首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
pH对土壤吸持磷酸根的影响及其原因   总被引:22,自引:0,他引:22       下载免费PDF全文
本文选择了浙江、江苏15个性质变化范围较大的土壤样品,研究在两种支持电解质、不同pH条件下对磷酸根的吸持反应。结果表明,加碱提高强酸性土壤的pH值,导致交换性铝的水解和羟基铝聚合物的生成,增加对磷的吸持。磷酸根同酸性土壤的反应,可促进交换性铝的水解,释放出H+,降低体系的pH。在CaCl2介质中,当pH>6时,可能有磷酸钙类盐形成,使溶液中磷浓度显著降低。有机质对土壤吸持磷有重要影响。在低pH下有机质通过与Al3+形成络合物,阻碍溶液中A13+的水解,并与磷酸根竞争羟基铝化合物表面的反应点位,从而降低酸性土壤对磷酸根的吸附量。  相似文献   

2.
磷酸根在矿物表面的吸附-解吸特性研究进展   总被引:3,自引:0,他引:3  
严玉鹏  王小明  胡震  王慧  殷辉  刘凡  冯雄汉 《土壤》2021,53(3):439-448
综述了磷酸根在一些常见土壤矿物表面吸附–解吸特性的研究进展。磷酸根在矿物表面的吸附特性受环境pH、离子强度、温度、反应时间、矿物类型等多种因素的共同影响。一般说来,矿物表面的磷吸附量随pH降低而增加,受离子强度的影响较小。磷酸根在矿物表面的吸附动力学过程可分为快速吸附过程和慢速吸附过程,且在弱结晶矿物中存在微孔扩散过程。磷酸根在矿物表面的解吸过程通常存在两个阶段(初始快速解吸和随后的缓慢解吸),在解吸反应后期甚至还会发生再吸附。此外,磷酸根的吸附特性也受共存阴离子配体或金属阳离子的影响。其中,共存阴离子通过位点竞争、静电作用和空间位阻效应等机制影响磷酸根的吸附。天然有机质(包括胡敏酸和富里酸)降低了磷酸根在矿物表面的吸附,特别是在低p H条件下。通常,富里酸比胡敏酸更能有效降低磷酸根在矿物表面的吸附。金属阳离子可通过表面静电效应、形成三元络合物以及形成表面沉淀等机制促进磷酸根和金属在矿物表面的共吸附。最后,展望了与磷酸根在矿物表面吸附特性有关的研究热点和方向。  相似文献   

3.
程程  姜军  徐仁扣 《土壤学报》2011,48(3):557-562
研究了离子强度对2种可变电荷土壤中磷酸根吸附和解吸的影响。结果表明,当pH分别大于3.7和4.0时,红壤和砖红壤对磷酸根的吸附量随离子强度的增加而增加;当pH分别小于3.7和4.0时,红壤和砖红壤对磷酸根的吸附量随离子强度呈相反的变化趋势。电解质主要通过改变离子专性吸附面上的电位来影响磷酸根的吸附。Zeta电位的测定结果表明,当pH大于土壤胶体的等电点(IEP)时,吸附面上电位为负值,且随离子强度增加数值减小,对磷酸根的排斥力减小,土壤表面对磷酸根的吸附量增加;当pH小于IEP时,吸附面上的电位为正值,它随离子强度增加而减小,不利于磷酸根的吸附。解吸实验的结果表明,吸附于可变电荷土壤表面的磷酸根在去离子水中的解吸量高于0.1 mol L-1NaNO3体系中的解吸量。这同样由于电解质浓度对土壤表面吸附面上的电位的影响所致。  相似文献   

4.
土壤中可变电荷表面磷的解吸特性   总被引:6,自引:1,他引:6       下载免费PDF全文
本文研究了土壤中可变电荷表面磷的解吸特性。结果表明,磷解吸量与吸附量成正相关,并与直线方程和指数方程拟合。其平均解吸百分数依次为:高岭石(66%)>无定形硅酸铝(60%)>砖红壤粘粒(55%)>>无定形氧化铁(29%)>三水铝石(23%)>>火山灰粘粒(9%)。解吸体系的pH是借对磷酸根质子的解离和表面电荷的影响而制约解吸量。F-和OH-离子对磷酸盐化的三水铝石连续解吸的结果表明,磷酸根和氟离子在三水铝石表面的吸附量或剩余量之和均较为接近,这揭示了H2PO4-和F-离子之间既竞争又相互补充表面空位。它可作为一种区分磷吸附形态和沉淀的定量方法来进一步研究。  相似文献   

