首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
植被覆盖度是生态恢复的重要指示器,研究其变化特征可为资源合理利用、生态恢复提供科学参考。以贵州省开阳县为研究区,基于landsat4-5 TM,Landsat8 OLI遥感影像,获取2002年、2019年30 m分辨率植被覆盖度数据,从阴坡与阳坡视角研究山区植被覆盖度变化和地形分异特征。结果表明:(1)2002—2019年阴坡与阳坡植被覆盖度总体呈南高北低分布,期间阴坡与阳坡植被总体处于恢复趋势。(2)研究时段内阴坡与阳坡植被覆盖度随海拔上升表现为增加趋势; 海拔小于600 m的地区阳坡和阴坡植被覆盖度差距最大; 2019年二者植被覆盖度在海拔小于600 m的地区下降明显,高于800 m的地区均有较大提升。(3)阴坡和阳坡植被覆盖度随坡度增加总体呈上升趋势,坡度大于35°后二者差异增强; 植被覆盖度增量随坡度增加总体表现为上升—下降特点。(4)阴坡和阳坡植被覆盖度随地形起伏度增加呈上升趋势。2002年阳坡各等级地形起伏度的植被覆盖度总体高于阴坡,2019年二者植被覆盖度差异性随地形起伏度上升而增强。综上,阴坡和阳坡植被覆盖度与海拔、坡度、地形起伏度呈正相关关系,二者在不同等级地形梯度上具有较大差异性。地形因子对山区阴坡、阳坡植被覆盖度的影响是多方面的,不仅从海拔和坡向上影响水热组合条件,也从坡度和地形起伏度上影响人类对山区林地资源的开发利用。  相似文献   

2.
太原市城区植被覆盖变化地形分异效应   总被引:1,自引:2,他引:1  
[目的] 分析山西省太原市城区植被覆盖变化在高程、坡向、坡度、坡度变率、地形位和地形起伏度上的分异效应,为该市生态环境保护提供基础信息。[方法] 基于2004年8月、2007年8月、2011年8月、2014年9月、2016年9月的Landsat系列影像和ASTER GDEM数据,采用像元二分模型法估算太原市城区5个时期的植被覆盖度,对其时空动态变化特征进行分析,并结合地形面积差异修正系数分析植被覆盖变化在不同地形因子上的分异性及变化趋势。[结果] ①2004—2016年植被覆盖度以中高度覆盖度和高度覆盖度为主,二者占总面积的65%以上,总体呈显著上升趋势,植被覆盖度显著下降区主要分布在小店区和尖草坪区,而中东部和西部植被覆盖度上升较快;2007—2011年植被覆盖度减少面积为852.70 km2,增加面积为601.62 km2,总体呈退化趋势,而2004—2007,2011—2014,2014—2016年植被覆盖度增加面积超过研究区面积的1/2,植被恢复效果较好;②不同坡向上,在平地区域不同植被覆盖变化类型的分布差异较显著,其余坡向上的差异不明显;不同植被覆盖变化类型在不同高程、坡度、坡度变率、地形位和地形起伏度上的空间分布差异明显。[结论] 坡向对植被生长变化的影响不明显,而高程、坡度、坡度变率、地形位和地形起伏度对植被覆盖变化的地形效应较明显。  相似文献   

3.
祁连山国家公园植被覆盖变化地形分异效应   总被引:2,自引:1,他引:1  
[目的] 分析祁连山国家公园不同时间植被覆盖变化情况以及不同高程、坡度、坡向等地形条件下植被覆盖变化的空间分异性,为祁连山生态环境修复和保护提供参考依据和数据支撑。[方法] 利用祁连山2006,2014,2019年3期遥感影像,采用像元二分模型估算植被覆盖度,结合趋势分析法和地形面积修正法,对不同地形条件下植被覆盖空间分异性及变化特征进行分析。[结果] ①祁连山植被覆盖度空间分布格局为西北部低,东南部高,总体以较低植被覆盖度为主。2006—2019年,祁连山植被覆盖度整体呈增加趋势,增加面积约占46.7%,减少面积约占33.3%,植被恢复状况较好,其中,低和较低植被覆盖度面积减小,其他等级植被覆盖度面积均有不同程度的增加。②祁连山植被覆盖变化在不同高程范围内存在明显差异:3 200 m以下中低海拔区域呈增加趋势,2 200 m以下低海拔区域增加特别明显;3 700 m以上中高海拔区域则呈减少趋势,且海拔越高减少趋势越明显。③随着坡度的增加,祁连山植被覆盖变化趋势由增加转为稳定再转为减少。坡度15°以下区域呈增加趋势;坡度25°以上区域呈减少趋势;坡度40°以上区域减少趋势尤其明显;坡度15°~25°范围内分布相对稳定。④从坡向来看,除平地外,祁连山植被覆盖变化类型在其他坡向上的差异较小。[结论] 祁连山植被覆盖变化在高程、坡度等地形条件下差异明显,坡向的地形效应不明显。  相似文献   

