首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maize yield is often limited by zinc (Zn) deficiency. The objectives of this study were to (i) evaluate maize yield response to Zn applied at four different rates, (ii) evaluate the yield response and agronomic efficiency of maize to the application of a complex fertilizer, MicroEssentials SZ (12N–40P–0K–10S–1Zn), compared to different rates of monoammonium phosphate (MAP) + ammonium sulfate (AS) + zinc sulfate (ZnSO4), and (iii) evaluate the association between tissue Zn concentration and soil-test Zn with the maize response to Zn fertilizer. Eleven experiments were carried out during the 2010, 2011, and 2012 growing seasons throughout eight states in the USA. Treatments consisted of four Zn rates of a physical blend of MAP + AS + ZnSO4 (0, 2.24, 4.48, 6.72, and 11.2 kg/ha Zn) and MicroEssentials SZ at a Zn rate of 2.24 kg/ha Zn. Nitrogen, phosphorus (P), and sulfur (S) rates were balanced across treatments (40 kg/ha P, 22 kg/ha S) and fertilizers were broadcast and incorporated immediately prior to planting. Treatment and location main effects were significant (P < 0.001) on corn yields, whereas the interaction treatment × location was not (P = 0.33). Maize responded positively to Zn fertilization; average yields across locations increased from 10,540 kg ha?1 without Zn to 11,530 kg ha?1 with 11.21 kg Zn ha?1 applied as a physical blend. The yield response and Zn agronomic efficiency of maize with the application of the complex fertilizer at a rate of 2.24 kg Zn ha?1 averaged 1004 kg ha?1 and 448 kg maize kg Zn?1, respectively, significantly higher (P < 0.1) than the yield response and Zn agronomic efficiency with the application of a physical blend with the same Zn rate, which averaged 293 kg ha?1 and 131 kg maize kg Zn?1, respectively. The Zn concentration in plant tissue of unfertilized plots varied greatly and was not related to the maize response to Zn fertilizer (r = 0.01; P = 0.98). With respect to soil Zn, a negative but nonsignificant relationship was found between maize response to Zn fertilizer and soil-test Zn (r = ?0.51; P = 0.16).  相似文献   

2.
Maize (Zea mays L.) is generally low in bioavailable zinc (Zn); however, agronomic biofortification can cure human Zn deficiency. In the present experiment, Zn was applied in pots as ZnSO4 · 7H2O to maize cultivar DK-6142 as foliar spray (0.5% w/v Zn sprayed 25 days after sowing and 0.25% w/v at tasseling), surface broadcasting (16 kg Zn ha?1), subsurface banding (16 kg Zn ha?1 at the depth of 15 cm), surface broadcasting + foliar and subsurface banding + foliar in comparison to an unfertilized control. As compared to control, all treatments significantly (P ≤ 0.05) increased growth, yield and nutritional attributes in maize. Grain Zn and protein concentrations were correlated and ranged from 22.3 to 41.9 mg kg?1 and 9 to 12 %, respectively. Zinc fertilization also significantly reduced grain phytate and increased grain Zn concentration. Zinc fertilization, especially broadcasting and subsurface banding combined with foliar spray decreased grain [phytate]:[Zn] ratio to 28 and 21 and increased Zn bioavailability by trivariate model of Zn absorption to 2.04 to 2.40, respectively. Conclusively, broadcasting and subsurface banding combined with foliar spray is suitable for optimal maize yield and agronomic Zn biofortification of maize grain. This would also be helpful to optimize Zn and protein concentration in maize grain.  相似文献   

