首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Rice paddy soils are characterized by anoxic conditions, anaerobic carbon turnover, and significant emissions of the greenhouse gas methane. A main source for soil organic matter in paddy fields is the rice crop residue that is returned to fields if not burned. We investigated as an alternative treatment the amendment of rice paddies with rice residues that have been charred to black carbon. This treatment might avoid various negative side effects of traditional rice residue treatments. Although charred biomass is seen as almost recalcitrant, its impact on trace gas (CO2, CH4) production and emissions in paddy fields has not been studied. We quantified the degradation of black carbon produced from rice husks in four wetland soils in laboratory incubations. In two of the studied soils the addition of carbonised rice husks resulted in a transient increase in carbon mineralisation rates in comparison to control soils without organic matter addition. After almost three years, between 4.4% and 8.5% of the black carbon added was mineralised to CO2 under aerobic and anaerobic conditions, respectively. The addition of untreated rice husks resulted in a strong increase in carbon mineralisation rates and in the same time period 77%-100% of the added rice husks were mineralised aerobically and 31%-54% anaerobically. The 13C-signatures of respired CO2 gave a direct indication of black carbon mineralisation to CO2. In field trials we quantified the impact of rice husk black carbon or untreated rice husks on soil respiration and methane emissions. The application of black carbon had no significant effect on soil respiration but significantly enhanced methane emissions in the first rice crop season. The additional methane released accounted for only 0.14% of black carbon added. If the same amount of organic carbon was added as untreated rice husks, 34% of the applied carbon was released as CO2 and methane in the first season. Furthermore, the addition of fresh harvest residues to paddy fields resulted in a disproportionally high increase in methane emissions. Estimating the carbon budget of the different rice crop residue treatments indicated that charring of rice residues and adding the obtained black carbon to paddy fields instead of incorporating untreated harvest residues may reduce field methane emissions by as much as 80%. Hence, the production of black carbon from rice harvest residues could be a powerful strategy for mitigating greenhouse gas emissions from rice fields.  相似文献   

2.
ABSTRACT

The influence of the long-term combination of rice straw removal and rice straw compost application on methane (CH4) and nitrous oxide (N2O) emissions and soil carbon accumulation in rice paddy fields was clarified. In each of the initial and continuous application fields (3 and 39?51 years, respectively), three plots with different applications of organic matter were established, namely, rice straw application (RS), rice straw compost application (SC) and no application (NA) plots, and soil carbon storage (0?15 cm), rice grain yield and CH4 and N2O fluxes were measured for three years. The soil carbon sequestration rate by the organic matter application was higher in the SC plot than in the RS plot for both the initial and continuous application fields, and it was lower in the continuous application field than in the initial application field. The rice grain yield in the SC plot was significantly higher than those in the other plots in both the initial and continuous application fields. Cumulative CH4 emissions followed the order of the NA plot < the SC plot < the RS plot for both the initial and continuous application fields. The effect of the organic matter application on the N2O emissions was not clear. In both the initial and continuous application fields, the increase in CH4 emission by the rice straw application exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was a positive, indicating a net increase in the GHG emissions. However, the change in the GHG balance by the rice straw compost application showed negative (mitigating GHG emissions) for the initial application field, whereas it showed positive for the continuous application field. Although the mitigation effect on the GHG emissions by the combination of the rice straw removal and rice straw compost application was reduced by 21% after 39 years long-term application, it is suggested that the combination treatment is a sustainable management that can mitigate GHG emissions and improve crop productivity.  相似文献   

