首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 167 毫秒
1.
基于生长模型的玉米三维可视化研究   总被引:4,自引:2,他引:4       下载免费PDF全文
为了实现对玉米形态结构的定量化和可视化描述,提出了基于生长模型的玉米形态模拟及三维可视化的技术框架。通过资料收集和田间观测研究,构建了可描述不同玉米品种叶片、叶鞘和节间等器官的主要形态结构参数随叶序变化的形态知识模型。在玉米生长模型框架内,整合玉米形态知识模型和基于形态特征参数的器官几何模型,使玉米生长模型可输出玉米拓扑结构和各器官的形态特征参数,实现了对玉米形态建成过程的定量化模拟,并进一步驱动几何模型进行玉米植株和冠层的三维重建。根据上述“生长模型-形态模型-数学模型-显示模型”的思路,模拟了玉米“农大108”的三维形态建成过程及冠层的三维形态,具有较强的真实感,为玉米形态结构研究提供了新的思路和手段。  相似文献   

2.
基于OpenGL的小麦形态可视化技术   总被引:21,自引:6,他引:15  
形态可视化技术是虚拟植物研究的关键技术之一。本研究以小麦作物为对象,在提出小麦形态可视化技术框架的基础上,首先研究了小麦不同器官的三维几何建模技术,构建了基于器官形态特征参数的几何模型,包括叶、茎秆和麦穗几何模型。用NURBS曲面来模拟叶片和叶鞘;用圆柱体模拟茎秆的节间;并采用组合单器官的方式来构建麦穗模型:用圆柱体模拟穗轴,用椭球体和圆柱体分别模拟小穗的谷粒及小穗枝梗。然后,基于OpenGL图形平台,绘制了小麦器官的三维形态,并提出了颜色渲染、纹理映射、光照处理等真实感图形显示技术;最后,通过耦合小麦植株的拓扑结构模型以及小麦个体之间的相互关系,实现了小麦从器官-个体-群体三个层次的形态可视化,从而为构建可视化小麦生长系统奠定了技术基础。  相似文献   

3.
玉米三维重构及可视化系统的设计与实现   总被引:19,自引:3,他引:19  
重构出植物的三维形态是数字植物研究的基础。介绍了玉米三维重构及可视化系统的整体结构、数学基础及实现过程。系统由器官几何造型模块、生长模型模块、可视化控制模块、数据库和人机交互界面组成。其中,玉米叶片、茎节、雄穗、雌穗和根系的三维形态是由基于器官形态结构主要特征而构建的参数化的几何模型来描述的。模型参数具有较明确的生物学意义,均可由品种特征或生长模型生成;系统运行时,根据玉米品种特征和玉米生长模型生成植株的拓扑结构参数和器官几何模型参数,通过人机交互操作来确定行株距等农艺措施参数,进而结合VC++和openGL在计算机上重构出玉米器官、个体和群体的三维形态,具有较好地真实感。系统界面友好、使用方便,易于交互,为农学研究者提供了新的手段。  相似文献   

4.
小麦麦穗几何模型构建与可视化   总被引:5,自引:1,他引:4  
作物器官几何建模是虚拟作物研究的关键技术之一。通过对小麦穗形态结构的观测分析,提出基于形态特征参数的麦穗几何模型及可视化实现方法。在已有麦穗形态模拟模型的基础上,结合麦穗拓扑结构,构建麦穗形态结构几何模型,包括穗轴、小穗(外麸、麦芒、花药等)、麦穗穗形等子模型。其中,穗轴节片使用底面为椭圆的圆柱体进行模拟,节片交错叠加构成穗轴。基于外麸曲面半径变化曲线,以三角面片构造近似半椭球体来模拟外麸;基于麦芒曲线,以三角面片重构横截面近似为等边三角形的麦芒;用非统一有理B样条曲面模拟开花期小花顶端的花药;采用分层模型控制麦穗穗形。然后根据麦穗拓扑结构组合以上各器官,即可构建出麦穗几何模型。进一步结合颜色渲染、纹理映射、光照渲染等真实感显示技术,基于.Net平台,借助CSOpenGL,实现麦穗生长动态的可视化。结果表明,重构出的麦穗具有一定的真实感,能够用于不同品种、不同处理条件下麦穗生长动态的可视化表达。研究结果将有助于实现小麦植株生长动态的数字化、可视化。  相似文献   