4.
岷江上游流域植被覆盖度及其与地形因子的相关性   总被引:5,自引:3,他引:2  
[目的]研究岷江上游流域植被覆盖度随不同高程带、坡度带、坡向分布变化的特征及相关性,为该地区利用有利地形加强生态环境建设和防治水土流失提供依据。[方法]在GIS和RS技术支持下,利用Landsat-8OLI遥感影像和DEM数据提取植被覆盖度和地形因子进行叠加分析,构建统计样本定量分析植被覆盖度与地形因子间的相关关系。[结果]研究区总体植被覆盖情况良好,中度以上植被覆盖区占研究区面积75.0%,低植被覆盖区仅占15.2%。植被覆盖度随海拔高度和坡度的增加呈先增加后降低的趋势,在海拔2 500~3 000m和坡度25°~45°达到最大值;阳坡的植被覆盖度略大于阴坡。各地形因子对不同植被覆盖度的影响程度不同,低植被覆盖区受坡度影响较显著,极高度植被覆盖区受海拔高度影响较显著,其他植被覆盖区与地形因子的相关性无明显规律。[结论]岷江上游流域植被覆盖度与地形因子关系紧密,地形因子变化对生态环境有重要影响。  相似文献   

5.
黄河源区玛曲县植被覆盖度及其气候变化研究   总被引:1,自引:0,他引:1  
以MODIS—NDVI遥感数据为基础,利用像元二分模型对玛曲县2000—2010年的植被覆盖度进行估算,对植被覆盖度的时空变化特征进行分析,并探讨了植被覆盖度与降水量和气温之间的响应关系。结果表明:近10a来玛曲县植被覆盖度变化呈明显波动起伏且总体略有增加趋势,高植被覆盖度和较高植被覆盖度的数量变化剧烈,中植被覆盖度、较低植被覆盖度和低植被覆盖度分布相对稳定;不同等级植被覆盖度在各乡范围及基于地形特征的空间分布差异十分显著;在年际与生长季的变化水平上,气温与降水量都对植被覆盖度有影响,其中气温比降水量的影响更加显著。  相似文献   

6.
[目的]探讨华南地区植被覆盖时空特征,为生态系统调查与保护提供参考。[方法]以江西和福建省为例,将1998年、2005年、2010年、2015年、2019年5年的植被覆盖由低到极高划分为6个等级,使用土地利用研究中的动态度、转移等思路分析植被覆盖时空特征,并探讨其地形梯度效应。[结果](1)江西和福建植被覆盖以高和极高覆盖为主(78.47%~89.8%),尤其是在内陆山地丘陵区,而沿江、沿海等人口密集的城市区相对较低、面积较小;1998—2019年该区植被覆盖较好且变化的整体趋势仍是增加;最显著变化发生在2010—2015年由高覆盖转移为极高覆盖。(2)地形梯度指数显示,中等植被覆盖及以下主要分布在海拔低于200 m、坡度小于6°、地形位小于0.48的1~2级地形梯度区;较高覆盖及以上较为分散的分布在各地形梯度内,且随着覆盖度增加有向海拔高于200 m、坡度大于6°、地形位大于0.48的3~5级地形梯度区分布趋势。(3)在植被覆盖不变或改善类中,低覆盖转移主要发生在1级地形梯度,较低覆盖和中等覆盖转移主要发生在1~3级地形梯度区,较高覆盖及以上的转移在5类地形梯度均有发生且相对分散;在...  相似文献   