3.
水稻植株特性对稻田甲烷排放的影响及其机制的研究进展   总被引:6,自引:0,他引:6  
水稻是我国最主要的口粮作物,稻田是重要温室气体甲烷的主要排放源之一。水稻植株特性既是水稻产量形成的关键因子,也是稻田甲烷排放的主要影响因子。但是,至今关于水稻植株对稻田甲烷排放的调控效应及其机制仍存在许多不一致的认识。为此,本文从形态特征、生理生态特征、植株-环境互作等方面,对现有的相关研究进行了综合论述。水稻地上部形态特征如分蘖数、株高、叶面积等对稻田甲烷排放的影响的研究结果不尽相同,起关键作用的是地下系统。优化光合产物分配在持续淹水的情况下可以减少稻田甲烷排放。提高水稻生物量在低碳土壤增加稻田甲烷排放,但在高碳土壤下降低甲烷排放。本文还明确了相关研究现状和存在的问题。在此基础上,作者认为未来应加强水稻根系形态及其生理特征,以及水稻植株-土壤环境(尤其是水分管理和养分管理)互作对稻田甲烷产生、氧化和排放影响的研究,在方法上应加强微区试验和大田试验的结合,并开展植株和稻田的碳氮互作效应及其机制研究,为高产低碳排放的水稻品种选育和低碳稻作模式创新提供理论参考和技术指导。  相似文献   

4.
施肥对稻田甲烷排放的影响   总被引:10,自引:2,他引:10  
马静  徐华  蔡祖聪 《土壤》2010,42(2):153-163
本文综述了N肥和有机肥的种类、施用量、施用方式和施用时间对稻田CH4排放的影响,提出了减少稻田CH4排放的施肥策略,并指出了今后的研究重点:加强对稻田CH4排放机理的研究;针对以往研究中的不足,全面深入研究施肥对稻田CH4排放的影响;进一步研究稻田温室气体排放的交互作用。  相似文献   

5.
耕种制度对西南地区冬水田甲烷排放的影响   总被引:23,自引:0,他引:23  
1995年5月15日~1997年5月15日两年在田间条件下研究我国西南地区冬水田甲烷排放量及耕种制度的影响。结果表明冬水田水稻生长期甲烷排放通量在0.47~171.12mg/m2  相似文献   

6.
Slag-type silicate fertilizer, which contains high amount of active iron oxide, a potential source of electron acceptor, was applied at the rate of 0, 2, 6, 10, and 20 Mg ha−1 to reduce methane (CH4) emission from rice planted in potted soils. Methane emission rates measured by closed chamber method decreased significantly with increasing levels of silicate fertilizer application during rice cultivation. Soil redox potential (Eh) decreased rapidly after flooding, but floodwater pH and soil pH increased significantly with increasing levels of silicate fertilizer application. Iron concentrations in potted soils and in percolated water significantly increased with the increasing levels of silicate fertilizer application, which acted as oxidizing agents and electron acceptors, and thereby suppressed CH4 emissions. Silicate fertilization significantly decreased CH4 production activity, while it increased carbon dioxide (CO2) production activity. Rice plant growth, yield parameters, and grain yield were positively influenced by silicate application levels. The maximum increase in grain yield (17% yield increase over the control) was found with 10 Mg ha−1 silicate application along with 28% reduction in total CH4 flux during rice cultivation. It is, therefore, concluded that slag-type silicate fertilizer could be a suitable soil amendment for reducing CH4 emissions as well as sustaining rice productivity and restoring the soil nutrient balance in rice paddy soil.  相似文献   