5.
根据番茄的形态结构特点及其演变规则,应用有限态自动机的数学理论,研究建立了番茄动态发展的随机结构模型。该模型建立在对番茄结构的宏观抽象和生理年龄(PHYAGE)与生长年龄(GA)这两个最重要的基本概念之上,利用“事件驱动”的状态转移机制模拟了番茄生长过程、分枝过程和死亡过程,其中利用了二项随机分布模拟番茄的动态生长,离散的Markov链用于模拟番茄的分枝模式。番茄的有限态自动机模型完成了对主茎上节间长度、果实个数以及叶子结构的随机模拟。并利用试验统计分析获得的参数结果,模拟出番茄在不同生长阶段的3D结构。该动态的番茄结构模型,为与生理生态模型进行接口建立互影响、互反馈的结构-功能模型打下了基础。  相似文献   

6.
温室番茄果实生长模型的建立与实现   总被引:2,自引:0,他引:2  
为深入研究果实坐果机理,在现有模型基础上,以温室番茄为研究对象开展温室试验,结合温室环境的可控性和计算机软件设计,观察不同密度植株的动态坐果率,通过模型分析动态坐果率与植株内部动态同化物供给与需求比率(Q/D)之间的关系,建立反映果实从坐果到发育与全局生物量动态反馈的生长模型,并用独立数据进行了生长模拟,生物量和几何尺寸的模拟值与试验数据接近,验证了模型的有效性。模型的建立完善了GreenLab模型在果实方面的处理功能,实现了植株坐果的定量化研究。  相似文献   

7.
葡萄树为多年蔓生植物,其形态结构复杂且受人工修剪及架势的影响。获取葡萄树地上部植株及器官的形态结构及纹理数据,有助于建立3D可视化模型以表征该植株的品种遗传特征、受环境、架式和人工修剪等因素的影响。该文针对葡萄树形态结构数据获取工作量大、效率低、依靠单一手段所获取数据缺乏完整性等特点,提出一种高效的葡萄树地上部形态结构数据获取方法,首先对葡萄树进行拓扑结构解析和数字化表达实现复杂结构的显示表达;然后针对目标植株进行葡萄树三维形态数据采集,包括植株拓扑结构三维数字化数据采集、品种一致性与差异性分析的DUS(植物新品种特异性(distinctness)、一致性(uniformity)和稳定性(stability)的栽培鉴定试验或室内分析测试)数据采集,器官的形态参数测量,三维扫描与纹理数据采集,目标植株的栽培环境及人工管理措施等信息的采集。结果表明,基于所获取形态结构数据结合植物参数化建模方法重建的葡萄树器官与植株几何模型具有较高的真实感。在葡萄树形态结构数据获取方法的基础上,对植物地上部形态结构数据获取标准化流程进行探讨,以期为其他植物主要器官与植株的形态结构数据获取提供方法参考。  相似文献   

8.
整株干物质量分配指数模型模拟冬小麦各器官形态参数   总被引:1,自引:1,他引:0  
作物生长机理模型可以定量描述作物生长发育及其与环境因子的动态关系,具有通用性、动态性和预测性的特点,但基于生长机理模型模拟结果的作物虚拟技术与方法尚缺乏研究。针对基于生理过程的小麦功能模型与三维结构模型之间不能很好衔接的问题,该文开展越冬期后不同小麦品种的主茎干物质量在不同器官之间的分配研究,以有效积温和干物质量为连接纽带,构建小麦叶片、叶鞘、茎秆、穗各器官的几何特征模拟模型,并用独立数据进行了验证。结果显示:穗干物质量分配指数模拟效果最好,RRMSE值和EF值分别为6.58%和0.98;叶片、叶鞘和茎秆的分配指数模拟效果较好,RRMSE值分别为13.86%、10.83%和14.87%,EF值分别为0.98、0.97和0.91。麦穗形态参数模型和叶鞘长度模型具有非常好的模拟性能;叶片长度和最大叶宽模型、茎秆长度和直径模型具有较好的模拟性能;叶鞘形态参数模型对于叶鞘展开宽度的模拟效果一般,需要在后续研究中对拟合方程和模型参数进一步修正。该系列模型以干物质量为参数输入,能够生成小麦主茎三维形态模拟所需的各器官逐日几何特征参数,参数反映了品种特性、生长环境及气象因素对作物生长的影响,是一种实现小麦功能模型与结构模型实际结合的有效方法。  相似文献   

9.
基于t分布函数的玉米群体三维模型构建方法   总被引:3,自引:3,他引:0  
为利用少量实测数据快速构建能够反映因品种、环境条件、栽培管理措施等因素产生形态结构差异的玉米群体三维模型,提出基于t分布函数的玉米群体三维模型构建方法。通过实测数据构建主要株型参数的t分布函数,在其约束下生成群体内各植株主要株型参数,通过构造株型参数相似性度量函数调用玉米器官三维模板资源库中的器官几何模板,结合人工交互或图像提取的各植株生长位置与植株方位平面角2组群体结构信息生成玉米群体几何模型。利用三维数字化仪获取的玉米群体田间原位三维数字化数据所构建玉米群体计算得到的LAI与该方法构建玉米群体计算得到的LAI进行对比验证,结果表明:该方法所生成玉米群体叶面积指数与原位三维数字化数据所构建玉米群体计算得到的LAI相比,误差在±2%以内,可以满足面向可视化计算的玉米结构功能分析研究需求。方法可为玉米株型优化设计、耐密性鉴定、品种适应性评价等虚拟试验研究提供技术手段。  相似文献   

