no-tillage, RT: no-tillage for summer cropping and moldboard plowing for winter cropping, and CT: conventional rotary tillage to a depth of 15 cm) were employed in combination with crop residue application (+R, −R) and fused magnesium phosphate (FMP) fertilization (+P, −P). Under the combination of NT and +R, diurnal variation of soil temperature at a depth of 5 cm was smaller during the summer cropping season and soil temperature in the daytime was lower during the winter cropping season than under CT. Soil inorganic N concentration at a depth of 0–30 cm was +R > −R and NT > RT > CT. The early growth of summer crops was accelerated under NT in comparison with CT, and yields were higher under NT and RT in comparison with CT. On the other hand, winter crop yields were significantly reduced under NT, while they were still higher under RT in comparison with CT. Yields were higher with +R and +P application, respectively, and these effects were more pronounced in winter cropping. The positive effect of FMP fertilization was greater in combination with NT, and that of residue treatment was greater in combination with RT and NT than with CT. In conclusion, the best tillage practice for Andosols on the Kanto Plain is RT, i.e. a combination of NT for summer cropping and CT for winter cropping. The application of NT for winter cropping is not recommended, although the application of phosphate and crop residues could reduce the risk of yield reduction, because of improved soil nutrient status and moderation of diurnal soil temperature.  相似文献   

5.
Wheel traffic and tillage effects on runoff and crop yield   总被引:1,自引:0,他引:1  
Traffic and tillage effects on runoff, soil water and crop production under rainfall were investigated over a period of 6 years on a heavy clay vertosols (vertisols) in Queensland, Australia. A split plot design was used to isolate traffic effects, while the cropping program and treatments were broadly representative of extensive grain production practice in the northern grain region of Australia. Treatments subject to zero tillage and stubble mulch tillage each comprised pairs of 90 m2 plots, from which runoff was recorded. A 3 m wide controlled traffic system allowed one of each pair to be maintained as a non-wheeled plot, while the complete surface area of the other received a single annual wheeling treatment from a working 100 kW tractor.

Mean annual runoff from controlled traffic plots was 81 mm (36.3%) smaller than that from wheeled plots, while runoff from zero tillage was reduced by 31 mm (15.7%). Traffic and tillage effects appeared to be cumulative, so the mean annual runoff from controlled traffic and zero tillage plots, representing best practice, was 112 mm (47.2%) less than that from wheeled stubble mulch plots, representing conventional cropping practice. Rainfall infiltration into controlled traffic zero tillage soil was thus 12.0% greater than into wheeled stubble mulched soil. Rainfall/runoff hydrographs show that wheeling produced a large and consistent increase in runoff, whereas tillage produced a smaller increase. Treatment effects were greater on dry soil, but were still present in large and intense rainfall events on wet soil.

Plant available water capacity (PAWC) in the 0–500 mm zone increased by 10 mm (11.5%) and mean grain yields increased by 337 kg/ha (9.4%) in controlled traffic plots, compared with wheeled plots. Mean grain yield of zero tillage was 2–8% greater than that of stubble mulch plots for all crops except for winter wheat in 1994 and 1998. Increased infiltration and plant available water were probably responsible for increased mean grain yields of 497 kg/ha (14.5%) in controlled traffic zero tillage, compared with wheeled stubble mulch treatments. Dissipation of tractive and tillage energy in the soil is the apparent mechanism of deleterious effects on the soils ability to support productive cropping in this environment. Controlled traffic and conservation tillage farming systems appear to be a practicable solution.  相似文献   


6.
Unsuitable soil management in agriculture is known to results in the deterioration of soil health and the decline of biodiversity. The experiment tested whether no-tillage with mulch (NT), could boost biological activity of soil macrofauna population in continuous maize monocropping system compared with rotational tillage with mulch (RT) and conventional tillage (CT). Soil macrofauna was sampled at the end of the 2014/2015 growing season using 25?×?25?×?25?cm steel monoliths. The mean density of individual orders was higher (p?p?相似文献   

