首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
The charge characteristics of A1 or Ap and B2 horizon samples of total 23 Ultisols, Alfisols and Oxisols in Korea and Thailand were studied by measuring the retention of NH4+ and NO3? at different pH values (4–8) and NH4NO3 concentrations (0.1–0.005 m ). The magnitude of their negative charge (σ?; meq/100g) was dependent on pH and NH4NO3 concentration (C; m ) as represented by a regression equation: log σ?=apH +blogC +c. The values of the coefficient a (0.04–0.226), b (0.03–0.264) and c (–0.676–1.262) were correlated with the kinds of the soil and horizon and with the region where the soil exists. The retention of NO3? was less than 1 and 2–3 meq/100 g for the A1 or Ap and B2 horizon samples, respectively. The sum of exchangeable base and Al (‘effective’ CEC) was close to and higher than the magnitude of permanent charge (=σ? measured at pH = 4.3 and at C = 0.005 m ) for one-third and two-thirds of samples, respectively. A σ? value of 16 meq/100 g clay at pH = 7 and C = 0.01 m was found appropriate to separate the B2 horizons of Thai Ultisols and Oxisols from those of Korean Ultisols and Alfisols. Korean Alfisols and Ultisols and Thai Ultisols were distinguished from each other on the status of exchangeable base and Al  相似文献   

2.
Quantifying global patterns of forest soil respiration (SR), its components of heterotrophic respiration (HR) and belowground autotrophic respiration (AR), and their responses to temperature and precipitation are vital to accurately evaluate responses of the terrestrial carbon balance to future climate change. There is great uncertainty associated with responses of SR to climate change, concerning the differences in climatic controls and apparent Q10 (the factor by which respiration increases for a 10 °C increase in temperature) over HR and AR. Here, we examine available information on SR, HR, AR, the contribution of HR to SR (HR/SR), and Q10 of SR and its components from a diverse global database of forest ecosystems. The goals were to test how SR and its two components (AR and HR) respond to temperature and precipitation changes, and to test the differences in apparent Q10 between AR and HR. SR increased linearly with mean annual temperature (MAT), but responded non-linearly to mean annual precipitation (MAP) in naturally-regenerated forests. For every 1 °C increase in MAT, overall emissions from SR increased by 24.6 g C m−2 yr−1. When MAP was less than 813 mm, every 100 mm increase in MAP led to a release of 75.3 g C m−2 yr−1, but the increase rate declined to 20.3 g C m−2 yr−1 when MAP was greater than 813 mm. MAT explained less variation in AR than that in HR. The overall emissions in AR and HR for every 1 °C increase in MAT, increased by 12.9 and 16.1 g C m−2 yr−1, respectively. The AR emissions for every 100 mm increase in MAP, increased by 44.5 g C m−2 yr−1 when MAP less than 1000 mm. However, above the threshold, AR emissions stayed relatively constant. HR increased linearly by 15.0 g C m−2 yr−1 with every 100 mm increased in MAP. The Q10 value of SR increased with increasing depth at which soil temperature was measured up to 10 cm and was negatively correlated with HR/SR. Our synthesis suggests AR and HR differ in their responses to temperature and precipitation change. We also emphasized the importance of information on soil temperature measurement depth when applying field estimation of Q10 values into current terrestrial ecosystem models. Q10 values derived from field SR measurements including AR, will likely overestimate the temperature response of HR on a future warmer earth.  相似文献   