3.
Scientific management of nutrients along with several other crop management practices are required for sustainable production of maize (Zea mays L.). Zinc (Zn) status of maize grown in Potohar plateau, Pakistan was monitored. A two-year field study was conducted at two sites to assess the yield of maize cultivars, i.e., hybrid (cv. NARC-2704) and local (cv. Agaiti-2002) and Zn requirement of leaves and grain using various Zn application methods. Zinc was applied by three ways, i.e., broadcast and band placement each at 3, 6 and 9 kg Zn ha?1; and foliar at 0.5, 1.0 and 1.5 kg Zn ha?1 along with recommended basal fertilization. Cultivars' response varied to Zn rates, application techniques and sites. The maximum increase in grain yield (two-year mean) at NARC site was: broadcast – hybrid, 17% and local, 13%; band placement – hybrid, 18% and local, 16%; and foliar – hybrid, 15% and local, 13%. Corresponding response at Pindi Gheb site was: broadcast – hybrid, 20% and local, 16%; band placement – hybrid, 21% and local, 17%; and foliar – hybrid, 17% and local, 15%. Zn concentration in leaves and grain of both cultivars also increased to varying extent as a result of applied Zn rates and techniques. Fertilizer Zn requirement for near-maximum grain yield (kg ha?1) was: broadcast – hybrid, 4.6 and local, 1.9; band placement – hybrid, 1.8 and local, 1.5; and foliar – hybrid, 0.28 and local, 0.26.  相似文献   

4.
Zinc (Zn) deficiency in soils and field crops is widespread across the world, including India, resulting in severe reduction in yield. Hence, soil application of Zn fertilizers is recommended for ameliorating Zn deficiency in soil and for obtaining higher crop yield and better crop quality. Zinc sulfate is commonly used Zn fertilizer in India because of its solubility and less cost. However, good quality and adequate quantity of zinc sulfate is not available in the market round the year for farmers' use. Field experiments were therefore conducted during rainy season of 2010 and 2011 at research farm of Indian Institute of Soil Science, Bhopal, India to assess the influence of Zn application through zinc sulfate monohydrate (33% Zn), zinc polyphosphate (21% Zn) and Zn ethylenediaminetetraacetate (EDTA) (12% Zn) on yield and micronutrient concentration and uptake by maize (Zea mays L.). In both the years, grain and vegetative tissue (stover) yield of maize increased significantly with successive application of Zn up to 1 kg ha?1 added through zinc sulfate monohydrate and zinc polyphosphate. Addition of 2.5 kg Zn ha?1 did not increase yield further but resulted in highest stover Zn concentration. Zinc, copper (Cu), manganese (Mn), and iron (Fe) concentration in maize grain varied from 22.2 to 27.6, 1.6 to 2.5, 3.5 to 4.7 and 19.9 to 24.5 mg kg?1 respectively in both the years. Maize stover had 25.9 to 36.2, 7.9 to 9.8, 36.7 to 44.9 and 174 to 212 mg kg?1 Zn, Cu, Mn, and Fe, respectively. Zinc application did not influence Cu, Mn and Fe concentration in both grain and stover of maize. Transfer coefficients (TCs) of micronutrients varied from 0.72 to 0.95, 0.18 to 0.30, 0.08 to 0.13 and 0.10 to 0.15 for Zn, Cu, Mn, and Fe respectively. Total Zn uptake significantly increased with Zn application from 0.5 to 2.5 kg ha?1 supplied through zinc sulfate monohydrate and zinc polyphosphate. Recovery efficiency of Zn declined with increased Zn rates.  相似文献   

5.
Abstract

Foliar fertilization with micronutrients and amino acids (AAs) has been used to increase the grain yield and quality of different crops. The aim of the present study was to evaluate the effects of Zn and AAs foliar application on physiological parameters, nutritional status, yield components and grain yield of wheat-soybean intercropping under a no-till management. We used a randomized block experimental design consisting of eight treatments and four replicates. The treatments were five Zn rates (0, 1, 2, 4 and 8?kg ha?1) and 2?L ha?1 of AAs and three additional treatments: a control (without the Zn or AA application), 2?kg ha?1 Zn and 2?kg ha?1 Zn + 1?L AA. The treatments were applied by spraying during the final elongation stage and at the beginning of pre-earing for the wheat and in growth stage V6 for the soybean for two crop years in a Typic Oxisol (860?g kg?1 clay). Zinc foliar fertilization increased the wheat grain Zn concentrations. The Zn rates and AA foliar fertilization in soil with did not affect the physiological parameters, nutrient status or yield components. The AA application at the different concentrations tested changed the soybean grain yield and the leaf N concentration. The results suggest that Zn and amino acids application increases the grains Zn concentration in the wheat, being an important strategy to agronomic biofortification.  相似文献   