7.
The application of conservative agricultural practices such as crop rotation, shallow tillage, and organic fertilizer could usefully sustain crop yield and increase soil fertility, thus playing an important role in the sustainable agriculture. This study was conducted to determine the effects of conservative agronomic practices on yield and quality of wheat. The effects of these practices on soil fertility were further investigated in this four-year study (2005–2008). Two cropping systems, durum wheat in continuous cropping, and in two-year rotation with leguminous crops, were investigated at Foggia (Southern Italy) in rain-fed conditions. Within each cropping system, two levels of crop management were compared: i) conventional, characterized by a higher soil tillage management and mineral fertilizers application; ii) conservative, with a lower soil tillage management and organic-mineral fertilizers. The seasonal weather greatly affected the wheat yield and quality, inducing lower production in years that were characterized by unfavorable climatic conditions. This trend was found when the conventional treatment was applied, both in continuous cropping and rotations. The effects of cropping systems and crop management pointed out the positive role played by the leguminous crops (common vetch and chickpea) in crop rotation. This introduction improved wheat yield in rotation (6.47% compared to the continuous cropping), improved grain protein content (5.88%), and reduced the productive gap between conventional and conservative treatments (9.24 and 14.14% of the wheat in rotation and continuous cropping, respectively). Conversely, the effects of cropping systems and crop management on soil fertility were not very high, since the differences found at the end of the study in total nitrogen values were poor. However, total organic carbon (16.04 and 17.58% for cropping system and crop management, respectively) and available phosphorus values (11.30 and 7.43%) depend on root organic matter contribution, plant biomass residues, and fertilizations. The suitable crop rotation and the sustainable crop management appear important agronomical practices to improve yield and quality of wheat, and may reduce the environmental risks resulting from conventional intensive cropping systems.  相似文献   

8.
Conventional tillage winter wheat (Triticum aestivum) (WW)–summer fallow reduces soil productivity and increases soil erosion. Conservation tillage management, together with intensive cropping may have the potential to reverse these sustainability concerns. The objective of this study was to determine the effects of conventional tillage (CT) and no-tillage (NT) systems on grain yield of long-term annual cropping of monoculture WW, spring wheat (SW), and spring barley (Hordeum vulgare) (SB) grown with or without fertilizer, in the Pacific Northwest region of the USA. In unfertilized crops, grain yield of WW, SW, and SB was 15%, 25%, and 50% higher, respectively, in CT than in NT plots, an indication of the involvement of yield limiting factors under the NT cropping system. When fertilized, there were no significant differences in grain yield of WW. Yields of SW and SB, however, remained 21% and 15% higher, respectively, in CT than in NT, an indication that factors other than fertility were involved. These results suggest that in order for NT management to be widely adopted by area growers, the yield-limiting factors need to be addressed.  相似文献   

9.
耕作对旱区坡耕地土壤碳素转化及冬小麦产量的影响   总被引:5,自引:0,他引:5  
利用长期定位试验(1999开始保护性耕作,2004年采样测定),在豫西旱区坡耕地上进行了不同耕作对土壤有机碳、微生物态碳及水分利用效率的影响研究。结果表明:深松覆盖和免耕覆盖处理的耕层有机碳增加较明显,以深松覆盖有机碳含量最高为6.79gkg-1,比传统耕作高13.82%,其次是免耕,较传统高11.58%,而少耕却较传统降低了1.38%,随着土层的加深,土壤有机碳含量降低,0~60cm有机碳平均值,深松和免耕较传统分别增加了14.08%、5.41%,少耕较传统减少1.12%。土壤微生物碳对耕作敏感,其含量免耕>深松>传统>少耕,分别为206.87mgkg-1、138.43mgkg-1、115.42mgkg-1和112.57mgkg-1,较传统增加79.3%、19.9%和-2.5%。土壤有机碳和土壤微生物态碳都有坡下富集现象。少耕、免耕、深松和传统的SMBC/SOC的值分别为1.91%、3.11%、2.04%和1.93%,免耕和深松对培肥地力、改善环境有好的应用前景;同时免耕覆盖与深松覆盖可提高产量,增产分别达10.22%与9.26%;可提高水分利用效率。  相似文献   