3.
《Journal of plant nutrition》2013,36(7):1227-1242
Abstract

Uptake of arsenic (As) and its distribution in Chinese Brake fern (Pteris vittata L.), an As hyperaccumulator, and Boston fern (Nephrolepis exaltata L.), a nonhyperaccumulator, in the presence of phosphorus (P), were characterized by employing a hydroponic experiment with a complete three-factorial design. Two levels of As (100 and 1000 µM) and four levels of P (0, 100, 500, and 1000 µM) were used in this study. Arsenic uptake rates on the basis of root fresh weight for the two ferns were similar at low As concentration (100 µM). At high As concentration (1000 µM), however, As uptake rates (373–987 nmol g?1 f wt h?1) of P. vittata were significantly greater than those of N. exaltata (164–459 nmol g?1 f wt h?1). In both ferns, addition of P reduced their As uptake rate as well as accumulation. Pteris vittata had a greater As TF (Translocation factor = concentration ratio of fronds to roots) than N. exaltata. On the contrary, N. exaltata displayed a greater P TF than P. vittata. As a result, high P/As ratio was observed in the roots of P. vittata, whereas high P/As ratio was observed in the fronds of N. exaltata. The study illustrated that As hyperaccumulation by P. vittata may be facilitated by its high As influx rate and its high molar P/As ratio in the roots resulting from both high As TF and low P TF.  相似文献   

4.
Tropospheric ozone (O3) has long been documented to cause an injury to plants, but a plants’ protectant, widely applicable in agronomical practice, does not exist. We evaluated the potential antiozonate efficacy of the antitranspirant di-1-p-menthene (Vapor Gard) compared with ethylenediurea (EDU) on Bel-W3 tobacco plants. Plants were treated either with water, or by EDU (10, 100, and 500 mg dm?3), or by vapor (1, 5, 10, and 50 ml dm?3) and were exposed either to O3-enriched (90 ppb) or O3-free air, for 12 days and 8 h day?1. EDU when applied at 10 mg dm?3 did not protect the plants against O3, but when applied at 100 and 500 mg dm?3 offered a significant protection to the plants. Vapor, when applied at 1 ml dm?3 did not protect the plants against O3, neither by terms of foliar visible injury nor by terms of aboveground biomass. In addition, when applied at 10 and 50 ml dm?3 caused phytotoxicity to all the plants, which it was expressed as necrotic spots on the leaves’ surface, misshaping of the leaves, or short plants' height. It is obvious that vapor does not protect Bel-W3 tobacco plants against O3. The antiozonate role of di-1-p-menthene is species-specific and probably occurs only under short-term exposures.  相似文献   

5.
Soil microbial and extractable C and N after wildfire   总被引:12,自引:0,他引:12  
 The effect of wildfire on soil microbes and extractable C (Cext) and N (Next) changed with respect to the time from burning and soil depth. Initially, microbial biomass C (Cmic) and N (Nmic) were drastically reduced in the soil surface layer (0–5 cm) and reduced by 50% in the subsurface (5–10 cm), whereas Cext increased by 62% in the surface layer and did not significantly change in the subsurface. These parameters were affected for the following 4 years, during which the average reductions in the soil surface and subsurface layers were, respectively, 60% and 50% for Cmic, 70% and 45% for Nmic, 60% and 40% for the ratio Cmic: organic C (Corg) and 70% and 30% for the ratio Nmic: total N (Ntot), while for Cext the surface layer was the only zone consistently affected and Cext decreased by up to 59%. Immediately after a fire, the Cext : Corg ratio increased by 3.5-fold and 2-fold in the surface and subsurface layers, respectively; thereafter for 2 years, it decreased in the surface layer (by up to 45%) while the effect on the subsurface layer was not consistent. The effect of burning on Next lasted 1 year, in which Next increased by up to 7- and 3-fold in the surface and subsurface layers, respectively, while the average Next : Ntot ratio doubled in the surface layer and increased by 34% in the subsurface. During the time in which each parameter was affected by burning, the soil factor explained a high percentage of variance in the fluctuations of Cmic, Nmic, Cmic : Corg and Nmic : Ntot, while those of Next and Next : Ntot, but not those of Cext and Cext : Corg depended on both the soil and its depth. In the burned soils similar patterns of response were found between the following parameters listed in pairs: Cmic and Nmic; Cmic : Corg and Nmic : Ntot; Cext and Next; and Cext : Corg and Next : Ntot. However, after the fire relationships found previously between the parameters studied and many other soils properties were either no longer evident, or were inverted. Although the addition of cellulose to the burned soil favoured fungal mycelium development and increased Cmic and Cext contents, the negative effect of burning on the microbial biomass and the Cext was not counteracted even under incubation conditions suitable for both microbial growth and C mineralization. Received: 28 May 1997  相似文献   

