首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aminocyclopyrachlor sorption/desorption was investigated in 14 soils from Brazil, representing a range of pH, and organic carbon (OC) and clay contents. The Freundlich equation adequately described behavior of aminocyclopyrachlor in soil. Freundlich sorption coefficient (K(f)) values ranged from 0.06 to 1.64 and 1/n values for ranged from 0.9 to 1.0. Sorption was correlated to OC (K(f,oc) ranged from 11 to 64) and clay contents. The lowest sorption was found for soils with very low OC contents (0.50-0.65%) and loamy-sand to sand textures. The 1/n values for desorption were lower than those observed for sorption, suggesting that aminocyclopyrachlor sorption by soil was not reversible; hysteresis coefficients ranged from 0.13 to 0.74. The results suggest that although aminocyclopyrachlor would be very mobile based on its sorption coefficients, its potential depth of leaching may be overestimated due to the hysteretic desorption.  相似文献   

2.
The rate of Pb desorption was investigated from clay (Silty clay, Torrifluvent), CaCO3-rich (Sandy clay, Calciorthid), and sandy (Sandy loam, Quartzipsamment) soils at two different temperatures. Lead has not been released from CaCO3-rich soils which suggests irreversible Pb sorption by the soil. The desorption was quite hysteretic from sand and clay soils. The total amount of Pb released from the clay soil exceeded that released from the sandy soil. The lower Pb desorption associated with the sandy soil is probably due to its higher calcium carbonate content relative to the clay soil. The kinetics of Pb desorption were evaluated using the Elovich, modified Freundlich, parabolic diffusion, and first order equations. The first order and parabolic diffusion equations adequately described the kinetics of Pb desorption from clay and sandy soils under isothermal conditions. The choice of first order and parabolic equations among others investigated was based on the goodness of fit and the more scientific theoretical assumptions of the equations. The apparent Pb diffusion rate coefficient (Dd) and desorption rate coefficient (kd) values from the clay and sandy soils increased with increasing temperature.  相似文献   

3.
The addition of organic amendments to soil increases soil organic matter content and stimulates soil microbial activity. Thus, processes affecting herbicide fate in the soil should be affected. The objective of this work was to investigate the effect of olive oil production industry organic waste (alperujo) on soil sorption-desorption, degradation, and leaching of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] and terbuthylazine [N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine], two herbicides widely used in olive crops. The soils used in this study were a sandy soil and a silty clay soil from two different olive groves. The sandy soil was amended in the laboratory with fresh (uncomposted) alperujo at the rate of 10% w/w, and the silty clay soil was amended in the field with fresh alperujo at the rate of 256 kg per tree during 4 years and in the laboratory with fresh or composted alperujo. Sorption of both herbicides increased in laboratory-amended soils as compared to unamended or field-amended soils, and this process was less reversible in laboratory-amended soils, except for diuron in amended sandy soil. Addition of alperujo to soils increased half-lives of the herbicides in most of the soils. Diuron and terbuthylazine leached through unamended sandy soil, but no herbicide was detected in laboratory-amended soil. Diuron did not leach through amended or unamended silty clay soil, whereas small amounts of terbuthylazine were detected in leachates from unamended soil. Despite their higher sorption capacity, greater amounts of terbuthylazine were found in the leachates from amended silty clay soils. The amounts of dissolved organic matter from alperujo and the degree of humification can affect sorption, degradation, and leaching of these two classes of herbicides in soils. It appears that adding alperujo to soil would not have adverse impacts on the behavior of herbicides in olive production.  相似文献   