7.
To evaluate the impacts of organic cropping system on global warming potentials (GWPs), field measurements of CH4 and N2O were taken in conventional and organic rice (Oryza sativa L.) cropping systems in southeast China. Rice paddies were under various water regimes, including continuous flooding (F), flooding–midseason drainage–reflooding (F-D-F), and flooding–midseason drainage–reflooding and moisture but without waterlogging (F-D-F-M). Nitrogen was applied at the rate of 100 kg N ha?1, as urea-N or pelletized, dehydrated manure product in conventional or organic rice paddies, respectively. Seasonal fluxes of CH4 averaged 4.44, 2.14, and 1.75 mg m?2 h?1 for the organic paddy plots under the water regimes of F, F-D-F and F-D-F-M, respectively. Relative to conventional rice paddies, organic cropping systems increased seasonal CH4 emissions by 20%, 23%, and 35% for the plots under the water regimes of F, F-D-F, and F-D-F-M, respectively. Under the water regimes of F-D-F and F-D-F-M, seasonal N2O-N emissions averaged 10.85 and 13.66 μg m?2 h?1 in organic rice paddies, respectively, which were significantly lower than those in conventional rice paddies. The net global warming potentials (GWPs) of CH4 and N2O emissions from organic rice paddies relative to conventional rice paddies were significantly higher or comparable under various water regimes. The greenhouse gas intensities were greater, while carbon efficiency ratios were lower in organic relative to conventional rice paddies. The results of this study suggest that organic cropping system might not be an effective option for mitigating the combined climatic impacts from CH4 and N2O in paddy rice production.  相似文献   

8.
In a greenhouse study, methane emissions were measured from two diverse Indian rice-growing soils planted to five rice cultivars under similar water regimes, fertilizer applications and environmental conditions. Significant variations were observed in methane emitted from soils growing different cultivars. Total methane emission varied between 8.04 and 20.92gm–2 from IARI soil (Inceptisol) and between 1.47 and 10.91gm–2 from Raipur soil (Vertisol) planted to rice. In all the cultivars, emissions from IARI soil were higher than from Raipur soil. The first methane flux peak was noticed during the reproductive phase and the second peak coincided with the grain-ripening stage of the rice cultivars. Received: July 7, 1996  相似文献   

9.
Livestock manure heaps and wetland rice fields are major sources of CH4 emissions. A field experiment with an associated composting study were undertaken to investigate CH4 emissions during manure composting and subsequent land application on paddy. Over a 24‐day period in the composting experiment, CH4 emissions from stored manure was 17 times higher than that from composting manure, indicating that composting as an aerobic process was effective in mitigating CH4 emissions compared with manure storage, which is normally under an anaerobic environment. Stored and composted manures were subsequently applied as organic fertilizers in the field experiment. Compared with the non‐fertilized control treatment, stored and composted manures increased grain yields by 30% and 21%, respectively. During the full rice‐growing season, the cumulative CH4 emission was 15.8 g CH4/m2 with the application of composted manure, only one‐third of that from stored manure. CH4 emission per unit of grain yield was significantly decreased by composted manure, with a reduction of 56% from the control and 73% from stored manure. The results indicate that composted livestock manure in rice cultivation is a triple‐win option through sustaining rice yield, mitigating CH4 emissions and re‐utilizing livestock waste.  相似文献   

10.
Cultivation of rice in unsaturated soils covered with mulch is receiving more attention in China because of increasingly serious water shortage; however, greenhouse gas emission from this cultivation system is still poorly understood. A field experiment was conducted in 2001 to compare nitrous oxide (N2O) and methane (CH4) emission from rice cultivated in unsaturated soil covered with plastic or straw mulch and the traditional waterlogged production system. Trace gas fluxes from the soil were measured weekly throughout the entire growth period using a closed chamber method. Nitrous oxide emissions from unsaturated rice fields were large and varied considerably during the rice season. They were significantly affected by N fertilizer application rate. In contrast, N2O emission from the waterlogged system was very low with a maximum of 0.28 mg N2O m–2 h–1. However, CH4 emission from the waterlogged system was significantly higher than from the unsaturated system, with a maximum emission rate of 5.01 mg CH4 m–2 h–1. Our results suggested that unsaturated rice cultivation with straw mulch reduce greenhouse gas emissions.  相似文献   