6.
Interactions between the N2-fixing bacterium Azospirillum brasilense and the mycorrhizal fungus Glomus mosseae were studied in relation to their effects on the growth and nutrition of Zea mays (C4) and Lolium perenne (C3) plants. Although roots from plants inoculated with Azospirillum exhibited C2H2 reduction activity no significant effect of inoculation on N concentration in the plant shoots was found. With non-mycorrhizal plants, inoculation with Azospirillum resulted in increased dry matter production at the first harvest compared to the effect achieved by supplying N as fertilizer, but this trend was reversed at the last harvest. However, with mycorrhizal maize plants, Azospirillum, which stimulated the development of VA mycorrhiza, was still effective in improving plant growth and nutrient uptake at the last harvest. Azospirillum and N behaved similarly in enhancing the growth and nutrition of mycorrhizal maize. The dual inoculation of maize by Azospirillum and Glomus produced plants of a similar size, N content, and a higher P content, than those supplied with N and P.  相似文献   

7.
Abstract

Quantifying in situ solute transport through soils and the landscape has been widely acknowledged as important and yet challenging. The objective of this study was to evaluate water and bromide movement in no‐tilled (NT) and conventionally tilled (CT) corn using two different types of in situ lysimeters—pan and capillary wick—for single rainfall events. Four zero‐tension pan and four capillary‐wick lysimeters were installed 1.2 m deep on opposite sides of four soil pits. Two were under NT corn, and two were under CT corn. Bromide (Br) was either surface applied or applied with an initial 25 to 27 mm of irrigation (33 to 34 g Br m2). A total of 120 to 147 mm of irrigation was applied continuously at 8.8 mm h?1. Leachate was collected on 15 min intervals for 24 h and on greater intervals for up to 350 h. Lysimeter discharge and Br concentration were determined for each interval. After drainage began and until rainfall was discontinued, the water drainage rate was, on average, greater in NT (7.2 mm h?1) than in CT (5.6 mm h?1) based on results from the pan lysimeters. By contrast, the water drainage rate for the wick lysimeters was, on average, greater in CT (7.3 mm h?1) than in NT (3.0 mm h?1). The wick lysimeter appears to have behaved as a sink under the CT conditions, likely representing water flow in smaller channels. Under NT conditions, greater discharge observed with the pan lysimeter implicates the response from larger channels as the conduit for water flow. Flow‐weighted mean Br concentration was less when Br was applied on the soil surface (17.9 mg L?1) than when Br was applied with the irrigation water (50.6 mg L?1). Implications from preferential flow studies are often determined based on a single method of evaluation for solute transport, which are likely subject to the limitation of the method used. This study illustrates that contrary to the conventional understanding about preferential flow in NT, water flow and Br transport to the 1.2-m depth was as great as or greater with CT than with NT based on the results from the wick lysimeters for single rainfall events.  相似文献   

8.
Greenhouse and laboratory studies were conducted to evaluate the toxic effects of Be and V on collards (Brassica oleracea, var. acephala L.). In the laboratory germination study, incremental increases in the Be concentrations of the growing medium induced a steady decline in the radicle length of seven-day-old collard seedling. Beryllium concentrations greater than or equal to 8 mg Be L?1 totally inhibited seed germination. The presence of V in the growing medium had no effect on collard germination; however, it had a profound effect on subsequent radicle elongation. Concentrations of V less than 1 mg V L?1 stimulated radicle elongation, while concentrations greater than or equal to 3 mg V L?1 caused severe toxicity. In the greenhouse study, Be toxicity was observed in collards grown in a Blanton sand (Grossarenic Paleudult) received treatments greater than or equal to 150 mg Be kg ?1 (as BeSO4). Irrespective of treatment level, 97% of the Be taken up by the plants remained in the roots while only 3% was translocated to aboveground plant parts. Vanadium tissue concentrations and toxicity to collards varied with soil type. Additions as low as 80 mg V kg?1 to the Blanton sand significantly reduced collard biomass while additions as high as 100 mg V kg?1 to an Orangebury loamy sand (Typic Paleudult) had no effect on plant biomass. The differential response was attributed to greater accumulation of V by plants grown in the Blanton soil.  相似文献   