5.
黄土性土壤对磷的吸附与解吸   总被引:25,自引:1,他引:25       下载免费PDF全文
曹志洪  李庆逵 《土壤学报》1988,25(3):218-226
本文报道了黄土性土壤及作为对照的中性水稻土和酸性红壤对磷的吸附与解吸特性。实测吸附曲线与简单Langmuir等温吸附方程最为吻合,全部供试样本的相关系数均达到显著水平;而与Temkin方程和Freundlich方程只是部分吻合。与酸性红壤相比,黄土性土壤是一种弱吸磷能力的土壤,评价其吸磷能力的最适参数是根据简单Langmuir方程求出的最大吸磷量(qm),支配qm的土壤性质主要是游离氧的铁含量,其次是粘粒和CaCO3的含量。黄土性土壤对吸附磷的解吸能力很强,其等温解吸曲线也是可以分成三个区域,代表各种不同能级的吸附磷被解吸的过程。  相似文献   

6.
本试验测定了浙江省几种代表性土壤对磷的等温吸持特性。实测值与Frundlich、Langmuir、两项式Langmuir和Temkin方程都很符合,相关系数变化范围在0.919-0.999之间,都达到极显著水平。其中以简单Langmuir等温式与本实验资料最为吻合。从Langmuir方程得到的土壤吸持特性值(k×qm)被认为与土壤供磷特性有关。几种供试样品的(k×qm)值是:针铁矿21100>黄筋泥4218>黄筋泥田991>青紫泥798>粉泥田660>高岭石485>老黄筋泥田423>泥质田298。根据土壤吸持特性值以田菁进行盆栽试验来估算作物磷肥需要量,结果表明,供磷强度0.3ppm P基本能满足田菁早期生长的需要。为使不同土壤达到相同的供磷强度,(k×qm)值大的土壤要求更高的有效磷值。供试土壤的几种磷素指标:E值、Bray1-P值和(NaOH-Na2C2O4)法值对(k×qm)值的变化比较敏感,而EDTA-P和Olsen-P指标对(k×qm)值的变化较为迟钝。  相似文献   

7.
土壤对镉的吸附与解吸——Ⅱ.吸附势与解吸势   总被引:7,自引:0,他引:7       下载免费PDF全文
陈怀满 《土壤学报》1988,25(3):227-235
本文提出了吸附势(logKa)和解吸势(logKd或相对解吸势logKdr)两个有关吸附和解吸的强度概念,并进行了理论推导和实验验证。logKa和logKd或logKdr是影响土壤或胶体吸附和解吸因素的综合反应。实验证实logKa可用于表征土壤胶体对Cd的相对选择性,并且对胶体吸附Cd有着良好的预测性;logKdr可用于表征土壤胶体对Cd的相对固定能力,并可用于估测Cd的污染程度。盆栽试验表明,随着土壤胶体logKa的增加,或logKdr的降低,稻草或糙米中Cd的含量下降。可以预期,吸附势和解吸势不但在土壤物理化学,土壤环境化学研究中,而且在植物营养化学、水化学、以及界面化学等方面有可能获得实际应用。  相似文献   

8.
宁夏灌淤土对磷吸附的初步研究   总被引:8,自引:0,他引:8  
何文寿 《土壤学报》1992,29(2):142-149
本文报道了宁夏灌淤土12个代表性土样对磷的等温吸附与解吸特性。实测吸附曲线与Preundlich、Langmuir和Temkin三种等温吸附方程都很吻合。全部供试样品的相关系数变化在0.931-0.999之间,均达极显著水平(p<0.01)。其中Langmuir等温式与本实验资料最为吻合。供试土壤对磷的最大吸附量(Xm)变化在172-460μgP/g之间,平均为347±28μgP/g。影响其大小的因子主要是物理性粘粒和CaCO3,含量,均达极显著正相关。灌淤土不同土层的吸磷量大小依次为:剖面24>23>21>22,而解吸磷能力大小依次为:剖面23>22>21>24。磷的解吸量与吸附量之间呈极显著正相关。根据本试验数据,土壤对磷的等温吸附曲线可以用来预测土壤需磷量。  相似文献   