6.
An experiment was conducted to assess the zinc (Zn) availability to wheat in alkaline soils during Rabi 2009–2010. Wheat seedlings in pots having 2 kg alkaline sandy soil per pot were treated with 5, 10 and 15 kg Zn ha?1 as soil and with 0.5 and 1.0% zinc sulfate (ZnSO4) as foliar application. Results showed that Zn increasing levels in soil helped in phosphorus uptake up to boot stage but its conversion to grain portion lacked in Zn treated plants. Potassium (K) uptake also increased up to 6.24% in boot stage with treatment of 10 kg Zn ha?1 + 1.0% ZnSO4 foliar spray. Zinc (Zn) concentration increased in plant tissues with the increasing level of Zn application but this disturbed the phosphorus (P)-Zn interaction and, thus, both of the nutrients were found in lesser quantities in grains compared to the control. Despite of the apparent sufficient Zn level in soil (1.95 mg kg?1), improvement in growth and yield parameters with Zn application indicate that the soil was Zn deplete in terms of plant available Zn. The above findings suggest that the figure Zn sufficiency in alkaline soil (1.0 mg kg?1) should be revised in accordance to the nature and type of soils. Furthermore, foliar application of Zn up to 1.0% progressively increased yield but not significantly; and it was recommended that higher concentrations might be used to confirm foliar application of Zn as a successful strategy for increasing plant zinc levels.  相似文献   

7.
In view of widespread deficiencies, a long-term experiment was started at the International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India in 2007 to identify economically efficient application strategy (full or 50% dose every or every second year) of sulphur (S) (30 kg ha?1), boron (B) (0.5 kg ha?1) and zinc (Zn) (10 kg ha?1). During the fourth year in 2010, balanced fertilization through adding S, B and Zn increased maize grain yield by 13–52% and soybean yield by 16–28% compared to nitrogen (N) and phosphorus (P) fertilization alone. Balanced nutrition increased N and P uptake, utilization and use efficiency for grain yield and harvest index indicating improved grain nutritional quality. The N, P plus 50% of S, B and Zn application every year recorded highest crop yields and N and P efficiencies indices and increased rainwater use efficiency with a benefit:cost ratio of 11.9 for maize and 4.14 for soybean. This study showed the importance of a deficient secondary nutrient S and micronutrients B, Zn in improving N and P use efficiency while enhancing economic food production.  相似文献   

8.
ABSTRACT

The incorporation of previous crop residues in agricultural management benefits soil fertility, crop production, and environment. However, there is no enough information about maximum residue application level without negative effect over next crop yield. To evaluate maize (Zea mays L.) yield under short-time conservation management with incorporation and/or importation of different residue levels, a biannual rotation experiment was conducted in ash volcanic soil in south-central Chile. The experiment consisted of two previous crops, canola (Brassica napus L.) and bean (Phaseolus vulgaris L.), and four levels of residue incorporation (0%, 50%, 100%, and 200% of generated residue; from 0 to 21.4?Mg?ha?1 for canola and from 0 to 19.0?Mg?ha?1 for bean). Previous crop species and residue level affected some nutrients concentrations in grain and plant and some soil chemical properties, without effect in maize yield, which averaged 16.6?Mg?ha?1. Bean residue increased Ca and reduced S in maize plant, increasing soil P, Ca, Mg and K (P?<?0.05). Maize grain Ca content was positively and proportionally affected by canola residue level and negatively and proportionally affected by bean residue level. All canola residue levels increased soil pH and Mg, but the highest level reduced soil S; soil P concentration increased proportionally with bean residue level. The highest bean residue level increased soil S. Different crop and levels of residue did not affect maize yield but did some plant nutrient concentration, and also affected some soil chemical properties.  相似文献   