9.
中国北方主要农区农田氮磷淋溶特征与时空规律   总被引:1,自引:1,他引:0  
中国北方黑土区、潮土区和褐土区是我国农业主产区,大水大肥问题尤为突出,氮磷淋溶是全国典型的地下水污染来源。然而,中国北方主要农区农田氮磷淋溶特征和时空规律尚不清楚。本文利用田间原位监测和文献荟萃分析方法,系统分析了中国北方主要农区285个监测点年的4种主要种植模式(春玉米、冬小麦-夏玉米、露地蔬菜、保护地蔬菜)农田氮磷淋溶特征与时空规律。研究结果表明,中国北方4个主要种植模式的平均氮和磷淋溶强度分别为:保护地蔬菜117.5 kg(N)·hm~(-2)和0.74 kg(P)·hm~(-2),露地蔬菜51.7kg(N)·hm~(-2)和0.10kg(P)·hm~(-2),冬小麦-夏玉米轮作49.9kg(N)·hm~(-2)和0.07kg(P)·hm~(-2),春玉米30.7kg(N)·hm~(-2)和0.09kg(N)·hm~(-2)。与粮田相比,蔬菜田的高水肥投入决定了其较高的氮磷淋溶量。受土壤质地以及区域间水肥管理差异的影响,同一种植模式下,总氮淋溶强度为黑土区褐土区潮土区。农田氮磷淋溶年际间变化主要受降雨强度的影响,总氮淋溶量与降雨强度呈正线性相关关系,尤其前一年无淋溶事件发生背景下,下一年的淋溶量会急剧增加。空间尺度上,潮土区和褐土区是氮素淋溶的主要风险区。值得注意的是一些蔬菜种植面积尤其是保护地蔬菜种植面积占比较大的省份表现出较高的氮磷淋溶风险。综上,北方主要农区农田氮磷淋溶风险以氮为主,磷的淋溶风险也不容忽视。潮土区和褐土区是氮素淋溶的主要风险区。区域尺度上,氮磷淋溶主要来自粮田,但菜田面积越大,氮磷淋溶风险越高。  相似文献   

10.
During 2002, 2004, 2006 and 2008, trips were undertaken in the United States and Canada by members of the Department of Botany, Palacky University in Olomouc (Czech Republic) to record distributions and sample the diversity of wild and weedy Lactuca species. In that period, 16 states in the USA (Arizona, California, Colorado, Idaho, Iowa, Minnesota, Montana, Nevada, New York, North Carolina, Oregon, South Dakota, Utah, Washington, Wisconsin, Wyoming) and two provinces in Canada (Ontario, Quebec) were visited. Seven wild and weedy Lactuca species (L. serriola, L. saligna, L. virosa, L. canadensis, L. biennis, L. floridana, L. ludoviciana), an interspecific hybrid (L. canadensis?×?L. ludoviciana), and an undetermined Lactuca species were recorded, and 343 seed samples were collected from 200 locations. The largest number of wild Lactuca species that we observed was recorded in Iowa, and the largest number of samples was collected in California. The most common habitats of weedy species (L. serriola, L. saligna and L. virosa) were along transport corridors, such as roadsides, road ditches, parking sites and petrol stations, grassy slopes and ruderal places. The most frequent species was L. serriola, an Old World introduction, which we observed in all states and provinces visited, except for New York, and in broad range of elevations (up to 2,358?m a.s.l.). Lactuca saligna was recorded only one time in Salinas, California. Lactuca virosa was found repeatedly in Washington State along the road to the Mt. St. Helens and in Redwoods, California. Native North American taxa (L. canadensis, L. floridana, L. ludoviciana) were recorded only in Iowa. Lactuca biennis was found only in Canada in the southern part of Quebec. Records of diseases and pests showed only occasional occurrences of downy mildew (Bremia lactucae) and powdery mildew (Golovinomyces cichoracearum). Most plant-disease findings were made in Canada. Results of these efforts enrich our knowledge of the distribution, ecogeography and ecobiology of Lactuca species occurring spontaneously in North America. Seed collections (accessions) will be conserved in the working collection of the genebank at Palacky University to support future research in ecogeography, ecobiology, resistance and genetic polymorphisms, and to enrich of germplasm diversity available for lettuce breeding.  相似文献   