10.
建立了番茄动态生长的功能模型,从个体和器官的角度,研究生物量在植物体内的生产和分配规律、器官的动态生长规则。模型根据蒸腾作用计算物质的生产;根据节间、叶柄、叶片和果实等器官的汇强和扩展规律对物质进行分配;根据与物质量的动态关系计算各器官的几何尺寸;利用试验数据对模型参数进行估计。通过对参数进行比较和分析得出它们对各器官生长的影响程度和器官本身的扩展规律。并对模型输出与测量数据的拟合程度进行了残差分析,验证了模型的合理性和有效性。  相似文献   

11.
基于虚拟生长模型的温室番茄栽培管理专家系统   总被引:3,自引:1,他引:2  
为改进传统农业专家系统的决策性能,动态表达其决策结果,提出并实现了基于虚拟生长模型的温室番茄栽培管理专家系统.介绍了系统的总体框架与功能模块,分析了系统实现的若干关键技术,如开发工具、知识表示方法、知识库的构建、虚拟番茄生长模型等.系统综合运用推理、预测、可视化与解释等机制帮助用户设计栽培管理方案,可视化模拟和预测温室番茄的生长发育进程.基于虚拟生长模型的温室番茄栽培管理专家系统初步实现了积温模型、形态发生模型与专家系统知识模型的综合集成,更适合温室番茄栽培管理的实际需要.试验表明该系统具有较好的应用前景.  相似文献   

12.
为构建适用于日光温室与塑料大棚的设施番茄生长模型,该研究利用保温塑料大棚春茬试验数据,建立以辐热积为尺度的番茄外观形态及物质累积分配模型,并利用保温塑料大棚秋茬和日光温室越冬茬的试验数据验证模型的准确性。结果表明:1)番茄株高模拟值的决定系数R2和均方根误差(Root Mean Square Error,RMSE)分别为0.907 4和13.66 cm;2)番茄整株及各器官的干物质质量模拟值的决定系数R2范围为0.854 1~0.975 1,RMSE为2.87~6.98 g/株;3)番茄整株、地上部以及果实鲜质量累积的模拟值的决定系数R2范围为0.887 2~0.905 0,RMSE为109.83~171.16 g/株。综上可知,该研究建立的模型可较准确地预测番茄株高与干鲜质量物质累积值,模型的实用性较强,可为设施番茄生产提供理论依据和决策支持。  相似文献   

13.
基于三维点云的番茄植株茎叶分割与表型特征提取   总被引:1,自引:1,他引:0       下载免费PDF全文
针对当前温室番茄表型参数难以自动获取的问题,研究提出通过对三维点云进行配准、骨架提取以及分割从而自动获取苗期番茄植株株高、茎粗、叶倾角和叶面积参数的方法。首先通过机器人搭载机械臂在温室中自动获取多视角番茄点云,并通过配准得到完整植株点云;对番茄点云利用拉普拉斯收缩的骨架提取算法获取植株骨架,对骨架进行修正后分解为茎秆和叶片子骨架,实现茎秆叶柄分割;再通过基于区域生长的MeanShift聚类方法对叶片和叶柄进行分割;最后通过番茄点云获取株高、茎粗参数,通过骨架测量叶倾角,对叶片点云进行曲面拟合提取叶面积参数。试验结果表明,茎叶分割与叶片分割的精确率、召回率、F1分数和平均总体准确率分别为0.84、0.91、0.87、0.92和0.92、091、0.91、0.93。株高、茎粗、叶倾角和叶面积参数的提取值与人工测量值的决定系数分别为0.97、0.53、0.90和0.87,均方根误差分别为1.40 cm、1.52 mm、5.14°和37.56 cm2。结果表明该研究方法与人工测量值具有较强的相关性,可以为温室番茄的高通量自动化表型测量提供技术支持。  相似文献   