9.
This experiment was conducted at Zahak Agricultural Research Station in the Sistan region in southeast Iran. A factorial design with three replications was used to determine the effects of zinc (Zn), iron (Fe), and manganese (Mn) applications on wheat yield, Zn, Fe, and Mn uptakes and concentrations in grains. Four levels of Zn [soil applications of 0, 40, and 80 kg ha?1 and foliar application of 0.5% zinc sulfate (ZnSO4) solution], two levels of iron sulfate (FeSO4; 0 and 1%) as foliar application, and two levels of Mn (0 and 0.5%) also as foliar application were used in this study. Results showed that the interactive effects of Zn and Mn were significant on the number of grains in each spike. The highest number of grains resulted from the application of 80 kg ZnSO4 ha?1 and foliar Mn. The interactive effects of Zn and Fe were significant on weight of 1000 grains. The highest weight of 1000 grains resulted from application of 80 kg Zn and foliar Fe. Application of 80 kg ZnSO4 ha?1 alone and 80 kg ZnSO4 ha?1 with foliar application of Mn significantly increased grain yield in 2003. The 2‐year results showed that foliar application of Zn increased Zn concentration and Fe concentration in grains 99% and 8%, respectively. Foliar application of Fe resulted in a 21% increase in Fe concentration and a 13% increase in Zn concentration in grains. The foliar application of Mn resulted in a 7% increased in Mn concentration in grains.  相似文献   

10.
Nitrogen and sulfur play an important role in maize production. The aim of this study was to evaluate the effect of nitrogen (N) and sulfur (S) levels applied in various ratios on maize hybrid Babar yield at Peshawar in 2011 and 2013. Four N levels (120, 160, 200 and 240 kg N ha?1) and four S levels (20, 25, 30 and 35 kg S ha?1) were applied in three splits: a, at sowing; b, V8 stage; c, VT stage in ratios of 10:50:40, 20:50:30 and 30:50:20. Grains ear?1, thousand grain weight, grain yield ha?1 and soil pH were significantly affected by years (Y), N, S and their ratios, while no effect of N, S and their ratios was noted on ears plant?1. Maximum grains ear?1 (390), thousand grain weight (230.1 g) and grain yield (4119 kg ha?1) were recorded in 2013. N increased grains ear?1 (438), thousand grain weight (252 g) and grain yield (5001 kg ha?1) up to 200 kg N ha?1. Each increment of S increased grains ear?1 and other parameters up to 35 kg S ha?1, producing maximum grains ear?1 (430), thousand grain weight (245 g) and grain yield (4752 kg ha?1), while soil pH decreased from 8.06 to 7.95 with the application of 35 kg S ha?1. In the case of N and S ratios, more grains ear?1 (432), heavier thousand grains (246.7 g) and higher grain yield (4806 kg ha?1) were observed at 30:50:20 where 30% of N and S were applied at sowing, 50% at V8 and 20% at VT stage. It is concluded that 200 kg N ha?1 and 35 kg S ha?1 applied in the ratio of 30% at sowing, 50% at V8 and 20% at VT stage is recommended for obtaining a higher yield of maize hybrid Babar.  相似文献   

11.
ABSTRACT

Zinc (Zn) and iron (Fe) deficiency-related health problems in humans may be solved by improving their concentration in edible grains. The study, conducted in 2015–16 and 2016–17, investigated the effects of soil and foliar application of Zn and foliar application of urea on grain Zn and Fe accumulation of chickpea grains. Soil application of ZnSO4 @ 25 kg ha?1 + foliar spray of ZnSO4 @ 0.5% at flowering and pod formation stages resulted in the highest Zn (45.06 & 44.69 mg Zn kg?1 grain in the first and second year of study) and Fe (59.74 & 62.88 mg Fe kg?1 grain) content. Urea application @ 2% at flowering and pod formation stages also resulted in the highest grain Zn (41.12 & 40.26 mg Zn kg?1 grain) and Fe (58.95 & 61.95 mg Fe kg?1 grain) content. Grain yield and protein content were significantly increased over control with these treatments. As compared to the sole application of Zn, the combined use of Zn and urea improved the grain Zn and Fe contents. Zinc and urea can be applied to improve Zn and Fe content in chickpea grains and, therefore, can help in ameliorating malnutrition in burgeoning human population.  相似文献   