9.
施磷对玉米吸磷量、产量和土壤磷含量的影响及其相关性   总被引:16,自引:0,他引:16  
为了给玉米磷高效利用提供理论依据, 在低磷土壤(Olsen-P 4.9 mg·kg-1)上, 通过田间试验, 研究了施磷0(T0)、50 kg(P2O5)·hm-2(T1)、100 kg(P2O5)·hm-2(T2)、200 kg(P2O5)·hm-2(T3)、1 000 kg(P2O5)·hm-2(T4)对两个玉米品种"鲁单9002" (LD9002)、"先玉335"(XY335)的产量、磷素吸收利用及根际磷动态变化的影响。结果表明: 两玉米品种根际土、非根际土速效磷含量在不同生育时期都表现为T12O5)·hm-2的T3处理非根际土转化为根际土土壤磷的量最大, 同时玉米生物量、产量、磷转移量也达到最高, 而施磷1 000 kg(P2O5)·hm-2处理玉米生物量、产量与中磷水平相比没有显著增加, 但植株吸磷量较高。XY335的花后磷转移量小于LD9002。相关分析表明, LD9002根际土、非根际土速效磷含量与茎、叶吸磷量之间显著相关, 以播种后79 d与茎、叶磷浓度、吸磷量、生物量、产量之间的相关系数最高; 而XY335根际土、非根际土速效磷含量与茎、叶磷浓度之间显著相关, 在播种后47 d期间与茎、叶磷浓度、吸磷量、生物量、产量之间的相关性最好。因此, 在低磷土壤上, LD9002和XY335分别在播种后79 d和47 d时是植株对磷的敏感期, 可以通过测试根际土、非根际土速效磷含量来反映土壤的供磷状况; LD9002在79 d时最大吸磷量需要的根际土、非根际土速效磷含量分别为54.95 mg·kg-1、32.99 mg·kg-1, XY335品种在47 d时最大吸磷量需要的根际土、非根际土速效磷含量分别为51.24 mg·kg-1、35.35 mg·kg-1; 施磷量1 000 kg(P2O5)·hm-2处理两品种玉米产量、生物量、磷积累量与施磷量100~200 kg(P2O5)·hm-2处理没有显著差异。  相似文献   

10.
本试验研究了一种合成水钠锰矿对Mn2+的持留机理和Mn2+被吸附后的去向,并进一步探讨了三种锰盐溶液(MnSO4,MN(NO3)2和MnCl2)对水钠锰矿晶体结构变化的影响。.试验结果表明,水钠锰矿对MN2+离子的吸附包括专性吸附和非专性吸附。随着吸附后的老化过程,吸附在矿物表面的锰逐渐扩散到晶格内,其置换性随之降低。.在MnSO4,Mn(NO3)2和MnCl2溶液中,水钠锰矿最终转化成六方锰矿(Nsutite),一种比水钠锰矿更稳定,结晶更好的晶体。MnSO4溶液在加入水钠锰矿后pH值比其它两种溶液高,除生成六方锰矿外还形成大量拉锰矿(Ramsdellite)。随着生成新矿物的老化,最初被吸附的Mn被固定在晶格内而失去其置换性和生物有效性。  相似文献   