7.
以延河流域为研究区,综合运用GIS和RS技术,基于Landsat TM影像,运用改进的像元二分模型估算了延河流域2000年和2010年的植被覆盖度,结合DEM数据提取的高程,坡度、坡向地形数据,分析了植被覆盖度与地形因子的相关性,以期为延河流域植被恢复和生态建设提供依据。结果表明:(1)延河流域植被覆盖度从2000年的29.18%增加到2010年的52.42%,呈上升趋势。(2)2000年植被覆盖度随高程的增加呈减小的趋势,2010年植被覆盖度随高程的增加呈先增加后减少的趋势。2000年和2010年植被覆盖度随坡度的升高,大致呈现先升高后降低的趋势,在30°~35°范围内最高。2000年和2010年植被覆盖度总体表现为阴坡(北、东北)半阳坡(东南、西)=半阴坡(东、西北)阳坡(南、西南)平地,其中阴坡的植被覆盖度最高,平地的植被覆盖度最低。(3)在高程1 000~1 500m,坡度在25°~45°范围内,植被覆盖度增加的值最大。  相似文献   

8.
玛纳斯河流域植被覆盖度随地形因子的变化特征   总被引:1,自引:0,他引:1  
基于2000-2016年MODIS NDVI数据,利用像元二分模型和ArcGIS空间分析功能对玛纳斯河流域植被覆盖度分布格局及动态变化特征进行研究,并分析植被覆盖度变化在高程、坡度和坡向上的空间分布差异。结果表明:(1)玛纳斯河流域以低等级植被覆盖为主,高等级植被覆盖面积显著增加,其它各等级面积波动较小,研究期内植被覆盖改善的面积比例(31.17%)远大于退化的面积比例(16.1%),研究区总体植被覆盖度增加,生态环境有所好转。(2)在海拔<800m,坡度<8°区域内,植被覆盖度明显改善,植被显著退化区主要分布在海拔1300-3400m,坡度>25°区域内,植被覆盖度未发生变化的区域主要集中在海拔>3600m范围内。(3)当海拔>2100m时,植被覆盖度随海拔增加呈现持续减少的趋势,海拔低于2100m的地带,植被覆盖度随海拔增加波动较大。(4)随着坡度的增加,植被覆盖度呈逐渐减小的趋势,全流域0?5°坡度范围内植被覆盖度最大(42.69%)。(5)在各坡向上,植被覆盖度差异不明显。流域内平地上的植被覆盖度最大(44.21%);阴坡的植被覆盖度优于阳坡,植被变化趋势除在平地区域较显著外,其余坡向间差异不大。  相似文献   

9.
官渡河流域植被覆盖变化与地形因子相关性   总被引:2,自引:0,他引:2  
以南水北调中线水源区源头之一的官渡河流域为研究区域,区域内以山地为主,生态环境脆弱。基于GIS和RS技术,利用1990年、1999年、2004年、2007年、2010年Landsat TM遥感影像,基于像元二分模型和变化斜率法,从数理统计角度定量估算了研究区各时期植被覆盖度及其时空分布特征。结果表明:(1)植被覆盖度在不同河段呈现明显的规律性,上、中、下游植被覆盖度5期平均值分别为94.52%,87%,81.69%。(2)植被覆盖变化受地形因子影响比较明显,植被覆盖度与不同地形因子响应程度不同,对不同时期植被覆盖度,高程和坡度对其影响明显高于坡向。随着坡度的不断增加,植被覆盖度也随着增大;整体上向阳区植被覆盖度要大于同区域的背阳区;官渡河流域不同时期植被覆盖度随着高程的增加均出现先增加后减少的趋势。(3)不同地质单元组植被覆盖变化各不相同。  相似文献   