11.
In the present study, zeolite tuffs of diverse chemistry, mineralogy and origin were characterized and tested for their efficiency as slow release fertilizers (SRF) through a series of leaching tests. Mixtures of zeolite tuffs were created and tested as loamy soil additives, in order to evaluate any synergistic effect on their cation exchange capacity (CEC) and SRF properties. The studied materials were a chabazite-rich tuff (SOR), a mordenite-rich tuff (KIM), 3 mixtures of them (SOR/KIM 30/70, 50/50 and 70/30) and a commercial clinoptilolite-rich tuff (BLG). CEC (sodium acetate method) was 95.7 for BLG, 100.9 for KIM and 92.2 cmol kg?1 for SOR, while their mixtures displayed intermediate values. SRF values vary, with the SOR/KIM 30/70 exhibiting the slowest NH4+ release in 29 days (1.7%) compared to the control sample (19%). Zeolites promoted PO4?3 release, while their selectivity for Mg2+ and K+ was clearly affected by their different structure and chemistry. BLG exhibited the strongest selectivity for Mg2+, having the lowest release (39%). The results demonstrate that mixtures of zeolite tuffs could have a potential use in agricultural processes, by improving parameters like: chemistry, mineralogy, CEC and SRF efficiency, and resulting in the production of a competitive and functional soil additive.  相似文献   

12.
Soil fungi are integral to decomposition in forests and other habitats, yet identifying probable functional roles of different taxa is problematic. Here, we compared carbohydrate assimilation patterns derived from stable isotope analyses on cultures with patterns of metabolic activity measured on Biolog® SF-P plates for 12 taxa of soil- and litter-inhabiting saprotrophic fungi isolated from Douglas-fir (Pseudotsuga menziesii) ecosystems. To determine the relative assimilation of carbon from malt extract versus sucrose by 13C stable isotope analyses, we cultured fungi with malt extract (consisting primarily of glucose and maltose) plus either C3- or C4-derived sucrose as carbon sources. Rhodotorula graminis and F. oxysporum assimilated the highest proportion of sucrose, a Mortierella isolate and an unidentified sterile isolate (FPC 341) assimilated the lowest proportion of sucrose, and remaining cultures assimilated similar and intermediate proportions of sucrose. On Biolog plates, low metabolic activity of Mortierella and FPC 341 on sucrose and R. graminis and F. oxysporum on maltose were qualitatively consistent with isotopic results. Assimilation of sucrose calculated isotopically was correlated with the ratio of sucrose: maltose activity calculated from Biolog assays (r2=0.45, P=0.0145, n=12). Metabolic activity on Biolog plates for six other common soil carbohydrates were also determined: glucose, fructose, galactose, cellobiose, lactose, and glycogen. Metabolic activity was greatest overall on maltose and glucose and lowest on fructose. Two of the isolates (Aspergillus flavus and F. oxysporum) had higher metabolic activity on the glucose-containing disaccharide cellobiose than on glucose, strongly suggesting preferential uptake of cellobiose compared to glucose and suggesting the potential ability to use cellulose. The high metabolic activity of these cultures on galactose, a primary constituent of hemicellulose, also suggested cellulolytic capabilities. Our results indicated that stable isotope studies and Biolog assays may provide complementary information to characterize metabolic potential of fungi in forest litter and soil.  相似文献   

