首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
长期施肥对潮土耕层土壤和作物籽粒微量元素动态的影响   总被引:4,自引:0,他引:4  
Micronutrient status in soils can be affected by long-term fertilization and intensive cropping.A 19-year experiment (1990-2008) was carried out to investigate the influence of different fertilization regimes on micronutrients in an Aquic Inceptisol and maize and wheat grains in Zhengzhou,China.The results showed that soil total Cu and Zn markedly declined after 19 years with application of N fertilizer alone.Soil total Fe and Mn were significantly increased mainly due to atmospheric deposition.Applications...  相似文献   

2.
Modern agricultural systems have to provide enough micronutrient output to meet all the nutritional needs of people. Accordingly, knowledge on micronutrient status in soil and crop edible tissues is necessary. This study was carried out to investigate zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu) concentration of calcareous paddy soil and the relative rice grain. Rice crops (straw, hull, and grain) and associated surface soils (0–25 cm) were collected from 136 fields and analyzed for total and diethylene triamine pentaacetic acid (DTPA) available Zn, Fe, Mn, and Cu. The DTPA-Zn concentration in more than 50% of paddy soils was less than its critical deficiency concentration (2 mg kg−1), while the concentrations of DTPA Fe, Mn, and Cu were sufficient. The grain Zn concentration of more than 54% of the rice samples was less than 20 mg kg−1. About 55% and 49% of the rice samples were deficient in Mn and Cu, respectively, while the Fe concentration in rice grains was sufficient. A significant negative correlation was found between the CaCO3 content and soil DTPA-extractable Zn, Fe, Mn, and Cu. There were significant relationships between the total soil phosphorus and DTPA-extractable micronutrient concentrations. By considering the average daily rice consumption of 110 g per capita, the Zn, Fe, Mn, and Cu intake from rice consumption was estimated to be 2.4, 7.7, 1.6, and 0.7 mg for adults, respectively.  相似文献   

3.
We carried out a study to see the effect of contaminated water of Nullah Dek on fine rice paddy and straw yields and trace elements accumulation in different parts of rice plants and soil. A site was selected near the bank of Nullah Dek at Kot Pindi Das in the District of Sheikhupura, Pakistan. The water of this nullah is contaminated by industrial effluents carrying different micronutrients. This water was employed to grow rice crop. Water samples were collected before transplanting and during the season with 15 days interval for analysis from 20 July to 1 November 2002 from a spot near village Shamke. Three fine rice varieties, viz. Super Basmati, Shaheen Basmati and Basmati 2000 were transplanted. These rice varieties were grown up to maturity. Paddy and straw yields data were recorded. Six composite soil samples from three random spots were collected from the experimental site before the start of the study to see the status of trace elements in soil. After the harvest of rice crop, soil, paddy and straw samples were analysed for Zn, Cu, Fe and Mn. The chemical analysis of Nullah Dek water showed that total salts concentration was greater than the safe limit, i.e. electric conductance (EC) > 1.0 dS m−1. Even sodium adsorption ratio (SAR) was very high, but there was no problem of high residual sodium carbonate (RSC). Zn, Cu, Fe and Mn were present but within safe limits. The water of Nullah Dek remained within permissible limits of irrigation from onset of rainy season till 15 October. There was an increase in EC, SAR and trace elements concentrations after 15 October but within safe limits. Soil analysis revealed its saline nature, devoid of sodicity. Among trace elements, the zinc ranged between deficiency (<0.5 mg kg−1) and adequate limits (>1.0 mg kg−1). Copper, Mn and Fe were present in adequate amounts. After the harvest of rice crop there was a slight decrease in pH, ECe and SAR at both the depths, while the concentrations of all trace elements were slightly increased with more in upper layer than the lower layer. Shaheen Basmati produced the maximum paddy yield followed by Basmati 2000 and then Super Basmati. The chemical analysis of paddy samples indicated a sufficient accumulation of zinc (1.68–1.78 mg kg−1), copper (1.38–1.45 mg kg−1), iron (6.12–6.37 mg kg−1) and manganese (2.22–2.42 mg kg−1). Analysis of rice straw also showed sufficient accumulation of zinc (27.50–28.50 mg kg−1), copper (20.0–20.50 mg kg−1), iron (270–280 mg kg−1) and manganese (2.38–2.41 mg kg−1).  相似文献   

4.
Management practices have significant effects on crop micronutrient contents. This study examined effects of applying chemical fertilizers of nitrogen (N), phosphorus (P), and potassium (K) (NPK), alone or supplemented with straw or manure, under a wheat-maize cropping system in a 18-year experiment, on the crops’ iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) contents throughout the crops’ development. The micronutrient contents of both wheat and maize were above critical values during vegetative development, but Zn contents of maize ear leaves were sub-sufficient under all treatments. The wheat grain Mn, Cu, and Zn contents were lower under fertilized treatments than in unfertilized controls. Nutrient balance calculations showed that NPK application alone or with straw resulted in deficits of the four micronutrients, but not application of NPK supplemented with manure. Hence, application of micronutrients, such as Zn, through organic or inorganic fertilizers is recommended for this cropping system.  相似文献   