10.
汶川地震灾区植被覆盖度变化与地形因子的关系   总被引:4,自引:3,他引:1  
[目的]分析植被覆盖度变化与高程、坡度、坡向3种地形因子关系,为汶川地震灾区环境监测及修复、水土保持、灾害评估与防治等工作提供一定依据。[方法]通过构建汶川地震灾区像元二分模型估算植被覆盖度,分析植被覆盖度与地形因子之间的关系。[结果]高程小于3 000m的各高程带、各坡度带中平均植被覆盖度、高植被覆盖度减少,低植被覆盖度增加的比例均与高程、坡度呈负相关。高程低于500m,500~1 000m区域和坡度小于5°的区域其植被受地震影响大,恢复周期更长,截至2015年5月,尚未达到震前水平。各坡向区平均植被覆盖度,高、中、低植被覆盖度比例变化趋势较为一致,无明显差异,东、南、东南、北方向各等级植被覆盖度比例已达到震前水平。[结论]植被覆盖度与地形因子之间关系密切,植被覆盖的动态监测可以从地形变化出发。  相似文献   

11.
青海湟水流域植被覆盖度时空变化分析   总被引:3,自引:0,他引:3  
利用2001-2009年的MODIS遥感数据与归一化植被指数的像元二分模型,并结合湟水流域的地形特征数据,分析流域内植被覆盖度时空变化动态特征.结果表明:湟水流域的植被覆盖度空间分布差异十分显著,基于地形特征的脑山区(69.47%)、浅山区(56.46%)和川水区(45.43%)植被覆盖度地带性特点明显;近9年来湟水流域总体植被覆盖度略有下降,尤其是高植被覆盖度减少了17.23%.而较高植被覆盖度增加了12.15%;脑山区的高植被覆盖度与较高植被覆盖度之间转换剧烈,浅山区的各级植被覆盖度都相对稳定,川水区的中植被覆盖度与较低植被覆盖度之间转换明显.  相似文献   

12.
石淞  李文  杨子仪  于冉 《水土保持通报》2023,43(3):254-264,276
[目的] 探究长白山区植被动态变化及其与地形的响应关系,为山区生态环境保护与治理提供科学支撑。[方法] 基于MODIS NDVI与DEM数据,采用像元二分模型估算长白山区2000—2020年植被覆盖度,运用Sen+Mann-Kendall趋势分析、空间自相关分析及重心迁移模型,结合地形面积差异修正系数,深入解析植被覆盖度时空演变特征,并定量揭示植被覆盖变化在高程、坡度、坡向因子上的分异效应。[结果] ①时空分布上,2000—2020年长白山区植被覆盖度以0.023 7/(10 a)(p<0.001)的速率增长并于2010年发生明显的上升突变,呈“四周高,中间低”的分布格局,整体处于较高水平。②时空变化上,2000—2020年长白山区植被改善区域面积远大于退化区域面积,呈以“高—高”模式为主的显著聚集状态,但聚集程度波动下降;21 a间植被覆盖重心整体向西南迁移。③地形分异上,长白山区植被覆盖度随海拔、坡度升高均表现为先增加后减少趋势,不同时段下海拔<600 m,≥1 200 m及坡度<2°,≥25°区域植被普遍呈退化趋势,海拔600~1 200 m及坡度2°~25°范围内以改善或稳定趋势为主;平地区域植被退化趋势明显,其他坡向上各变化类型差异较小。[结论] 近21 a来长白山区植被状况总体向好发展,不同高程和坡度条件下植被变化空间分异明显,而坡向对植被变化的影响并不显著。  相似文献   

13.
[目的]调查天山西部生态环境植被覆盖状况,为科学保护区域生态环境和管理提供科学依据。[方法]以天山西部林区—霍城林场为研究对象,基于1999,2007和2016年3个时期的Landsat TM遥感影像和DEM数据,运用归一化植被指数分析研究区植被覆盖情况和空时变化特征。[结果]时间变化上,1999—2016年期间霍城林场植被覆盖以Ⅱ和Ⅲ级为主,所占比重达到55%以上,总体上是呈现上升趋势;空间分布上,霍城林场因海拔、坡度和坡向等地形因子的不同而出现不同的分布和变化特征,当海拔在1 500~2 000 m和2 000~2 500 m或者坡度30°~45°的区域时,植被覆盖度相对较高;当海拔 < 1 500 m以及 > 2 500 m或坡度 < 30°的区域时,植被覆盖度相对较低;植被覆盖度随着坡向的变化而变化着,呈现出阴坡 > 半阴坡 > 半阳坡 > 阳坡的分布特征;当海拔 < 1 500m和坡度 < 30°的区域时,植被覆盖度变化较为明显,而当海拔 > 2 500 m和坡度 > 45°的区域时,因受人为社会活动影响小,植被覆盖变化不明显。[结论]1999—2016年期间,霍城林场植被覆盖在时间变化上总体呈现上升趋势,在空间分布上因海拔、坡度和坡向等地形因子的不同呈现不同的分布和变化特征。  相似文献   