13.
氮磷钾配比对木薯养分吸收动态及产量影响   总被引:4,自引:2,他引:2  
【目的】木薯是重要的粮食作物,也是优质的淀粉工业原材料,被认为是非粮生物质能源的最合适原料。氮、 磷、 钾含量水平显著影响木薯产量,但有关木薯养分阶段性累积特征及其对生物量和产量形成影响的相关研究仍较少。本文比较了不同肥料配比情况下,木薯生物量, 氮、 磷、 钾累积量变化趋势,探讨了不同生育期氮、 磷、 钾含量及累积量的重要性及施肥对其影响。【方法】以我国主栽木薯品种华南205为材料,2009年在广东省郁南县丘陵坡地开展田间施肥试验,共设CK、 NP、 NK、 PK、 NPK 5个施肥处理。于苗期、 块根形成期、 块根生长早期、 块根快速膨大期和成熟期调查生物量和氮、 磷、 钾含量,得出氮、 磷、 钾累积动态。以各时期氮、 磷、 钾含量及累积量作为原始变量进行主成分分析,判断各时期氮、 磷、 钾含量及累积量的重要性,并分析不同肥料配比对各时期氮、 磷、 钾含量及累积量的影响。【结果】华南205的生物量累积动态呈S型曲线, 生物量在苗期较小,进入块根形成期后快速提高,当进入成熟期后增长逐渐减缓。氮肥对生物量影响最大,其次是钾肥,磷肥的影响最小。木薯氮含量的变幅为3.99%~0.93%, 磷含量为0.82%~0.26%, 钾含量为1.39%~0.89%。氮、 磷、 钾含量均在苗期最高,且随着生育期的推进不断降低,尤以氮含量降幅最大。不同氮、 磷、 钾肥料配比显著影响木薯的氮、 磷、 钾含量。PK处理的氮含量较NPK处理降低了32.96%,NK处理的磷含量较NPK处理降低了16.21%,NP处理的钾含量较NPK处理降低了50.37%。氮、 磷、 钾累积量与产量显著相关。主成分分析表明木薯整个生育期的营养状况与块根形成期的氮含量、 苗期的钾含量及块根生长阶段的磷含量相关性最大。氮、 磷、 钾的吸收累积量随着木薯生长不断提高,其中块根形成期、 块根生长早期、 块根快速膨大期的氮累积量较大,块根形成期、 块根快速膨大期的磷累积量较大,块根生长早期、 块根快速膨大期、 成熟期的钾累积量较大。主成分分析表明块根快速膨大期的氮、 磷、 钾累积量对整个生育期养分累积影响显著,同时,苗期及块根生长早期的氮、 钾累积量对养分累积总量影响也较大。【结论】木薯氮、 磷、 钾含量随着植株生长不断下降,而累积量却不断提高。不同氮、 磷、 钾肥料配比显著影响木薯的氮磷钾含量及累积量、 物质累积及产量形成,其中氮肥的影响最大,其次是钾肥,磷肥的影响最小。综合分析表明,苗期、 块根形成期、 块根生长早期为氮、 磷肥的最佳施用时期,块根形成期、 块根生长早期及块根快速膨大期为钾肥的补充阶段。  相似文献   

14.
Rapid nitrogen(N) transformations and losses occur in the rice rhizosphere through root uptake and microbial activities. However,the relationships between rice roots and rhizosphere microbes for N utilization are still unclear. We analyzed different N forms(NH+4,NO-3, and dissolved organic N), microbial biomass N and C, dissolved organic C, CH4 and N2O emissions, and abundance of microbial functional genes in both rhizosphere and bulk soils after 37-d rice growth in a greenhouse pot experiment. Results showed that the dissolved organic C was significantly higher in the rhizosphere soil than in the non-rhizosphere bulk soil, but microbial biomass C showed no significant difference. The concentrations of NH+4, dissolved organic N, and microbial biomass N in the rhizosphere soil were significantly lower than those of the bulk soil, whereas NO-3in the rhizosphere soil was comparable to that in the bulk soil. The CH4 and N2O fluxes from the rhizosphere soil were much higher than those from the bulk soil. Real-time polymerase chain reaction analysis showed that the abundance of seven selected genes, bacterial and archaeal 16 S rRNA genes, amoA genes of ammonia-oxidizing archaea and ammonia-oxidizing bacteria, nosZ gene, mcrA gene, and pmoA gene, was lower in the rhizosphere soil than in the bulk soil, which is contrary to the results of previous studies. The lower concentration of N in the rhizosphere soil indicated that the competition for N in the rhizosphere soil was very strong, thus having a negative effect on the numbers of microbes. We concluded that when N was limiting, the growth of rhizosphere microorganisms depended on their competitive abilities with rice roots for N.  相似文献   