10.
The impact of tillage systems on soil CO2 emission is a complex issue as different soil types are managed in various ways, from no-till to intensive land preparation. In southern Brazil, the adoption of a new management option has arisen most recently, with no-tillage as well as no burning of crops residues left on soil surface after harvesting, especially in sugar cane areas. Although such practice has helped to restore soil carbon, the tillage impact on soil carbon loss in such areas has not been widely investigated. This study evaluated the effect of moldboard plowing followed by offset disk harrow and chisel plowing on clay oxisol CO2 emission in a sugar cane field treated with no-tillage and high crop residues input in the last 6 years. Emissions after tillage were compared to undisturbed soil CO2 emissions during a 4-week period by using an LI-6400 system coupled to a portable soil chamber. Conventional tillage caused the highest emission during almost the whole period studied, except for the efflux immediately following tillage, when the reduced plot produced the highest peak. The lowest emissions were recorded 7 days after tillage, at the end of a dry period, when soil moisture reached its lowest rate. A linear regression between soil CO2 effluxes and soil moisture in the no-till and conventional plots corroborate the fact that moisture, and not soil temperature, was a controlling factor. Total soil CO2 loss was huge and indicates that the adoption of reduced tillage would considerably decrease soil carbon dioxide emission in our region, particularly during the summer season and when growers leave large amounts of crop residues on the soil surface. Although it is known that crop residues are important for restoring soil carbon, our result indicates that an amount equivalent to approximately 30% of annual crop carbon residues could be transferred to the atmosphere, in a period of 4 weeks only, when conventional tillage is applied on no-tilled soils.  相似文献   

11.
Systematic exportation, burning of crop residues and decreases in fallow periods have led to a large-scale depletion of soil organic matter and degradation of soil fertility in the cotton (Gossypium hirsutum L.) cropping systems of Cameroon. The present study tested whether soil management systems based on a no-till with mulch approach intercropped with cereals, which has been shown to restore cotton production, could boost the biological activity of soil macrofauna. The impacts of no tillage with grass mulch (Brachiaria ruziziensis Germain and Eward) (NTG) and no tillage with legume mulch (Crotalaria retusa L. or Mucuna pruriens Bak.) (NTL) on the abundance, diversity and functional role of soil invertebrates were evaluated during the third year of implementation in northern Cameroon (Windé and Zouana), compared to conventional tillage (CT) and no tillage (NT) without mulch. Macrofauna were sampled from two 30 cm × 30 cm soil cubes (including litter) at the seeding stage of cotton, and 30 days later. The collected organisms were grouped into detritivores, herbivores and predators. Examination of the soil macrofauna patterns revealed that the abundance and diversity of soil arthropods were significantly higher in NTG and NTL than in CT plots (+103 and +79%, respectively), while that of NT plots was in-between the no tillage groups and CT (+37%). Regarding major ecological functions, herbivores and predators were significantly more abundant in NTG and NTL plots than in CT plots at Windé (+168 and +180%, respectively), while detritivores, predators and herbivores were significantly more abundant in the NTG plots than in CT plots at Zouana (+92, +517 and +116%, respectively). Formicidae (53.6%), Termitidae (24.7%) and Lumbricidae (9.4%) were the most abundant detritivores while Julidae (46.1%), Coleoptera larvae (22.1%) and Pyrrhocoridae or Reduviidae (11.8%) were the dominant herbivores. The major constituents of the predatory group were Araneae (33.8%), Carabidae (24.6%), Staphylinidae (15.7%) and Scolopendridae (10.3%). Direct seeding mulch-based systems, NTG and NTL, favoured the establishment of diverse macrofaunal communities in the studied cotton cropping system.  相似文献   

12.
Abstract

Tillage systems may affect many soil properties, which in turn may alter the soil environment and consequently impact on root growth and distribution, and crop yield. In 1993, a long-term field experiment on sustainable crop rotation and ley farming systems was initiated on a Colombian acid-savanna oxisol to test the effects of grain legumes, green manures, intercrops and leys as possible components that could increase the stability of systems involving annual crops. In the present study, five agropastoral treatments (maize monoculture, maize-soybean rotation, maize-soybean green manure rotation, native savanna, maize-agropastoral rotation) under two tillage systems (no tillage and minimum tillage) were investigated. Lower bulk density and higher total porosity for all treatments and soil layers were found in no-tillage compared to the minimum tillage system. Between the two tillage systems, significantly higher maize grain yields (p<0.1) were obtained under no-tillage agropastoral treatments compared to the same treatments under minimum tillage. Maize yields on native savanna soils were markedly lower than in the rest of the treatments, indicating the need for improved soil conditions in subsoil layers for root growth of maize.  相似文献   