4.
The adsorption of herbicides on soil colloids is a major factor determining their mobility, persistence, and activity in soils. Solvent extraction could be a viable option for removing sorbed contaminants in soils. This study evaluated the extractability of three herbicides: 2,4 dichlorophenoxy-acetic acid (2,4-D), 4-chloro-2-methylphenoxypropanoic acid (mecoprop acid or MCPP), and 3,6-dichloro-2-methoxybenzoic acid (dicamba). Three solvents (water, methanol, and iso-propanol) and three methods of extraction (column, batch, and soxhlet) were compared for their efficiencies in removing the herbicides from three soils (loamy sand, silt loam, and silty clay). Both linear and non-linear Freundlich isotherms were used to predict sorption intensity of herbicides on soils subjected to various extraction methods and conditions. High Kdand Kfr, and low N values were obtained for all herbicides in silty clay soil by batch extraction. Methanol was the best solvent removing approximately 97% of all added herbicides from the loamy sand either by column or soxhlet extraction method. Isopropanol ranked second by removing over 90% of all herbicides by soxhelet extraction from all three soils. However, water was ineffective in removing herbicides from any of the soils using any of the three extracting procedures used in this study. In general, the extent of herbicide removal depended on soil type, herbicide concentration, extraction procedure, solvent type and amount, and extraction time.  相似文献   

5.
Aqueous batch-type sorption-desorption studies and soil column leaching studies were conducted to determine the influence of soil properties, soil and suspension pH, and ionic concentration on the retention, release, and mobility of [14C]imazaquin in Cape Fear sandy clay loam, Norfolk loamy sand, Rion sandy loam, and Webster clay loam. Sorption of [14C]metolachlor was also included as a reference standard. L-type sorption isotherms, which were well described by the Freundlich equation, were observed for both compounds on all soils. Metolachlor was sorbed to soils in amounts 2-8 times that of imazaquin, and retention of both herbicides was related to soil organic matter (OM) and humic matter (HM) contents and to herbicide concentration. Metolachlor retention was also related to soil clay content. Imazaquin sorption to one soil (Cape Fear) increased as concentration increased and as suspension pH decreased, with maximum sorption occurring in the vicinity of pK(a1) = (1.8). At pH levels below pK(a1) imazaquin sorption decreased as hydronium ions (H3O+) increased and competed for sites. NaCl was more effective than water in desorption of imazaquin at pH levels near the pK(a1). Mechanisms of bonding are postulated and discussed. The mobility of imazaquin through soil columns was in the order Rion > or = Norfolk > Cape Fear > or = Webster, whereas for metolachlor it was Rion > or = Norfolk > Webster > or = Cape Fear. Imazaquin was from 2 to 10 times as mobile as metolachlor.  相似文献   

6.
Sorption-desorption interactions of pesticides with soil determine the availability of pesticides in soil for transport, plant uptake, and microbial degradation. These interactions are affected by the physical and chemical properties of the pesticide and soil, and for some pesticides, their residence time in the soil. The objective of this study was to characterize sorption-desorption of two sulfonylaminocarbonyltriazolinone herbicides incubated in soils at different soil moisture potentials. The chemicals were incubated in clay loam and loamy sand soils for up to 12 wks at -33 kPa and at water contents equivalent to 50 and 75% of that at -33 kPa. Chemicals were extracted sequentially with 0.01 N CaCl(2) and aqueous acetonitrile, and sorption coefficients were calculated. Sufficient sulfonylaminocarbonyltriazolinone herbicides remained (>40% of that applied) during incubation to allow calculation of sorption coefficients. Aging significantly increased sorption as indicated by increased sorption coefficients. For instance, for sulfonylaminocarbonyltriazolinone remaining after a 12-wk incubation at -33 kPa, K(d) increased by a factor of 4.5 in the clay loam soils and by 6.6 in the loamy sand as compared to freshly treated soils. There was no effect of moisture potential on sorption K(d) values. These data show the importance of characterization of sorption-desorption in aged herbicide residues in soil, particularly in the case of prediction of herbicide transport in soil. In this case, potential transport of sulfonylaminocarbonyltriazolinone herbicides would be over-predicted if freshly treated soil K(d) values were used to predict transport.  相似文献   