14.
日光温室芹菜外观形态及干物质积累分配模拟模型   总被引:3,自引:3,他引:0  
为实现日光温室芹菜外观形态与干物质积累分配预测。该研究依据芹菜(Apium graveolens L.)生长发育的光温反应特性,以‘尤文图斯’为试验品种,利用2年2茬分期播种试验观测数据,依据温室芹菜外观形态生长与关键气象因子(温度和辐射)的关系,以单株辐热积(Photo-ThermalIndex,PTI)为自变量构建了外观形态模拟模型;并建立了基于PTI的干物质分配模拟模型;结合叶面积指数模拟模块、光合作用和呼吸作用模拟模块,构建了干物质积累模拟模型;结合各器官各个发育阶段内的相对含水量,可计算鲜物质积累模拟模型。基于各子模块共同组成了日光温室芹菜外观形态及干物质积累分配模拟模型,确定了模型品种参数,利用独立试验数据对模型进行验证。结果表明,1)在外观形态模拟模型中,对根长、主茎茎粗、主茎茎长、株高、整枝和自然管理方式下叶面积指数(Leaf Area Index,LAI)形态指标均方根误差(Root Mean Square Error,RMSE)分别为2.46 cm、1.49 mm、6.72 cm、11.08 cm、0.74 m~2/m~2和0.77 m~2/m~2,归一化均方根误差(Normalized Root Mean Square Error,NRMSE)分别在16.63%~20.63%之间。2)在干物质分配模拟模型中,各器官的干物质分配指数NRMSE在8.24%~27.19%之间,RMSE在0.60%~7.01%之间。3)在干物质积累模拟模型中,不同器官(根、茎、叶、总茎、总叶、主茎、叶柄、整枝和自然管理方式下地上部)的干物质质量RMSE在3.85~85.80 g/m~2之间,NRMSE分别为14.21%~23.13%之间,说明干物质积累模拟模型对不同器官的干物质模拟均有较高的模拟效果。表明模型能够较准确模拟芹菜外观形态与干物质积累分配,系统化定量地表现出日光温室芹菜的生长动态过程。  相似文献   

15.
基于形态模型的小麦器官和单株虚拟生长系统研究   总被引:13,自引:1,他引:13       下载免费PDF全文
为更加直观的展示小麦的整个生长过程,同时为教学科研提供支持,将系统分析方法和数学建模技术应用于小麦植株的形态建成,通过对小麦形态数据的定量分析,并结合前人的研究成果,构建了小麦形态建成模拟模型,包括叶片形态建成子模型(包括叶长、叶形、叶面积、叶片空中伸展曲线、茎叶夹角、叶色和叶片衰亡)、茎形态建成子模型(包括茎长和茎粗)、叶鞘形态建成子模型(包括叶鞘长和叶鞘粗)和麦穗形态建成子模型(包括穗长和麦芒)等。并以此为基础,结合已有小麦生长模拟模型WheatGrow,在Microsoft Visual C++平台上利用OpenGL构建了基于形态模型的小麦虚拟生长系统(WVGS),初步实现了小麦生长过程的可视化表达。建立的模型库主要包括形态模型、生长模型、可视化模型以及场景控制模型四部分。所建数据库主要存储气象数据、土壤数据和品种参数。系统运行结果表明该系统能较好地模拟小麦形态特征,能较逼真的实现小麦生长过程的虚拟显示。  相似文献   

16.
冬季采暖保育猪舍送排风管道组合换气系统设计与评价   总被引:3,自引:2,他引:1  
为实现保育猪舍内局部环境通风调控,该研究设计一种垂直送排风管道组合换气系统。采用CFD(Computational Fluid Dynamics)技术对垂直管道通风模式下舍内的空气流场进行模拟,并以相对湿度和CO_2浓度作为输入变量建立通风模糊控制系统。模拟结果显示保育猪所在水泥地板区域风速保持在0.1~0.2 m/s。参照模拟结果,以猪栏为通风单元对保育猪舍通风系统进行改造,舍内气流不均匀性系数在0.1以下,表明采用该换气系统的保育猪舍通风均匀性较好;猪舍温度在21~25℃,相对湿度小于70%,NH_3浓度小于5mg/m~3,CO_2浓度小于1200mg/m~3,舍内各项环境参数适宜保育猪健康生长。系统运行功耗为270~1 150 W。现场测试与分析结果表明,该垂直送排风管道组合换气系统,可以精确控制猪舍环境,兼顾冬季猪舍通风与保温问题。  相似文献   

17.
黄瓜幼苗生长信息的无损监测系统的应用与验证   总被引:8,自引:0,他引:8  
初步探讨了利用计算机视觉技术,在试验温室条件下,对单株黄瓜幼苗的生长实行无损监测。分别对叶面积和干鲜重的破坏性测量与计算机视觉无损测量结果相比较,通过相关性分析,计算机视觉测量的叶冠投影面积与激光叶面积仪测量的叶面积决定系数为0.976,与茎叶干、鲜重的决定系数分别为0.874和0.914。试验证实计算机视觉无损监测系统可以对植物的生长参数进行比较可靠的预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号