12.
Dry bean (Phaseolus vulgaris L.) is an important legume worldwide and nitrogen (N) is most yield limiting nutrients. A field experiment was conducted for two consecutive years to evaluate response of 15 dry bean genotypes to nitrogen and rhizobial inoculation. The N and rhizobia treatments were (i) control (0 kg N ha?1), (ii) seed inoculation with rhizobia strains, (iii) seed inoculation with rhizobia strains + 50 kg N ha?1, and (iv) 120 kg N ha?1. Straw yield, grain yield, and yield components were significantly influenced by N and rhizobial treatments. Grain yield, straw yield, number of pods m?2, and grain harvest index were significantly influenced by year, nitrogen + rhizobium, and genotype treatments. Year × Nitrogen + rhizobium × genotype interactions were also significant for these traits. Hence, these traits varied among genotypes with the variation in year and nitrogen + rhizobium treatments. Inoculation with rhizobium alone did not produce maximum yield and fertilizer N is required in combination with inoculation. Based on grain yield efficiency index, genotypes were classified as efficient, moderately efficient, and inefficient in nitrogen use efficiency (NUE). NUE defined as grain produced per unit N applied decreased with increasing N rate. Overall, NUE was 23.17 kg grain yield kg?1 N applied at 50 kg N ha?1 and 13.33 kg grain per kg N applied at 120 kg N ha?1.  相似文献   

13.
A study was conducted to assess fertilizer effect on pearl millet–wheat yield and plant-soil nutrients with the following treatments: T1, control; T2, 100% nitrogen (N); T3, 100% nitrogen and phosphorus (NP); T4, 100% nitrogen, phosphorus and potassium (NPK); T5, 100% NPK + zinc sulfate (ZnSO4) at 25 kg ha?1; T6, 100% NPK + farmyard manure (FYM) at 10 t ha?1; T7, 100% NPK+ verimcompost (VC) at 2.5 tha?1; T8, 100% NPK + sulfur (S) at 25 kg ha?1; T9, FYM at 10 t ha?1; T10, VC at 2.5 t ha?1; T11, 100% NPK + FYM at 10 t ha?1 + 25 kg S ha?1 + ZnSO4 at 25 kg ha?1; and T12, 150% NPK treatments. Treatments differed significantly in influencing soil-plant nutrients and grain and straw yields of both crops. Grain yield had significant correlation with soil-plant N, P, K, S, and zinc (Zn) nutrients. The study indicated superiority of T11 for attaining maximum pearl millet grain yield (2885 kg ha?1) and straw yield (7185 kg ha?1); amounts of N (48.9 kg ha?1), P (8.8 kg ha?1), K (26.3 kg ha?1), S (20.6 kg ha?1), and Zn (0.09 kg ha?1) taken up; and amounts of soil N (187.7 kg ha?1), P (13.7 kg ha?1), K (242.5 kg ha?1), S (10.1 kg ha?1), and Zn (0.70 kg ha?1). It was superior for wheat with grain yield (5215 kg ha?1) and straw yield (7220 kg ha?1); amounts of N (120.7 kg ha?1), P (13.8 kg ha?1), K (30 kg ha?1), S (14.6 kg ha?1), and Zn (0.18 kg ha?1) taken up; and maintaining soil N (185.7 kg ha?1), P (14.5 kg ha?1), K (250.5 kg ha?1), S (10.6 kg ha?1), and Zn (0.73 kg ha?1). Based on the study, 100% NPK + FYM at 10 tha?1 + Zn at 25 kg ha?1 + S at 25 kg ha?1 could be recommended for attaining maximum returns of pearl millet–wheat under semi-arid Inceptisols.  相似文献   

14.
Abstract

Zinc (Zn) fertilization in rice is important to enhance productivity and increase Zn concentration in rice grain to improve its nutritional status. A field experiment was conducted in wet seasons of 2013 and 2014 to study Zn nutrition of rice in three different crop establishment methods (CEMs) viz. puddled transplanted rice (PTR), system of rice intensification (SRI) and aerobic rice system (ARS), under three different rates of nitrogen (N) and phosphorus (P) viz. 0, 75 and 100% of recommended dose of fertilizer (RDF) (120?kg N ha?1 and 25.8?kg P ha?1) and two different sources of N and P viz. chemical fertilizer and microbial inoculation (MI). Concentration and uptake of Zn at different growth stages and in straw and milled rice was significantly higher in PTR and SRI than ARS. Soil DTPA–extractable Zn content of soil was increased by 1142.4, 1140.3 and 755.8?g ha?1 in PTR, SRI and ARS after two year of Zn fertilization (soil application of 5?kg Zn ha?1). Zinc nutrition increase its Zn concentration in straw and milled rice and improvement in total uptake was 38.1, 40.3 and 40.8?g ha?1 when Zn was applied with RDF, 75% RDF + Anabaena sp. (CR1) + Providencia sp (PR3) consortia (MI1) and 75% RDF + Anabaena-Pseudomonas biofilmed bio-fertilizer (MI2), respectively. Positive correlation between milled rice yield and Zn concentration (R2= 0.95 and 0.97) showed the importance of Zn nutrition in improving rice yield. Zinc concentration at 70?days after sowing (DAS) and 100 DAS was also found positively correlated with dehydrogenase activity and microbial biomass carbon in soil.  相似文献   