7.
Earthworm activity is observed at long‐term monitoring sites as an indicator of soil function to assess changes resulting from environmental and management conditions. In order to assess changes, characteristic values of earthworm populations under different site conditions have to be known. Therefore, a classification scheme for site‐specific earthworm populations was developed for soil in agricultural use, taking interactions between earthworm populations and soil properties into account. Characteristics of sites grouped by means of a cluster analysis after principal‐component analysis served as a basis for the derivation of the classification scheme. Soil variables found to characterize site differences with respect to earthworm populations were the texture of the topsoil, the texture of the subsoil, and the soil organic‐matter (SOM) content. The textural classes of the topsoil were divided into five groups comprising sandy soils (Ss), silty sand soils (Su), slightly loamy sand soils (Sl2), medium to strongly loamy sand soils (Sl3/Sl4), and loam and clay soils. Soil organic matter was divided into grades of equal size in a range from <1%, 1%–2% up to >6%. The variables “earthworm abundance” and “earthworm species” were selected to represent earthworm populations and were divided into six groups ranging from very low to extremely high. Defined groups of earthworm populations showed a clear structure in relation to soil textural groups and the content of SOM. From this distribution, a classification scheme was derived as basis for prognostic values of site‐specific earthworm populations, thus enabling the interpretation of changes over time. For some soil textural groups, selected variables appeared to enable the derivations of expected earthworm densities and species composition outside the range of the given database, but for some soil textural groups, broader databases will be needed to specify these derivations.  相似文献   

8.
Abstract

Soil aggregate stability is a crucial property regarding soil erodibility. However, results from different stability-assessment methods differ. The objective of this study was to compare two such methods on a set of southeast Norwegian agricultural soils. Traditionally, a raindrop-impact method has been used to determine the soil aggregate stability of Norwegian soils. Here, a more common, less destructive method was also used, a wet-sieve method using one sieve. Two soil fractions were studied, aggregates of 0.6–2 mm and 2–6 mm in diameter. The soil samples were chosen to give a wide range in clay content (5.7–68.0%) and soil organic matter (1.7–8.5% SOM). Using the wet-sieve method two different pre-treatments were performed; either using air-dried aggregates or slowly pre-wetted, air-dried aggregates. The aggregate stability found using the wet-sieve method gave generally higher stability values for soil aggregates 2–6 mm in diameter than using the standard raindrop-impact method (21% higher on average). Soils with high contents of silt and very fine sand (0.002–0.2 mm), however, were found to be more susceptible to destruction due to raindrop impact than to wet-sieving. Hence, using the wet-sieve method, the silty soils were ranked as more stable than by using the standard raindrop-impact method. Aggregate stability was positively correlated with the SOM and Al-oxides content and negatively correlated with the silt and the very fine sand content (0.002–0.02 mm). Using slowly, pre-wetted air-dried aggregates, which induce rebonding and reduce the effect of slaking, resulted in distinctively higher stability values than using air-dried aggregates in the wet-sieving method (34% higher on average). The wet-sieve method is less laborious and more widely used elsewhere, but the lower disruptive effect on silty soils should be kept in mind when using this method.  相似文献   

9.
An isotopic exchange method is presented that characterizes the irreversibility of pesticide sorption-desorption by soil observed in batch equilibration experiments. The isotopic exchange of (12)C- and (14)C-labeled triadimefon [(1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1, 2,4-triazol-1-yl)-2-butanone] and imidacloprid-guanidine [1-[(6-chloro-3-pyridinyl)methyl]-4,5-dihydro-1H-imidazol-2-amine] in Hanford sandy loam soil indicated that these systems can be described by a two-compartment model in which about 90% of sorption occurs on reversible, easily desorbable sites, whereas 10% of the sorbed molecules are irreversibly sorbed on soil and do not participate in the sorption-desorption equilibrium. This model closely predicted the hysteresis observed in the desorption isotherms from batch equilibration experiments. The isotopic exchange of triadimefon and imidacloprid-guanidine in Drummer silty clay loam soil indicated that there was a fraction of the sorbed (14)C-labeled pesticide that was resistant to desorption, which increased as pesticide concentration decreased and was higher for triadimefon than for imidacloprid-guanidine. In contrast, the batch equilibration method resulted in ill-defined desorption isotherms for the Drummer soil, which made accurate desorption characterization problematic.  相似文献   