11.
The relationship between sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP) for all soils has traditionally been assumed to be similar to that developed by the United States Salinity Laboratory (USSL) in 1954. However, under certain conditions, this relationship has been shown not to be constant, but to vary with both ionic strength and clay mineralogy. We conducted a detailed experiment to determine the effect of ionic strength on the Na+–Ca2+ exchange of four clay minerals (kaolinite, illite, pyrophyllite, and montmorillonite), with results related to the diffuse double‐layer (DDL) model. Clays in which external exchange sites dominated (kaolinite and pyrophyllite) tended to show an overall preference for Na+, with the magnitude of this preference increasing with decreasing ESP. For these external surfaces, increases in ionic strength were found to increase preference for Na+. Although illite (2:1 non‐expanding mineral) was expected to be dominated by external surfaces, this clay displayed an overall preference for Ca2+, possibly indicating the opening of quasicrystals and the formation of internal exchange surfaces. For the expanding 2:1 clay, montmorillonite, Na+–Ca2+ exchange varied due to the formation of quasicrystals (and internal exchange surfaces) from individual clay platelets. At small ionic strength and large ESP, the clay platelets dispersed and were dominated by external exchange surfaces (displaying preference for Na+). However, as ionic strength increased and ESP decreased, quasicrystals (and internal exchange surfaces) formed, and preference for Ca2+ increased. Therefore, the relationship between SAR and ESP is not constant and should be determined directly for the soil of interest.  相似文献   

12.
The effects of total electrolyte concentrations of the equilibrium solutions (t.e.c.) on Ca2+-Na+ exchange equilibria in two soil samples (high and low in organic matter, clay content and CEC) were studied. Homoionic (Na+-saturated) soil samples were equilibrated with solutions having a large range in sodium adsorption ratio (SAR) at 25, 50, 75 and 100 meq. 1-1 t.e.c. The exchange equilibria data were analysed, using a thermodynamic approach and the selectivity coefficients of Gapon (1933), Vanselow (1932) and Krishnamoorthy et al. (1948) (KG, KV and KKDO). At a given proportion of Ca2+: Na+ in the equilibrium solution, the development of the exchangeable sodium percentage (ESP) in both soil samples increased with the increase in t.e.c. At a given SAR, the effect of t.e.c. on the development of ESP was less on a soil sample with high organic matter (O.M.), clay content and cation exchange capacity (CEC) than on a soil sample with low O.M., clay content and CEC. The values of exchange selectivity coefficients decreased with the increase in t.e.c, and did not remain constant throughout the exchange isotherm for any of the t.e.c. tried.  相似文献   

13.
Sorption of primisulfuron on soil, and inorganic and organic soil colloids   总被引:2,自引:0,他引:2  
Inorganic and organic soil colloids are responsible for the sorption of many pesticides. We studied the sorption of the herbicide primisulfuron [methyl 2 N‐[[[[[4,6‐bis(difluoromethoxy)‐2‐pyrimidinyl]amino]carbonyl]amino]sulfonyl]benzoate] on Fe3+‐, Al3+‐, Ca2+‐ and Na+‐exchanged montmorillonite, soil organic matter (H+‐ and Ca2+‐saturated), amorphous iron oxide, and three soils in aqueous media. The sorption on soils was negatively correlated with pH. Ca2+‐ and Na+‐exchanged montmorillonites are ineffective in the sorption of primisulfuron. The sorption on Fe3+‐ and Al3+‐exchanged montmorillonite is rapid and follows the Freundlich equation. Fourier transform infrared (FT‐IR) and X‐ray powder diffraction studies of the Fe3+‐ and Al3+‐montmorillonite samples after the interaction with primisulfuron in chloroform solution suggest that primisulfuron is adsorbed and degraded in the interlayer. Humic acid is more effective in the sorption than is Ca humate, suggesting that the pH of the suspension (3.5 for humic acid and 6.0 for Ca humate) has a strong influence on the sorption of primisulfuron. Experiments on amorphous iron oxide indicate similar pH dependence. Infrared spectra indicate that the protonation of the pyrimidine nitrogen moiety of herbicide and subsequent hydrogen bonding with the surface hydroxyls of Fe oxide is the mechanism acting in the primisulfuron sorption.  相似文献   