13.
在黄淮海平原小麦-玉米一年两熟地区,试验设置了5个处理,分别为玉米小麦每年均翻耕(CTWT)、玉米免耕+小麦每年翻耕(CNTWT)、玉米免耕+小麦每2年翻耕(CNTW2T)、玉米免耕+小麦每4年翻耕(CNTW4T)、玉米小麦每年均免耕(CNTWNT),所有处理的农作物地上秸秆全部移出。调查结果显示,中小型土壤动物在数量上占总数的比例为83%~91%,土壤动物主要分布在表层,占有其总量的71.9%~73.2%。土壤动物存在显著的季节性动态,其丰富度在玉米季高于小麦季。土壤动物Shannon多样性指数在整体上表现为翻耕高于免耕处理,玉米季翻耕处理下有更高的均匀度指数,但小麦季均匀度指数差异不显著。多元典范冗余分析表明,耕作方式主要是对土壤动物的时间动态和垂直分布产生影响,从而间接地影响了土壤动物的数量和组成。  相似文献   

14.
秸秆还田、一膜两年用及间作对农田碳排放的短期效应   总被引:4,自引:3,他引:1  
针对作物高产模式碳排放高、生产实践中缺乏减排理论和技术问题,通过田间试验,探讨了不同秸秆还田方式、地膜一膜两年用及间作对小麦、玉米农田碳排放特征的影响,以期为碳减排种植模式及配套技术的构建提供理论与实践依据。结果表明,间作具有显著的碳减排作用,与传统单作小麦、玉米相比,小麦||玉米间作全生育期平均碳排放总量减少279~876 kg·hm~(-2),减幅达5.1%~16.0%,达到显著性差异。免耕秸秆还田及免耕一膜两年用可降低次年农田土壤的碳排放,免耕秸秆还田单作小麦较传统翻耕处理CO2排放显著减少648~966 kg·hm~(-2),减幅21.3%~31.8%;免耕一膜两年用单作玉米较翻耕覆新膜传统处理碳减排632 kg·hm~(-2),减幅10.0%,差异显著。小麦秸秆还田及地膜两年用集成应用于小麦间作玉米进一步提高了间作的碳减排效应,与传统间作处理(CTI1)相比,间作小麦高留茬免耕结合一膜两年用处理(NTSSI2)和小麦秸秆还田覆盖结合一膜两年用处理(NTSI2)的碳排放总量分别降低471 kg·hm~(-2)与518 kg·hm~(-2),降幅分别为9.2%与10.1%,达到显著水平;NTSSI2和NTSI2的总固碳量/土壤呼吸释放总碳量(NPPC/Ras)值分别为13.7与14.0,较CTI1分别高19.1%与21.7%,即NTSI2减排、碳汇潜力更为突出。因此,小麦高茬25~30 cm秸秆覆盖免耕结合一膜两年用间作(NTSI2)可作为干旱绿洲灌区碳减排、碳增汇高效农作制模式。  相似文献   