10.
通过往土壤中添加不同量小麦秸秆,经好气培养1年后,获得不同有机质含量梯度的系列土壤,研究有机质含量对石灰性黄潮土和砂姜黑土磷(P)相关吸附参数和不同水土比下解吸溶液P浓度的影响。结果表明,Langmuir方程能够较好地拟合不同有机质含量的两种土壤对P的等温吸附曲线,拟合度均达到显著(P 0.05)或极显著(P 0.01)水平。黄潮土和砂姜黑土P最大吸附量(Xm)、吸附结合能常数(K)、最大缓冲容量(MBC)、吸附饱和度(DPS)及相同水土比下P解吸溶液浓度与有机碳含量间均呈显著或极显著的二次抛物线关系。抛物线拐点之前,随有机质含量的提高,P的吸附能力增强,解吸能力降低;拐点之后,吸附能力降低,解吸能力增强。各水土比条件下,P解吸溶液浓度与Xm、K、MBC呈显著或极显著负相关,与DPS呈显著或极显著正相关。随有机质含量的提高,土壤P植物有效性和P流失风险呈先降低后增强的抛物线趋势;土壤供P缓冲能力则先增强后降低。砂姜黑土Xm、K、MBC均明显高于黄潮土,DPS明显低于黄潮土;且其抛物线拐点滞后,拐点横坐标有机碳含量明显高于黄潮土。不同有机质含量的解吸曲线较黄潮土排列紧密;砂姜黑土黏粒含量、碳酸钙含量明显高于黄潮土,全P和Olsen-P含量明显低于黄潮土,这可能是影响两种石灰性土壤P吸附–解吸特性差别的主要原因。  相似文献   

11.
Zinc (Zn) desorption is an important process to determine Zn bioavailability in calcareous soils. An experiment was performed to assess the pattern of Zn release from 10 calcareous soils of orange orchards, southern Iran and the soil properties influencing it. For Zn desorption studies, soil samples were extracted with diethylene triamine penta-acetic acid solution at pH 7.3 for periods of 0.083–48 h. Suitability of seven kinetic models was also investigated to describe Zn release from soils. Generally, Zn desorption pattern was characterized by a rapid initial desorption up to 2 h of equilibration, followed by a slower release rate. The simple Elovich and two-constant rate kinetic models described Zn release the best, so it seems that Zn desorption is probably controlled by diffusion phenomena. The values of the rate constants for the superior models were significantly correlated with some soil properties such as soil organic matter (SOM) content, cation exchange capacity (CEC), and soil pH, whereas carbonate calcium equivalent and clay content had no significant influence on Zn desorption from soils. SOM had a positive effect on the magnitude of Zn release from soils, while soil pH showed a negative effect on Zn desorption. Furthermore, the initial release rate of soil Zn is probably controlled by CEC in the studied soils. Finally, it could be concluded that SOM, CEC, and soil pH are the most important factors controlling Zn desorption from calcareous soils of orange orchards, southern Iran.