15.
Tomato (Lycopersicon esculentum Mill.) plants were grown in silica sand in controlled environments. In the first experiment Ni was added as NiSO4 · 6 H2O to the nutrient solution at 0, 1.5, 7.5, or 37.5 mg L?1 for 6 day beginning 14 day from seeding, them plants were exposed to 0, 0.15, or 0.30 μL L?1 O3, and harvested 3 day later. Visible symptoms of Ni injury developed rapidly and there was distinctive O3 injury. Growth variables were markedly reduced by Ni but O3 response depended on Ni level. In the second experiment 0, 0.3, or 1.5 mg L?1 Ni was provided from the 5th or 14th day onward. There was little effect of duration of Ni treatment on growth. Increasing Ni and increasing O3 decreased growth but there was no interaction. In the third experiment 0, 1.5, and 3.0 mg L?1 Ni treatments were combined with 0, 3.0, and 6.0 mg L?1 Cu prior to 0 or 0.25 μL L?1 O3 treatment. There were complex interactive effects of all three factors on plant growth. Soybean (Glycine max Merr.) plants exposed to Ni and O3 were only slightly affected by Ni or O3 and there was no interaction.  相似文献   

16.

Purpose

The heavily forested Cache la Poudre (CLP) watershed in northern Colorado, USA, was impacted by the High Park wildfire in 2012. The wildfire burned land and vegetation immediately adjacent to the CLP River where blackened, ashy sediment samples were collected from five sites upstream of the City of Fort Collins drinking water intake to evaluate the spatial distribution and characteristics of burned sediments, along with quantifying and characterizing soluble compounds following a leaching experiment.

Materials and methods

At each site, samples were collected from three locations: (1) the edge of the bank adjacent to the water edge (downbank), (2) 1 m upslope of location 1 (midbank), and (3) 2 m upslope of location 1 (upperbank). All solid sediment samples were analyzed for elemental composition, and a subset of solid sediment samples were analyzed with 13C solid-state nuclear magnetic resonance spectroscopy. Sediments were mixed with the background CLP River water collected from upstream of the wildfire and allowed to leach for 6 and 24 h to determine the quantity and quality of water-soluble constituents. Filtered samples were analyzed for dissolved organic carbon (DOC), iron, manganese, and inorganic nutrient concentrations, by optical properties, and for disinfection byproduct (DBP) formation.

Results and discussion

Percent carbon and nitrogen content of the solid sediments were good predictors of leachate DOC concentration. The mean fluorescence index was higher for wildfire-impacted sediment leachates (1.50) compared to the background CLP River water (1.37), which may be due to changes in DOM molecular weight and oxidation of organic matter. All sediment leachates showed consistently higher haloacetonitrile and chloropicrin yields (DBP concentration/DOC concentration) compared to background CLP River water, whereas carbonaceous DBPs did not.

Conclusions

The collected sediments showed that burned material accumulated downstream near the river and was composed of inputs from burned soil and biomass along with the mobilization of unburned terrestrial material. The leachates of these sediments have different characteristics compared to the background CLP River water, indicating that DOM leached from sediments following a wildfire may increase aquatic DOC concentrations and N-DBP formation.
  相似文献   

17.
Total, extractable, and microbial C, N, and P, soil respiration, and the water stability of soil aggregates in the F-H layer and top 20 cm of soil of a New Zealand yellow-brown earth (Typic Dystrochrept) were compared under long-term indigenous native forest (Nothofagus truncata), exotic forest (Pinus radiata), unfertilized and fertilized grass/clover pastures, and gorse scrub (Ulex europaeus). Microbial biomass C ranged from 1100 kg ha-1 (exotic forest) to 1310kg ha-1 (gorse scrub), and comprised 1–2% of the organic C. Microbial N and P comprised 138–282 and 69–119 kg ha-1 respectively, with the highest values found under pasture. Microbial N and P comprised 1.8–7.0 and 4.9–18% of total N and P in the topsoils, and 1.8–4.4 and 23–32%, respectively, in the F-H material. Organic C and N were higher under gorse scrub than other vegetation. Total and extractable P were highest under fertilized pasture. Annual fluxes through the soil microbial biomass were estimated to be 36–85 kg N ha-1 and 18–36 kg P ha-1, sufficiently large to make a substantial contribution to plant requirements. Differences in macro-aggregate stability were generally small. The current status of this soil several years after the establishment of exotic forestry, pastoral farming, or subsequent reversion to scrubland is that, compared to levels under native forest, there has been no decline in soil and microbial C, N, and P contents or macro-aggregate stability.  相似文献   