14.
The stability of soil aggregates is closely connected with particle interaction determined by the combination of the van der Waals attractive force and electric repulsive force according to Derjaguin–Landau–Verwey–Overbeek (DVLO) theory. Recently, hydration force and dispersion force were put forward to explain the different behaviours of cations or anions of the same valence at the ion–surface interface, namely the specific ion effect, where the application of classical DLVO theory had failed. Here, we employed two cation species, potassium and sodium (K+ and Na+), to discover how the specific ion effect would influence clay aggregate stability. The stability of K+– and Na+–montmorillonite aggregates was determined under different electrolyte concentrations, indicated by the mass percentages of particles with diameters of < 10, < 5 and < 2 µm released after aggregate breakdown. There were large differences in the stability of the K+‐ and Na+‐ aggregates, and strong specific ion effects were shown. These effects could not be explained by the differences in ionic size, hydration and ion–surface dispersion forces between K+ and Na+. We have proved that the difference in polarization between the K+ and Na+ at the charged clay surface was responsible for the specific ion effects. The difference in polarization observed between the adsorbed K+ and Na+ was hundreds to thousands of times larger than classical values; these results were also verified independently with different methods. The strong non‐classical polarization of the adsorbed cation decreased the electric field and the electrostatic repulsion between adjacent particles in the aggregates, and thus strongly increased the aggregate stability.  相似文献   

15.
The objective of this study was to investigate the effects of mono‐ and polyvalent cations on sorption of the two hydrophobic compounds nonylphenol (NP) and phenanthrene (Phe). To this end, exchange sites of a sandy soil were saturated with either Na+, Ca2+, or Al3+ and excess salts were removed by washing. The samples were then sterilized and either stored moist, dried at room temperature, or at 20°C, 60°C, or 105°C in a vented oven. Saturation with Na+ led to an increase of dissolved organic C (DOC) concentration in the soil water extracts, whereas the polyvalent cations Ca2+ and Al3+ decreased it. The 1H‐NMR relaxometry analyses showed that Al3+ restricted the mobility of water molecules that are confined within the SOM structure to a higher extent than Ca2+ or Na+. According to contact‐angle (CA) analyses, cation treatment did not significantly change the wetting properties of the samples. Batch sorption–desorption experiments showed no clear salt‐treatment effects on the sorption and desorption equilibria or kinetics of NP and Phe. Instead, the sorption coefficients and sorption hysteresis of NP and Phe increased in dry soil. With increasing drying temperature the CA of the soils and the sorption of both xenobiotics increased significantly. We conclude that structural modifications of SOM due to incorporation of polyvalent cations into the interphase structure do not modify the sorption characteristics of the soil for hydrophobic compounds. Instead, increasing hydrophobization of organic soil constituents due to heat treatment significantly increased the accessible sorption sites for nonpolar organic compounds in this soil.  相似文献   

16.
Exchange reactions between 0.0in AlCl3 solutions of different pH and Ca-saturated montmorillonite, vermiculite, illite, and soils from the Park Grass Experiment at Rothamsted and the Deerpark Experiment, Wexford, Ireland, showed that Al3+ and Al(OH)2+ were adsorbed from solutions of pH > 4.0 and Al3+ and H+ from solutions of pH < 3.0. When Al was adsorbed, the cation exchange capacity of Ca-saturated soils and clays increased. Conventional Ca: Al exchange isotherms showed that Al3+ was strongly preferred to Ca2+ on all soils and clays. The equilibrium constant for Ca: Al exchange, K, was identical for soils before and after oxidizing their organic matter and did not vary, for any exchanger, with Al-saturation or the initial pH of the AlCl3 solution. This proved the validity of the procedure used for calculating exchangeable Al3+. K values for Ca:Al exchange favoured Al3+ in the order: vermiculite > Park Grass soil > Deerpark soil > illite > montmorillonite. The influence of surface-charge densities of the clay minerals on this order is discussed and a method proposed and tested for calculating the K value of a soil from its mineralogical composition.  相似文献   