Abbreviations: Soil organic matter (SOM); Cation exchange capacity (CEC); Calcium carbonate equivalent (CCE); Zinc (Zn).  相似文献   


12.
The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to quantify and characterise the labile and stable forms of SOM. Our objective in this study was to evaluate SOM under widely contrasting management regimes to determine whether the variation in chemical composition and resistance to pyrolysis observed for various constituent C fractions could be related to their resistance to decomposition. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were physically fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: <5 μm). Biodegradability of the SOM in size fractions and whole soils was assessed in a laboratory mineralization study. Thermal stability was determined by analytical pyrolysis using a Rock-Eval pyrolyser, and chemical composition was characterized by X-ray absorption near-edge structure (XANES) spectroscopy at the C and N K-edges. Relative to the pasture soil, SOM in the arable and fallow soils declined by 30% and 40%, respectively. The mineralization bioassay showed that SOM in whole soil and soil fractions under fallow was less susceptible to biodegradation than that in other management practices. The SOM in the sand fraction was significantly more biodegradable than that in the silt or clay fractions. Analysis by XANES showed a proportional increase in carboxylates and a reduction in amides (protein) and aromatics in the fallow whole soil compared to the pasture and arable soils. Moreover, protein depletion was greatest in the sand fraction of the fallow soil. Sand fractions in fallow and arable soils were, however, relatively enriched in plant-derived phenols, aromatics, and carboxylates compared to the sand fraction of pasture soils. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the whole soil and their size fractions; it also showed that the loss of SOM generally involved preferential degradation of H-rich compounds. The temperature at which half of the C was pyrolyzed was strongly correlated with mineralizable C, providing good evidence for a link between the biological and thermal stability of SOM.  相似文献   

13.
Abstract

Many of the cultivated soils of sub‐Saharan Africa typically have a surface horizon low in clay and with a low cation exchange capacity (CEC). In these soils, CEC is largely due to the soil organic matter (SOM). Measurements made on long‐term trials show that changes in CEC and SOM are positively correlated to one another, but not of same magnitude, suggesting that not all of the SOM plays an equal role as regards the soil CEC. To study the influence of the different SOM size fractions on the CEC, soils with or without application of manure or compost coming from trials in Chad and Côte d'Ivoire were separated without destruction of the SOM into five organo‐mineral fractions: “coarse sand”;, “fine sand”;, “coarse silt”;, “fine silt”;, and “clay”; made up of particles of sizes between 2,000 and 200, 200 and 50, 50 and 20, 20 and 2, and 2 and 0 μm, respectively. Fractionation was carried out by mechanical dispersion of the soil, wet sieving of the fractions larger than 20 μm, and decanting of the “clay”; and “fine silt”; fractions. The CEC of these fractions increases inversely with their size. The “clay”; fraction which contains half of the SOM contributes about 80% of the CEC of the soils. The CEC of the fractions is largely a function of their carbon (C) content, but the organic CEC per unit C of the “clay”; fraction appears to be four times greater than that of the other fractions (1,000 as against 270 cmolc kg‐1). Applications of manure or compost increase the CEC of the soils by increasing the soil C only when this C increase concerns the fine fractions of the SOM.  相似文献   

14.
A study was conducted to determine the influence of switchgrass roots on the mobility, adsorption–desorption and mineralization of atrazine in Cullen clay loam and Emporia loamy sand soils. Bromide and atrazine distribution profiles in the leachates indicated greater preferential movement in columns with roots than in columns without roots. Larger concentrations of atrazine were detected at lower depths of Emporia soil with switchgrass roots than without. Adsorption of atrazine was greater in Cullen than in Emporia soil and conformed to Freundlich isotherms. In both Cullen and Emporia soils, adsorption and desorption were not different between soil with or without switchgrass roots. After 84 days of incubation, less than 6% of the applied atrazine was mineralized in the Cullen soil and 2% in Emporia soil. Mineralization was greater in the Cullen soil than in the Emporia soil at 42, 56, 70 and 84 days of sampling. The presence of switchgrass roots did not affect the mineralization of atrazine in Emporia soil. The presence of switchgrass roots caused preferential movement of atrazine, but did not affect its adsorption and mineralization in either soil type.  相似文献   