15.
ABSTRACT

Phosphorus (P) fertilizer source and plant density are considered some of the most important factors affecting crop growth and yield. A field experiment was conducted to determine the impact of P source [zero-P control, DAP (diammonium phosphate), SSP (single super phosphate), and NP (nitrphos)] and plant density (D1 = 40,000, D2 = 60,000, D3 = 80,000, and D4 = 100,000 plants ha?1) on growth and yield of maize (Zea mays L cv. Azam) on a P-deficient soil (6.6 mg P kg?1) at New Developmental Agricultural Research Farm, North-West Frontier Province (NWFP) Agricultural University, Peshawar, Pakistan, during summer 2006 in wheat-maize cropping system. Physiological maturity was delayed, plant height was increased and leaf area was decreased significantly when maize was planted at highest (D4) than at lowest plant density (D1). Application of SSP resulted in earlier physiological maturity of maize than other P fertilizers. Grain and stover yield, harvest index, shelling percentage, thousand grain weight and grains ear?1 were maximized at D3 (80,000 plants ha?1) and with application of P fertilizer. Highest benefit in growth and grain yield was obtained with application of DAP to maize planted at D3. Application of DAP at D3 gave 15, 29, and 19% higher grain yield than its application at D1, D2, and D4, respectively. In conclusion, the findings suggest that growing maize at 80,000 plants ha?1 applied with DAP can maximize productivity of maize in the wheat-maize cropping system on P-deficient soils.  相似文献   

16.
The use of maize (Zea mays L.) genotypes that are able to utilize nutrients efficiently is an important strategy in the management of plant nutritional status; it is of particular importance with regard to potassium (K) and magnesium (Mg), due to their high requirement and influence on plant growth. The influence of K and Mg fertilizers on certain growth parameters of maize genotypes TM.815 and KL.72.AA, including length, seed in ear, seed weight growth, and nutrient concentration, was determined under field conditions over two successive years. The aim of the experiment was to study the effect of different rates of K and Mg fertilizers on maize genotype plant growth parameters, grain yield, and nutrient accumulation under field conditions.

A split plot design with three replicates was used and each block contained three treatments of 0, 100, and 200 kg ha?1 of K2O and 0, 10, and 20 kg ha?1 of Mg; K2SO4 was used to supply K, and MgSO4 was used for Mg.

Plants that responded to the K fertilizer had an increase in height, yield, and the concentration of K in the leaves and seeds. The addition of K fertilizer increased the concentration of nitrogen (N), iron (Fe), zinc (Zn), manganese (Mn), and K in the plant leaves and increased seed K concentration. Mg fertilizer increased the concentration of N, Fe, copper, and Mn in the leaves; however, it exerted no significant influence on K concentration. The KL.72.AA maize genotype had a higher mean plant height, number of seeds in ear, yield, and N, K, Fe, and Zn concentrations compared to the TM.815 maize genotype. In the experiment, the K fertilizer exerted a statistically significant effect on the leaf and seed K concentration; however, on a statistical basis, the Mg fertilizer did not affect the Mg concentration.  相似文献   

17.
Re-application of zinc (Zn) sulfate for corn (Zea mays L.) production in rotation of wheat-corn has varied effects on yield of crops grown in Zn deficient soils. Therefore, this study was done as split plots in a complete randomized block design (CRBD) where the main plots were control with and without Zn application in wheat (Triticum aestivum L.) production. Sub-plots were of control, without Zn fertilizer, base application of 75 kg per hectare (kg Zn ha?1), 25% and 50% less than base application and as foliar spray in combination with the 4 soil Zn treatments for corn production. Effect of previous Zn application on grain Zn concentration of corn was significant (P < 0.01). Zinc concentrations in treatments of without previous Zn (nil Zn) application and with Zn application were 28.1 and 31.8 mg kg?1, respectively. Soil application of 75 kg ha?1 and foliar application of Zn sulfate gave the highest yield (8853 kg ha?1) showed an increase of 25 percent in compared with nil-Zn. Although re-application of Zn has small effect on yield, but resulted in was the highest grain concentration.  相似文献   