15.
  【目的】  研究不同农业管理措施(耕作强度、施肥、轮作)对土壤化学特性、酶活性及产量的影响,为选择适合的、对农业管理措施敏感的土壤质量评价指标提供依据。  【方法】  2019年5月在霍伊特维尔(OHHO,始于1963年),伍斯特(OHWO,始于1962年),亚当斯(ORAD,始于1992年) 3个农业长期试验站分别采集了0—15 cm耕层土壤。在OHHO和 OHWO试验站,分别在免耕(NT)、深耕(CT)、浅耕(MT)条件下设轮作(玉米–燕麦–苜蓿)、单作(玉米)处理;在ORAD试验站,分别在为NT、CT条件下,设不施肥、施肥 (有、无覆盖物)处理。同年测定了土壤的pH、全氮、全碳、粘粒、砂粒、粉粒含量和β-葡萄糖苷酶、芳基硫酸酯酶、荧光素二乙酸酯活性。  【结果】  OHWO试验点不同处理间pH无显著差异。OHHO试验点玉米–燕麦–苜蓿轮作处理(COH)或玉米单作处理(CCC)与MT配合pH显著高于其他处理;ORAD试验点豆麦轮作、有覆盖物、施肥(PWY2),豆麦轮作、有覆盖物、不施肥(PWY)与NT配合 (PWY2-NT、PWY-NT),及小麦–休闲的WFa-NT与WFa-CT处理pH显著高于其他处理。耕作强度、作物轮作影响土壤pH,但pH没有一致的变化趋势,除PWY2-NT处理外施氮肥降低土壤pH。COH-NT、PWY2-NT、WFa2-NT 处理全氮、全碳含量显著高于其他处理,说明轮作、免耕配合施肥显著提高土壤全氮、全碳含量;OHHO、OHWO试验点各处理间产量差异不显著,ORAD试验点产量的变化表明除了农业管理措施,产量还受病虫害或当季突发自然灾害的影响。3个试验点轮作配合免耕β-葡萄糖苷酶、芳基硫酸酯酶、荧光素二乙酸酯活性最高。在OHHO试验点β-葡萄糖苷酶可以区分轮作配合浅耕或深耕(COH-MT、COH-CT),单作配合免耕、浅耕、深耕(CCC-NT、CCC-MT、CCC-CT)处理间的差异;在ORAD试验点可以区分豆麦轮作+覆盖物+施肥或不施肥分别配合免耕2个处理;区分麦–休闲+施肥或不施肥分别配合深耕2个处理间的差异,而全碳不能区分这些处理间的差异 。β-葡萄糖苷酶与全氮、全碳、芳基硫酸酯酶相关性达 5% 或 1% 水平。  【结论】  对外来扰动的敏感性表现为β-葡萄糖苷酶活性>全碳>产量,以β-葡萄糖苷酶活性判断,免耕配合轮作是较为理想的提高土壤质量的农业管理措施。  相似文献   

16.
Soil organic matter (SOM) has long been recognized as an important indicator of soil productivity. The SOM refers to the organic fraction of the soil exclusive of undecayed plant and animal residues. It plays a crucial role in maintaining sustainability of cropping systems by improving soil physical (texture, structure, bulk density, and water-holding capacity), chemical (nutrient availability, cation exchange capacity, reduced aluminum toxicity, and allelopathy), and biological (nitrogen mineralization bacteria, dinitrogen fixation, mycorrhizae fungi, and microbial biomass) properties. The preservation of SOM is crucial to ensure long-term sustainability of agricultural ecosystems. Improvement/preservation of soil organic matter can be achieved by adopting appropriate soil and crop management practices. These practices include conservation tillage, crop rotation, use of organic manures, increasing cropping intensity, use of adequate rate of chemical fertilizers, incorporation of crop residues, liming acidic soils, and keeping land under pasture. Organic matter can adsorb heavy metals in the soils, which reduce toxicity of these metals to plants and reduce their escape to ground water. Similarly, SOM also adsorbs herbicides, which may inhibit contamination of surface and ground water. Furthermore, SOM also functions as a sink to organic carbon and mitigates carbon dioxide (CO2) gas escape to the environment. Globally, soil organic matter contains about three times as much carbon as found in the world's vegetation. Hence, organic matter plays a critical role in the global carbon balance that is thought to be the major factor affecting global warming. Overall, adequate amounts of soil organic matter maintain soil quality, preserve sustainability of cropping systems, and reduce environmental pollution.  相似文献   

17.
长期稻田垄作免耕对土壤性质和水稻产量的影响   总被引:4,自引:0,他引:4  
A tillage method of combining ridge with no-tillage (RNT) was employed in lowland rice-based cropping system to study the long-term effects of RNT on soil profile pattern, soil water stable aggregate distribution, nutrients stratification and yields of rice and post-rice crops. After flooded paddy field (FPF) was practiced with RNT for a long time, soil profile changed from G to A-P-G, and horizon G was shifted to a deeper position in the profile. Also the proportion of macroaggregate (> 2 mm) increased, whereas the proportion of silt and clay (< 0.053 mm) decreased under RNT, indicating a better soil structure that will prevent erosion. RNT helped to control leaching and significantly improved total N, P, K and organic matter in soil. The highest crop yields were found under RNT system every year, and total crop yields were higher under conventional paddy-upland rotation tillage (CR) than under FPF, except in 2003 and 2006 when serious drought occurred. RNT was proven to be a better tillage method for lowland rice-based cropping system.  相似文献   