15.
Soil organic matter (SOM) is often considered the dominant sorptive phase for organic contaminants and pesticides in soil-water systems. This is evidenced by the widespread use of organic-matter-normalized sorption coefficients (K(OM)) to predict soil-water distribution of pesticides, an approach that ignores the potential contribution of soil minerals to sorption. To gain additional perspective on the potential contributions of clays and SOM to pesticide retention in soils, we measured sorption of seven pesticides by a K-saturated reference smectite clay (SWy-2) and SOM (represented by a muck soil). In addition, we measured the adsorption of atrazine by five different K-saturated smectites and Ca-saturated SWy-2. On a unit mass basis, the K-SWy-2 clay was a more effective sorbent than SOM for 4,6-dinitro-o-cresol (DNOC), dichlobenil, and carbaryl of the seven pesticides evaluated, of which, DNOC was sorbed to the greatest extent. Atrazine was sorbed to a similar extent by K-SWy-2 and SOM. Parathion, diuron, and biphenyl were sorbed to a greater extent by SOM than by K-SWy-2. Atrazine was adsorbed by Ca-SWy-2 to a much lesser extent than by K-SWy-2. This appears to be related to the larger hydration sphere of Ca(2+) (compared to that of K(+)) which shrinks the effective size of the adsorption domains between exchangeable cations, and which expands the clay layers beyond the apparently optimal spacing of approximately 12.2 A for sorption of aromatic pesticide structures. Although a simple relation between atrazine adsorption by different K-smectites and charge properties of clay was not observed, the highest charge clay was the least effective sorbent; a higher charge density would result in a loss of adsorption domains. These results indicate that for certain pesticides, expandable soil clays have the potential to be an equal or dominant sorptive phase when compared to SOM for pesticide retention in soil.  相似文献   

16.
Organic matter (OM) is the most critical factor in controlling the sorption-desorption of SMZ in soil, however, few studies have explored the effects of OM removal on these important behaviors among different soils. Batch experiments were conducted to investigate the sorption and desorption characteristics of SMZ in three different soils: fluvo-aquic soil (FS), paddy soil (PS), and red soil (RS). The SMZ sorption in the evaluated soils was dominated by physisorption. The SMZ sorption capacities of FS and PS, which had a relatively higher OM content than RS, were higher than that of RS. The SMZ sorption in FS was dominated by linear partitioning. In contrast, the SMZ sorption in PS and RS was mainly nonlinear surface adsorption. After OM removal, the SMZ sorption capacity was significantly reduced in FS but increased in PS and RS. Furthermore, OM removal restrained the sorption intensity of SMZ in soils. Relatively higher OM and clay contents inhibited the SMZ desorption in FS and PS. The strong negative desorption hysteresis of SMZ in the three soils indicated that SMZ was able to move into the soil solution, thereby posing a risk to humans. Taken together, the findings of this study showed that OM indeed plays an important role during SMZ sorption-desorption in soil.  相似文献   

17.
Water repellency can be a significant factor in soil physical behaviour, but little is known about the depth dependence of the contact angle of field soils. We investigated contact angles and wetting properties as a function of depth for a wide range of agricultural and forest soils in Germany. The agricultural soils ranged from silty to sandy texture (six profiles), and the forest soils ranged from sandy to loamy texture (eight profiles). Contact angles (CA) were measured with the Wilhelmy plate method (WPM). In most of the soils, advancing WPM contact angles were considerably greater than 0° and they varied irregularly with depth. In general, sandy soils had larger WPM contact angles than silty soils. From the relation of the contact angle with texture and pH the quality of soil organic matter (SOM) was considered as more important for the wetting properties than the total amount of soil organic carbon (SOC). Finally, it was found that for soils with intermediate sand contents either under agricultural or forest use, the kind of land use seemed not to influence CA. Coarse‐textured sandy soils that were used only as forest sites were more hydrophobic than silty soils which were exclusively used as agricultural soils. We conclude that a coarse texture favours, in combination with other factors (mainly pH), hydrophobic SOM.  相似文献   