18.
Streptomycin and cycloheximide were added (3 and 2 mg g-1 dry soil, respectively) single and in combination to a forest soil to follow their possible degradation and their effects on soil mineralization-immobilization processes. After 0, 1, 2, 4, 7, and 10 days of incubation at 25°C and 60% water-holding capacity, measurements were taken of microbial biomass C and N, the evolution of CO2, exchangeable NH inf4 sup+ , 0.5M K2SO4-extractable organic C, and total N in both unfumigated and CHCl3-fumigated soil. The results indicated that during the first 2 days of incubation, soil microorganisms were killed by the antibiotics and/or by CHCl3 and used subsequently as a substrate by the survivors. Thereafter, surviving microorganisms probably also started to use biocidal molecules as an energy and nutrient source. The ratios of biomass C to biomass N and of CO2 evolved to net NH inf4 sup+ produced indicated that both biocides had non-target effects for most of the incubation. Thus, streptomycin and cycloheximide are not suitable in determining the relative contribution from fungi and bacteria to mineralization-immobilization processes in soils.  相似文献   

19.
Endosperm texture in wheat (Triticum aestivum L.) is determined by the Pina and Pinb genes located within the Hardness (Ha) locus on chromosome 5D. We have previously shown that Pina and Pinb can act alone to produce intermediate-textured grain or act together to produce soft grain. The objective here was to isolate the role of PINA and PINB individually and in combination on milling and bread traits by analyzing F3 recombinant lines created by crosses between PINA and PINB null cultivars with Pina-D1a and Pinb-D1a overexpressing transgenic lines. Homozygous lines that contained either the Pina-D1b/Pinb-D1a (Pina null) or Pina-D1a/Pinb-D1e (Pinb null) Ha locus with or lacking transgenically added Pina or Pinb were analyzed for milling and bread traits. Addition of Pina-D1a to Pina-D1b/Pinb-D1a and addition of Pinb-D1a to Pina-D1a/Pinb-D1e Ha locus genotypes gave soft grain with lower flour yield, flour ash, and a higher proportion of small flour particles. Addition of Pinb-D1a produced greater negative effects on loaf volume than addition of Pina-D1a. Grain hardness, flour protein, flour ash, and mixograph water absorption were positively correlated, which is indicative of the complex phenotype conditioned by PINs. The results demonstrate that PIN overexpression leads to a reduction in grain hardness and reduced flour yield, flour ash, and flour particle size. PIN expression also results in reduced loaf volume and flour water absorption.  相似文献   

20.
Two vermicompost treatments providing 45 (V1) and 90 (V2) kg P ha?1 and mycorrhizae (M) inoculation were evaluated alone and in combinations for wheat (Triticum aestivum L.) growth and soil fertility status. The treatments included; the Control, nitrogen (N): dipotassium oxide (K2O) as basal dose (BD; 120:60 kg ha?1), N: phosphorus pentoxide (P2O5): K2O as recommended dose (RD; 120:90:60 kg ha?1), BD+Myccorhiza (BDM), BD+V1 (BDV1), BDM+V1 (BDMV1), BD+V2 (BDV2), and BDM+V2 (BDMV2). Combination of mycorrhizae and vermicompost (BDMV1 and BDMV2) significantly and maximally improved the growth, plant N, phosphorus (P), and micronutrient concentrations over the control, reduced the soil pH by 5 and 6%, increased OM by 25 and 112%, total N by 41%, and extractable P up to 200% while the extent of improvement was directly related to the content of added vermicompost. Results indicated that vermicompost at either level synergistically affected the mycorrhizae in plant nutrition as well as improved soil fertility status and soil chemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号