18.
Long-term studies are valuable in assessing the impact of crop management practices on soil sustainability and function. This study used two calculation scenarios, fixed depth and Equivalent Soil Mass (ESM) to assess (i) soil nutrient status and (ii) soil organic carbon (SOC) after 50 years of nitrogen (N) fertilizer application rates (0, 22, 45, and 67 kg N ha?1) and tillage [clean tillage (CT), reduced tillage (RT), and no-tillage (NT)] in a dryland winter wheat-sorghum-fallow cropping system. The soil organic matter (SOM) content increased by 33% with NT and RT compared with CT. The SOC at 0–30 cm was 39% greater than 30–60 cm depth with both fixed depth and ESM calculations. Soil nutrient specifically soil calcium (Ca), magnesium (Mg), and phosphorus (P) associated with N rates were no different than the control. Crop nutrient removal may eventually reduce soil nutrient contents with only N application. Nutrient addition specifically P should be considered in the future.  相似文献   

19.
Low and extremely variable precipitations limit dryland crop production in the semi-arid areas of Aragón (NE Spain). These areas are also affected by high annual rates of topsoil losses by both wind and water erosion. A long-term experiment to determine the feasibility of conservation tillage in the main winter barley production areas of Aragón was initiated in 1989 at four locations, three on loam to silt loam soils (Xerollic Calciorthid) and one on a silty clay loam (Fluventic Ustochrept), receiving between 300 and 600 mm of average annual rainfall. In this study, we compared, under both continuous cropping and cereal-fallow rotation, the effects of conventional tillage (mouldboard plough) and two conservation tillage systems, reduced tillage (chisel plough) and no-tillage, on soil water content and penetration resistance during the first two growing seasons. Whereas reduced and conventionally tilled treatments generally had similar soil water content during the experimental period, the effects of no-tillage were inconsistent. No-tilled plots had from 26% less to 17% more stored soil water (0–80 cm) than conventional tilled plots at the beginning of the growing season. In contrast to the conventional and reduced tillage treatments, penetration resistances were between 2 and 4 MPa after sowing in most of the plough layer (0–40 cm) under no-tillage at all sites. Fallow efficiencies in moisture storage in the cereal-fallow rotation, when compared with the continuous cropping system, ranged from −8.7 to 12%. The highest efficiencies were recorded when the rainfall in the months close to primary tillage exceeded 100 mm. Since this event is very unlikely, long fallowing (9–10 months) appears to be an inefficient practice for water conservation under both conventional and conservation management. Our results suggest that, up to now, only reduced tillage could replace conventional tillage without adverse effects on soil water content and penetration resistance in the dryland cereal-growing areas of Aragón.  相似文献   

20.
Soil water conservation is critical to long-term crop production in dryland cropping areas in Northeast Australia. Many field studies have shown the benefits of controlled traffic and zero tillage in terms of runoff and soil erosion reduction, soil moisture retention and crop yield improvement. However, there is lack of understanding of the long-term effect of the combination of controlled traffic and zero tillage practices, as compared with other tillage and traffic management practices.In this study, a modeling approach was used to estimate the long-term effect of tillage, traffic, crop rotation and type, and soil management practices in a heavy clay soil. The PERFECT soil–crop simulation model was calibrated with data from a 5-year field experiment in Northeast Australia in terms of runoff, available soil water and crop yield; the procedure and outcomes of this calibration were given in a previous contribution. Three cropping systems with different tillage and traffic treatments were simulated with the model over a 44-year-period using archived weather data.Results showed higher runoff, and lower soil moisture and crop production with conventional tillage and accompanying field traffic than with controlled traffic and zero tillage. The effect of traffic is greater than the effect of tillage over the long-term. The best traffic, tillage and crop management system was controlled traffic zero tillage in a high crop intensity rotation, and the worst was conventional traffic and stubble mulch with continuous wheat. Increased water infiltration and reduced runoff under controlled traffic resulted in more available soil water and higher crop yield under opportunity cropping systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号