18.
Aging (herbicide-soil contact time) has been shown to significantly affect the sorption-desorption characteristics of many herbicides, which in turn can affect the availability of the herbicide for transport, plant uptake, and microbial degradation. In contrast, very little work in this area has been done on herbicide metabolites in soil. The objective of this study was to characterize the sorption-desorption of sulfonylaminocarbonyltriazolinone herbicide metabolites incubated in soils at different soil moisture potentials. A benzenesulfonamide metabolite and a triazolinone metabolite from sulfonylaminocarbonyltriazolinone herbicides were incubated in clay loam and loamy sand soils for up to 12 weeks at -33 kPa and at water contents equivalent to 50 and 75% of that at -33 kPa. Chemicals were extracted sequentially with 0.01 N CaCl(2) and aqueous acetonitrile (solution and sorbed phase concentrations, respectively), and apparent sorption coefficients (K(d,app)) were calculated. Sufficient metabolite remained during the incubation (>55% of applied) to allow determination of the coefficients. The initial aging period (2 weeks after application) significantly increased sorption as indicated by increased K(d,app) values for the chemical remaining, after which they remained relatively constant. After 12 weeks of incubation at -33 kPa, K(d,app) values for benzenesulfonamide and triazolinone increased by a factor of 3.5 in the clay loam soil and by a factor of 5.9 in the loamy sand as compared to freshly treated soils. There was no effect of moisture potential on aged apparent K(d,app) values. These data show the importance of characterization of sorption-desorption in aged herbicide residues, including metabolites, in soil, particularly in the case of prediction of herbicide residue transport in soil. In this case, potential transport of sulfonylaminocarbonyltriazolinone herbicide metabolites would be overpredicted if freshly treated soil K(d) values were used to predict transport.  相似文献   

19.
In this study, using high-power low-frequency ultrasound, heated slurries with anionic surfactant sodium dodecyl sulfate (SDS) were treated to enhance desorption of DDT from soils with high clay, silt, and organic matter content and different pH (5.6?C8.4). The results were compared with DDT extracted using a strong solvent combination as reference. Slurry ranges from 5 to 20 wt.% were studied. For a soil slurry (10 wt.%) at pH 6.9 with 0.1% v/v SDS surfactant heated to 40°C for 30 min, desorption was above 80% in 30 s using 20 kHz, 932 W/L ultrasonic intensity without solvent extraction. Other soils gave lower desorption efficiency in the range 40?C60% after 30 s ultrasonic treatment. The percentage of organic matter, dissolved organic carbon, soil surface area, clay and silt percentage, and soil pH level were the key parameters influencing variations in desorption of DDT in the three soils in similar experimental conditions. DDT dissolution in SDS and soil organic matter removal employing the ultrasonic-enhanced organic matter roll-up mechanism emerged as the two best possible methods of DDT desorption. The method offers a practical, potentially low-cost alternative to high volume, costly, hazardous solvent extraction of DDT.  相似文献   

20.
Phosphorus (P) sorption processes in soils contribute to important problems in agriculture: a deficiency of this plant nutrient and eutrophication in aquatic systems. Soil organic matter (SOM) plays a major role in sorption processes, but its influence on P sorption remains unclear and needs to be elucidated to improve the ability to effectively manage soil P. The aim of this research was to investigate the influence of SOM on P sorption. The study was conducted in sandy soil profiles and in topsoils before and after removal of SOM with H2O2. The results were interpreted with the Langmuir and Freundlich isotherms. Our results indicated that SOM affected P sorption in sandy soils, but that P sorption also depended on specific soil properties (e.g. values of the degree of P saturation (DPS), P sorption capacity (PSC) and pH) often related to land use. Removal of SOM decreased PSC in most of the topsoils tested; other soil properties became important in controlling P sorption. An increase in P desorption observed after SOM removal indicated that SOM was potentially that soil constituent which increased P binding and limited P leaching from these sandy soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号