11.
稻草还田对晚稻稻田甲烷排放的影响   总被引:20,自引:0,他引:20  
晚稻稻田的甲烷排放呈现前高后低特点 ,稻田甲烷的日排放速率与日均气温具有良好的正相关。稻草翻施使稻田甲烷排放量上升 5 1 .1 1 % ,而采用稻草表施的方法甲烷排放量仅增加 33.98%。水稻分蘖期是稻田甲烷排放的重要时期 ,其甲烷排放量占水稻全生育期排放总量的 65 .6% ,施用稻草进一步加大水稻分蘖期的甲烷排放比例。与稻草翻施相比 ,稻草表施的甲烷减排突出表现在水稻分蘖期及一天中 1 2∶0 0~ 1 6∶0 0的甲烷排放高峰时段。土壤 5cm处温度的昼夜周期性变化与稻田甲烷排放的昼夜周期性变化具有高度相关性。稻草表施可明显降低稻田耕层土壤水溶解甲烷含量  相似文献   

12.
Meta分析湖南省双季稻田甲烷排放影响因素   总被引:1,自引:0,他引:1  
稻田是农业生产中甲烷的主要排放源。探索不同农田管理措施对甲烷排放的影响,对湖南省双季稻可持续生产意义重大。该研究利用Meta分析方法,基于该区域53篇公开发表研究文章中收集的840对数据研究发现:湖南省双季稻田中,双季稻甲烷排放占全年甲烷排放的97.9%,且晚稻甲烷排放显著大于早稻;冬闲期种植作物显著增加了双季稻田43.88%(P 0.05)的甲烷排放;免耕和复合种养(稻田养鸭、稻田养鱼等)则分别显著降低了双季稻26.84%、37.02%(P 0.05)的甲烷排放;另一方面,从单位产量甲烷排放来看,施氮肥显著降低了双季稻40.01%(P 0.05)排放量,这主要是由于水稻产量显著提高了73.87%(P0.05);施有机肥和秸秆还田显著增加稻田甲烷排放量,显著增加了68.11%、71.80%(P 0.05)的双季稻单位产量甲烷排放量。研究结果表明,在湖南双季稻生产中合理采用免耕、复合种养措施并合理化肥料投入等措施有利于平衡该区域水稻增产与甲烷减排。  相似文献   

13.
Methane (CH4) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air, floodwater, and soil. Field measurements, however, are often scheduled at a fixed time of a given measuring day, thereby neglecting sub‐daily variations of CH4 emissions. Here we evaluated diurnal patterns of CH4 emissions from traditional paddy rice production as observed during field measurements in the Philippines. Field emissions were measured during three consecutive cropping seasons using an automated chamber and gas sampling system with fluxes being obtained every 4 h. Methane fluxes were monitored with a total of nine chambers during the dry seasons in 2012 and 2013 and 27 chambers during the wet season in 2012. Significant and consistent diurnal patterns of CH4 emissions were mainly observed from the start of field flooding until the middle of cropping periods, i.e., periods with low leaf area of the rice crop. Our data show that disregarding the diurnal variability of fluxes results in an average overestimation of seasonal CH4 emissions of 22% (16–31%) if measurements were conducted only around noon. Scheduling manual sampling either at early morning (7:00–9:00) or evening (17:00–19:00) results in estimations of seasonal emissions within 94–101% of the “true” value as calculated from multiple daily flux measurements. Alternatively, uncertainties of seasonal emissions can be reduced to an average of ≤3% by applying sinus function or Gauss function‐based correction factors. Application of correction factors allows the performance of flux measurements at any time of day. We also investigated N2O emissions from rice paddies with respect to diurnal variations, but did not find, as in the case of CH4, any significant and persistent diurnal pattern.  相似文献   

14.
ABSTRACT

The anaerobic digestion of livestock manure is an environmentally compatible technology used for the production of renewable energy. Anaerobically digested residual slurry has been used worldwide as a liquid fertilizer in both upland and paddy fields. However, a controversial question remains as to whether the application of slurry to rice paddy fields increases methane emissions; although methane is one of the most prevalent greenhouse gases, little is known about the effects of the long-term application of residual slurry on methane emission. In this study, we repeatedly applied slurry to a paddy field for six years at different application rates (10, 15, and 20 g N m?2 based on ammonium-nitrogen content). At the fifth and sixth years of application, we evaluated the effect in terms of methane flux and soil total carbon content. The effect of the long-term application of the slurry (10 g N m?2) on grain yield was equivalent to that of chemical fertilizer (10 g N m?2). The application of the residual slurry was likely to increase the cumulative methane emissions during rice growing season in both 2006 and 2007. On the other hand, we observed that soil total carbon did not accumulate significantly in the soil. Thus, we cannot rule out the potential risk of additional methane emissions caused by the application of the residuary slurry to paddy fields.  相似文献   