18.
ABSTRACT

Nutrient uptake and grain and straw yield of Egyptian winter wheat (Triticum aestivum L. Merr.) were evaluated for two site-years after the seed inoculation with two biofertilizer products, Phosphorien, containing the phosphorus (P)-solubilizing bacteria Bacillus megatherium, and Nitrobien, containing a combination of nitrogen (N)-fixing bacteria Azotobacter chroococcum and Azospirillum liposerum. Ammonium nitrate and polymer-coated urea fertilizers were applied to plots alone and together with the biofertilizers at rates of either 83 kg N ha?1 or 186 kg N ha?1 for comparison. The highest grain yield (5.76–6.74 Mg ha?1) and straw yield (11.49–13.32 Mg ha?1) occurred at the highest fertilizer rates with N fertilizer. There was a slight additional increase in grain and straw yields when a biofertilizer was applied along with N fertilizer. A slightly higher grain and straw yield was measured with the polymer-coated urea treatment than with the ammonium nitrate treatment. The biofertilizer materials were not as effective as N fertilizers in producing grain (4.02–4.09 Mg ha?1) or straw (7.71–8.11 Mg ha?1) for either year, although the Nitrobien + Phosphorien combination increased these parameters over the N-fertilizer control. The effect of the Nitrobien biofertilizer in increasing grain yields was equivalent to a urea application rate of about 13 kg N ha?1. Biofertilizer inoculations increased iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) concentrations in wheat tissue (at boot stage), but these higher levels did not influence grain or straw yield.  相似文献   

19.
Zinc (Zn) deficiency caused by inadequate dietary intake is a global nutritional problem, so increasing Zn concentrations in crops is a challenging and high-priority research task. A field experiment was conducted to explore the effects of nitrogen (N) fertilizers on Zn absorption and translocation in winter wheat during the 2010–2011 and 2011–2012 crop seasons, in Xinzheng City, Henan Province, China. N was applied at four levels (0, 90, 180, and 270 kg N ha?1) and Zn was applied at two levels (15 and 30 kg zinc sulfate heptahydrate (ZnSO7H2O) ha?1]. The results indicated that reasonable N application increased grain yield, total Zn accumulations, and Zn concentrations of each plant part of winter wheat. Furthermore, appropriate N application increased Zn distribution proportions in grains and decreased Zn distribution proportions in roots, stems, leaves, and spikes, and enhanced Zn removal from roots, stems, leaves, and spikes to grains. Meanwhile, reasonable N combined with higher Zn application had a better effect on Zn absorption and Zn translocation to grain of winter wheat. The results suggested that suitable quantity of N fertilizer combined with higher Zn application is an important measure to obtain both higher grain yield and grain Zn concentration in winter wheat production.  相似文献   

20.
Most plant nutrients are optimally available when soil pH is close to neutral. In this experiment the effects of Thiobacillus and Mycorrhiza on nutrient uptake and grain yield of maize were studied on an alkaline soil as a factorial experiment with randomized complete blocks design. Treatments consisted of Mycorrhiza fungi (M): inoculated (m1) and noninoculated (m0), Thiobacillus (T): inoculated (t1) and noninoculated (t0), and sulfur (S) (S0, S1: 250, and S2: 500 kg ha?1). Inoculation of Mycorrhiza, Thiobacillus, and S application decreased soil pH and increased grain yield and seed oil content. The lowest soil pH and the greatest S content were obtained from the combination of Thiobacillus and 500 kg ha?1 S. Inoculation of Thiobacillus and S application significantly decreased root colonization. The greatest iron (Fe) content was in the combination of Mycorrhiza inoculation and 500 kg ha?1 S. Grain P content significantly increased with Mycorrhiza inoculation and S application. The greatest grain yield obtained from combination of Thiobacillus with 500 kg ha?1 S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号