14.
运用趋势分析法及Mann-Kendall趋势检验法对福建省2000-2010年植被覆盖度进行了分析,探究福建省植被覆盖度的时空演变过程.结果表明:(1)福建省植被覆盖度以每年0.003 15的速率增加,但在2005年存在一个明显的波动下降,植被在7月,8月,9月份盖度最大.(2)根据我国植被覆盖度分类标准,福建省以高植被覆盖度为主,2000-2010年低、中植被覆盖度向高植被覆盖度转化15.84%.(3)各市区植被覆盖度变化显著,其中莆田市、宁德市、漳州市变化最为明显.通过各区域的趋势百分比可知,福建省各市区植被覆盖度以增加为主,各市区植被覆盖度增加百分比为:宁德市>漳州市>福州市>泉州市=莆田市=厦门市>龙岩市>南平市>三明市.(4)不同植被类型区植被盖度在年际变化尺度呈现稳步增加的趋势,各植被类型盖度均值介于0.596~0.799,此外植被覆盖度的增加量顺序依次为:湿地>草地>农作物>非植被>阔叶林=针叶林.  相似文献   

15.
中国草地覆盖度时空动态格局及其影响因素   总被引:2,自引:1,他引:1  
为了探究近几十年来中国草地覆盖度的动态变化,基于多源遥感数据,采用像元二分模型模拟分析了1982—2016年中国草地覆盖度的时空动态格局,并从植被类型、地形要素、气候区及气候变化等角度分析了其主要影响因素。结果表明:35 a间中国草地覆盖度平均值为36.21%,呈极显著增加趋势(0.12%/a)。高山亚高山草甸、坡面草地及湿润地区、半干旱地区草地覆盖度的增加对于中国草地恢复具有重要贡献。草地覆盖度随海拔的升高呈降低趋势,DEM<500 m及3 500 m相似文献   

16.
[目的]退耕还林还草工程实施以来,陕西省植被覆盖度明显提高。然而,省级尺度上植被覆盖度的增加一定程度上掩盖了部分市、县级区域植被覆盖度下降的实事,当前迫切需要加强对不同空间尺度植被覆盖变化及其驱动因素的研究。[方法]基于MODIS NDVI数据计算了陕西省植被覆盖度,分析了2000—2020年陕西省、地区、市和县四级尺度植被覆盖度时空变化趋势。[结果]2000—2020年陕西省植被平均覆盖度为64.3%±2.1%,增长率为0.24%/a;陕北植被覆盖度平均为37.6%±4.4%,增长率为0.63%/a;陕南植被覆盖度平均为89.6%±1.2%,增长率为0.13%/a;关中植被覆盖度平均为70.6%±3.5%,下降率为-0.18%/a。延安市、榆林市、铜川市、宝鸡市、安康市、商洛市的植被覆盖度呈持续增加趋势,而西安市、渭南市、咸阳市和汉中市的植被覆盖度呈先增加后下降趋势;全省有72.3%的区县植被覆盖度呈增加趋势,有22.3%的区县植被覆盖度变化方向与所在市相反。在不同空间尺度上,陕西省植被覆盖度增速均表现为2000—2010年高于2010—2020年,这与两个时期的造林面积差异有关。[...  相似文献   

17.
近20年来北洛河流域植被覆盖度随地形因子变化特征探究   总被引:4,自引:0,他引:4  
基于1987年、1995年、2007年3期Landsat TM影像数据,以像元二分法估算了北洛河流域不同时期的植被覆盖度,结合DEM地形高程数据提取的地形因子,分析了植被覆盖度地形分异及动态变化特征,以期对流域生态建设和效益评价提供基础信息。结果表明:流域中9/10的面积为地形破碎的丘陵沟壑区和高塬沟壑区,2/3面积为8°~25°的斜坡地和陡坡地,各坡向面积相差不大。流域平均植被覆盖度从1987年的41.1%,1995年45.4%,增至2007年的63.4%。在各高程带、各坡度段和各坡向上,与1987年比,1995年虽有轻微增加,但其分布格局基本一致。2007年植被覆盖度在不同地形指标上均有显著增加,尤其在900~1 300m高程带、35°坡度段、阳向坡上植被改善程度显著。  相似文献   