15.
Fluxes of methane from rice fields and potential for mitigation   总被引:4,自引:0,他引:4  
Abstract. Methane (CH4) is an important greenhouse gas. Flooded rice fields (paddies) are a significant source of atmospheric CH4; estimates of the annual emission from paddies range from less than 20 to 100 million Tg, with best estimates of 50 × 20 Tg. The emission is the net result of opposing bacterial processes: production in anaerobic microenvironments, and consumption and oxidation in aerobic microenvironments, both of which occur sequentially and concurrently in flooded rice soils. With current technologies, CH4 emission from rice fields will increase as production increases. Over the next 25 years rice production will have to increase by 65% from the present 460 Mt/y to 760 Mt/y in 2020. The current understanding of the processes controlling CH4 fluxes, rice growth and rice production is sufficient to develop mitigation technologies. Promising candidates are changes in water management, rice cultivars, fertilization, and cultural practices. A significant reduction of CH4 emission from rice fields, at the same time that rice production and productivity increase at the farm level, is feasible, although the regions where particular practices can be applied, and the trade-offs that are possible, have still to be identified.  相似文献   

16.
The effect of fertilizers on methane emission rates was investigated using an automated closed chamber system in Chinese rice fields (Human Province). Each of three experiments compared two fields treated with a first uniform fertilizer dose and a second fertilizer dose which was different for each of the two fields. The uniform fertilizer doses for both fields in each experiment comprised mineral (experiment 1), organic (experiment 2) and combined mineral plus organic components (experiment 3). In all three experiments the second fertilizer dose comprised organic amendments for field 1 and no organic amendments for field 2. The rate of increase in methane emission with a given amount of organic manure was found to depend on the total amount of organic manure applied. A single dose of organic manure increased the emission rates by factors of 2.7 to 4.1 as compared to fields without organic manure (experiment 1). In rice fields that had already been treated with organic manure, the application of a second dose of organic manure only slightly enhanced the emission rates in experiment 2 by factors of 1.1 to 1.5 and showed no detectable increase in experiment 3. The net reduction achieved by separation of organic and mineral fertilizers was maximized by concentrating the organic amendments in the season with low emission rates, i.e. early rice, and using exclusively mineral fertilizers on late rice when emission rates were generally higher. This distribution pattern, which was not associated with significant yield losses, resulted in an annual methane emission corresponding to only 56% of the methane emitted from fields treated with blended fertilizers.  相似文献   

17.
The effect of rice straw on the composition of volatile soil gas and microflora in the tropical paddy field was studied with and without fertilizer application.

The volatile soil gas most abundantly found in plots with rice straw was methane followed by other gases, nitrogen, oxygen and carbon dioxide during the early stage of rice growth, while nitrogen predominated in later stages.

The loss of soil nitrogen through volatilization increased following phosphorus application as well as rice straw application as compared with that in the control plot. In the former case, the enhancement of decomposition of organic-N was assumed to be due to the increase in population of cellulose decomposer.

Rice straw application with or without N-fertilizer increased methane gas formation by 27 to 63 times as compared with the phosphorus plot and the peak of its formation was found 5 to 7 weeks after rice straw application. However methane formation in the control plot was very low and was found only 5 to 9 weeks after flooding.