17.
胡敏酸对铵钾在粘土矿物上交互作用的影响   总被引:1,自引:0,他引:1  
Interaction of ammonium (NH+4) and potassium (K+) is typical in field soils. However, the effects of organic matter on interaction of NH+4 and K+have not been thoroughly investigated. In this study, we examined the changes in major physicochemical properties of three clay minerals (kaolinite, illite, and montmorillonite) after humic acid (HA) coating and evaluated the influences of these changes on the interaction of NH+4 and K+on clay minerals using batch experiments. After HA coating, the cation exchange capacity (CEC) and specific surface area (SSA) of montmorillonite decreased significantly, while little decrease in CEC and SSA occurred in illite and only a slight increase in CEC was found in kaolinite. Humic acid coating significantly increased cation adsorption and preference for NH+4, and this effect was more obvious on clay minerals with a lower CEC. Results of Fourier transform infrared spectrometry analysis showed that HA coating promoted the formation of H-bonds between the adsorbed NH+4 and the organo-mineral complexes. HA coating increased cation fixation capacity on montmorillonite and kaolinite, but the opposite occurred on illite. In addition, HA coating increased the competitiveness of NH+4 on fixation sites. These results showed that HA coating affected both the nature of clay mineral surfaces and the reactions of NH+4 and K+with clay minerals, which might influence the availability of nutrient cations to plants in field soils amended with organic matter.  相似文献   

18.
B.K.G. Theng 《Geoderma》1976,15(3):243-251
The isotherms at 20°C for the adsorption of 14C-labelled fulvic acid from aqueous solutions by montmorillonite containing different exchangeable cations, have been determined. Below a concentration of 0.45 mg/ml and at near neutral pH, all samples give linear isotherms, the slope of which increases in the order Ba2+ < Ca2+ < Zn2+ < La3+ < Al3+ <Cu2+ < Fe3+. In the absence of interlayer expansion, the shape of the isotherms is interpreted in terms of solute entry into intercrystalline pores within a clay domain. The affinity of fulvic acid for the clay surface is related to the ionic potential or polarising power of the exchangeable cation. It is inferred that fulvic acid adsorbs by hydrogen bonding between an anionic group of the acid and a water molecule in the primary hydration shell of the saturating cation. Comparison of the data with those for the humic acid extracted from the same organic matter source, indicates that secondary interactions between adsorbed molecules or directly with the montmorillonite surface, contribute to the overall affinity. With samples saturated with Al3+, Fe3+, and Cu2+ ions, part of the adsorbed fulvic acid may also be attached to the clay by a complexation reaction involving the metals as such, or when they exist as polyhydroxy compounds at the mineral surface.  相似文献   

19.
除草剂咪草烟在土壤上吸附-脱附过程及作用机理   总被引:2,自引:0,他引:2       下载免费PDF全文
本文研究了咪唑啉酮类除草剂咪草烟在不同土壤固-液相间的分配及与土壤组分作用的定量相关性。结论指出:咪草烟在土壤固-液相的分配主要受土壤粘粒,有机质及土壤pH的影响。它们在土壤上的吸附-脱除均可用Freundlich方程描述;通过运用红外及X-衍射技术,从分子水平研究了咪草烟与蒙脱石的作用机理,发现咪草烟与蒙脱的作用不仅发生在表面,而且咪草烟还能进入蒙脱石内层与其层间阳离子形成配合物。  相似文献   

20.
The adsorption of carbendazim by peat and montmorillonite was studied as a function of the exchangeable cations and temperature. The adsorption on soils was also studied. The kinetics of carbendazim adsorption on peat showed that adsorption equilibrium was reached within 1 h. The order of adsorption of carbendazim on peat was as follows: H+-peat > Cu2+-peat > Co2+-peat > Mg2+-peat > K+-peat, and the thermodynamic parameters appeared to suggest an adsorption mechanism involving hydrogen bonds, although in the H+, Cu2+ and Co2+ samples a protonation process and adsorption of the protonated species were also likely. The kinetics of carbendazim adsorption on montmorillonite (mont.) showed that equilibrium was reached within 1 h. The order of adsorption was: H+-mont. > Cu2+-mont. > Co2+-mont. > Ca2+-mont., the adsorption on the H+ and Cu2+ samples being much greater than that on the other samples. For the H+ and Cu2+ samples, the thermodynamic parameters appeared to suggest a double mechanism: physical adsorption, and protonation and adsorption by ion exchange. The most probable mechanism for the adsorption of carbendazim on the Co2+ and Ca2+ samples was physical bonding. The capacity for adsorption of this fungicide on soil was dependent on the organic matter, nitrogen and clay content, as well as on the cation exchange capacity. No significant correlation was found with pH, C/N ratio or free iron content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号