18.
安徽省植被覆盖度动态变化及其对地形的响应   总被引:3,自引:3,他引:0  
[目的] 探究安徽省植被覆盖度的时空变化特征与地形的相互关系,为当地资源开发中加强生态环境建设提供理论依据。[方法] 在GIS与RS技术支持下,使用安徽省2001—2019年逐月MODIS/NDVI数据,2001—2019年土地分类数据和安徽省DEM海拔、坡向地形数据,分析植被覆盖度时空变化特征及其与地形因子相互关系。[结果] 安徽省植被覆盖度季节变化特征明显。1月、10—12月,全省植被覆盖度呈现低值,且山区高于平原;2—5月,淮北平原地区植被覆盖度呈现高值,6月迅速减小;7—9月全省范围植被覆盖呈现高值,大部地区植被覆盖度高于0.8,山区平原空间差异最小。全省植被覆盖度年变化率为0.003 9/a,与时间相关性显著(R2=0.814 8)。不同海拔区间内,植被覆盖度四季差异明显。受下垫面地表类型影响,200 m以下植被覆盖度呈现低值,200~350 m植被覆盖度陡然升高,1 250 m以上植被覆盖度呈下降趋势。各坡向四季植被覆盖度夏季>秋季>春季>冬季。北坡、南坡分别为峰值、谷值。南、北向山区植被覆盖度差异呈逐年波动下降趋势,其差异值多年平均值夏季最低(0.009 3),秋季最高(0.014 2),春冬季分别为0.013 9,0.012 5。[结论] 安徽省海拔、坡向显著影响植被覆盖度动态变化特征,需结合地形特点合理开发利用地表资源,并做好生态环境保护工作。  相似文献   

19.
淮河流域土壤侵蚀与影响因子关系分析   总被引:3,自引:0,他引:3  
为探究土壤侵蚀各影响因子在一个较大的地理系统内的组合变化关系,以淮河流域为研究区,通过收集流域内土壤、植被、地形、气候等数据,利用二元相关分析、偏相关分析和通径分析方法,对流域尺度的土壤侵蚀各影响因子进行了分析。结果表明:在流域尺度上,对土壤侵蚀起主导作用的因子是地形起伏度,其次是坡耕地面积比和植被覆盖度。地形起伏度和坡耕地面积比及植被覆盖度之间具有较好的相关性,地形起伏度除直接对土壤侵蚀产生影响外,还通过影响坡耕地的分布和植被覆盖度而对土壤侵蚀产生综合影响。  相似文献   

20.
2000-2020年黄土高原植被覆盖度时空格局变化分析   总被引:2,自引:0,他引:2  
以2000—2020年MODIS-NDVI植被指数为数据源,反演计算黄土高原植被覆盖度,通过转移矩阵和重心迁移等方法分析黄土高原植被覆盖度时空格局变化及其与降水、气温、坡度和土壤类型等因素的关系。结果表明:(1)2000—2020年黄土高原植被覆盖度由0.39提高到0.61,整体呈上升趋势,2017年后实现快速提升;(2)近20年,黄土高原植被覆盖度显著好转类型与极显著好转类型改善面积比例达到37.93%,2009年前以低覆盖和中低覆盖植被为主,2010年后以中覆盖及更高等级覆盖植被为主,2019年以后中高覆盖植被所占比例最高;(3)从2000年到2020年,黄土高原低覆盖、中低覆盖、中覆盖和中高覆盖植被向更高等级覆盖植被转化比例分别为93.10%,96.57%,82.99%,43.34%,中低覆盖、中覆盖、中高覆盖和高覆盖植被向更低等级覆盖植被转化比例分别为0.30%,2.21%,7.83%,12.47%;(4)近20年黄土高原植被覆盖度变化与气温和降水的变化表现敏感,斜坡地和陡坡地植被覆盖度较高,淋溶土类型下的植被覆盖度较高,国家政策和措施实施等人为因素对植被覆盖度改善发挥重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号