Rice straw application usually increased the number of various groups of microorganisms along with contributing to the transformation of organic-N to N2 gas. But the stimulating effect was chiefly observed in the population of Azotobacter.  相似文献   

18.
Abstract

Organic carbon in paddy soil is oxidized to carbon dioxide by reducing electron acceptors for a certain period after submerging. Methane production commences after the reduction of iron oxide which is the most important electron acceptor in the soil. We aimed to study the long-term suppression of the methane emission from the paddy soil by single application of iron slag. A revolving furnace slag (RFS; 248 g Fe kg?1) was applied to the potted soil at the rate of 0 (control) or 20 ton ha?1 in 2000. Rice plants were successively cultivated on the potted soils for 3 years without further application of the RFS. Methane emissions from the potted soils with rice plants were measured by the closed chamber method during these cultivation periods. Total flux of CH4 emission from the pot applied with ,FS decreased by 5–30% compared with the control. The RFS supplied free iron oxide to the potted soil, and its iron acted as the oxidizing agent as evidenced by the increase in ferrous iron content in the soil. The amount of iron lost from leaching at the bottom of the pots was estimated as 54–59 kg Fe ha?1 year?1 at the percolation rate of 20 mm d?1. Accordingly, half-life of the iron in the applied RFS was calculated as 42–46 years. Therefore, there is a possibility that the suppressing effect of RFS on CH4 emission is sustained for a half-century, Contents of heavy metals (Cd, Cu, and Zn) in the brown rice harvested from the pot applied with RFS were not significantly different with those from the control pot.  相似文献   

19.
The spatial pattern of rice paddies is an essential parameter used for studies of greenhouse gas emissions, agricultural resource management, and environmental monitoring. On large spatial scales, previous studies have usually mapped rice paddies using a single vegetation index product based on a traditional classification method, or a combined analysis of various vegetation and water indices derived from the moderate resolution imaging spectroradiometer (MODIS) satellite data. However, different indices increase the computational cost and constrain the satellite data sources, and traditional classification methods (e.g., maximum likelihood classification) may be time-consuming and difficult to carry out over a large area like China. In this study, we designed an auto-thresholding and single vegetation index (normalized difference vegetation index (NDVI))-based procedure to estimate the spatial distribution of rice paddies in China. The MOD09Q1 product, which was available at MODIS''s highest spatial resolution (250 m), was taken as the input source. An auto-threshold function was also introduced into the change detection process to distinguish rice paddies from other croplands. Our MODIS-derived maps were validated with ground surveys and then compared with China national statistical data of rice paddy areas. The results indicated that the best classification result was achieved for plain regions, and that the accuracy declined for hilly regions, where the complex landscape could lead to an underestimation of the rice paddy area. A comparison between the modeled results and other analyses using 500-m MODIS data suggests that rice paddies may be identified routinely using a single vegetation index with finer resolution on large spatial scales.  相似文献   

20.
The sustainability of rice production systems globally is intricately related to the chemistry, physics and biology of rice soils – with basic properties differing considerably in wet/dry land soils, tropical/temperate areas or even with the soil surface or rhizosphere niche of the field. Rice fields represent unique aqua-terrestrial ecosystems in which the tremendous diversity of soil microbes, soil fauna and plants – ranging in function from nitrogen fixers, nitrifiers, methanogens, methane oxidizers, phosphate-dissolving microbes, sulfur oxidizers to catabolizers of pesticides is observed. This diversity is inclusive of bacteria, cyanobacteria, archaea, planctomycetes and β-proteobacteria, besides the increasing members of endophytes associated. The complexity and dynamic nature of this ecosystem requires in-depth investigations of the tripartite interactions among plants, microbes and the soil–water environment. This needs to be complemented with studies on the ecological compartmentalization due to diffusion gradients of nutrients and gases, which is of extreme significance in the current scenario of problems associated with greenhouse gas emissions from agricultural areas, especially rice paddies. This article provides an overview of the interactions between the microflora and crop, with emphasis on nutrient transformations in the rhizosphere, so as to develop effective and efficient environmentally sustainable strategies for this crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号