5.
稻米和土壤微量元素的空间变异   总被引:1,自引:0,他引:1  
Consumption of rice is the main source of micronutrients to human in Asia. A paddy field with unknown anthropogenic contamination in Deqing County, Zhejiang Province, China was selected to characterize the spatial variability and distribution of micronutrients in rice grain and soil. A total of 96 paired soil and rice grain samples were collected at harvest. The micronutrients in the soil samples were extracted by diethylenetriamine pentaacetic acid (DTPA). The mean micronutrient concentrations in rice grain were 3.85 μg Cu g-1, 11.6 μg Fe g-1, 39.7 μg Mn g-1, and 26.0 μg Zn g-1. The mean concentrations were 2.54 μg g-1 for DTPA-Cu, 133.5 μg g-1 for DTPA-Fe, 30.6 μg g-1 for DTPA-Mn, and 0.84 μg g-1 for DTPA-Zn. Semivariograms showed that measured micronutrients in rice grain were moderately dependent, with a range distance of about 110 m. The concentrations of the DTPA-extractable micronutrients all displayed strong spatial dependency, with a range distance of about 60 m. There was some resemblance of spatial structure between soil pH and the grain Cu, Fe, Mn, and Zn. By analogy, similar spatial variation was observed between soil organic matter (SOM) and DTPA-extractable micronutrients in the soil. Kriging estimated maps of the attributes showed the spatial distributions of the variables in the field, which is beneficial for better understanding the spatial variation of micronutrients and for potentially refining agricultural management practices at a field scale.  相似文献   

6.
稻草与生石灰对设施土壤微量元素含量和番茄产量的影响   总被引:3,自引:0,他引:3  
为了探究设施内添加稻草与生石灰对土壤微量元素含量和番茄产量的影响,以长期施肥定位试验为依托,比较了施用鸡粪(M)的基础上,添加稻草(MR)、生石灰(MCa)、稻草与生石灰同时添加(MRCa)各处理全土及各粒级团聚体中有效态Fe、Mn、Cu、Zn含量和番茄产量的变化。结果表明:(1)添加稻草可增加土壤中有效态Fe、Mn、Zn含量,MR处理较M处理分别增加3.2%,80.9%,15.1%,对有效态Cu含量无显著影响;添加生石灰也可增加土壤中微量元素含量,其中Mn含量增加显著。土壤中有效态Fe、Mn、Cn、Zn含量与pH呈极显著负相关(P<0.01),与有机质含量呈极显著正相关(P<0.01)。(2)随着土壤团聚体粒级的减小,有效态微量元素含量呈下降趋势。添加稻草和生石灰可增加1~0.25mm粒级中有效态Mn含量,MRCa处理较其他处理增加6.6%~46.6%;添加稻草可增加<0.25mm粒级中有效态Zn含量。土壤中有效态Fe含量与<1mm粒级中含量呈显著正相关(P<0.01);土壤中有效态Mn、Zn含量分别与各粒级中含量呈显著正相关(P<0.01);土壤中有效态Cu含量与1~0.25mm粒级中含量呈显著正相关(P<0.01)。(3)施入稻草或生石灰可增加番茄产量,且稻草和生石灰同时施入产量最高,MRCa处理较MCa、MR处理分别增加12.6%,33.8%。土壤有效态Fe、Cu含量与产量正相关,其中有效态Fe含量对产量具有直接作用,决策系数最高,土壤有效态Cu含量对产量具有间接作用。因此,可以通过长期添加稻草和适量生石灰缓解设施土壤微量元素短缺的现状,且可获得最高作物产量,为设施内土壤可持续利用和设施农业可持续发展提供保障。  相似文献   

7.
Micronutrient deficiencies are common in many parts of China's Loess Plateau. The objective of this experiment was to study the effects of long-term cropping and fertilization practices on soil properties and micronutrient availability in this region. The field plot experiment began in 1984. It included five cropping systems and four fertilizer treatments. In September 2002, soil samples were collected and soil pH, organic matter content, available P, and CaCO3 were measured. Total and available Zn, Cu, Mn, and Fe were also determined. The relationship between soil properties and available micronutrients was determined by correlation and path analysis. After 18 years, soil pH and CaCO3 levels were lower in the cropped and fertilized treatments compared to the fallow treatment. In contrast, soil organic matter and available P levels were higher in cropped compared to fallow treatments. A comparison of unfertilized treatments indicated that available Zn and Cu levels in cropped treatments were lower compared to the fallow treatment, probably due to the removal of these micronutrients from the system through crop uptake and harvest. In contrast, available Mn and Fe levels were higher in cropped treatments compared to the fallow treatment. The impacts of fertilization on available micronutrients varied with cropping systems. Generally, available Zn and Fe were higher in fertilized compared to unfertilized treatments, but available Cu was not significantly influenced by fertilization. Fertilization tended to increase available Mn in continuous wheat and maize, but reduced available Mn in continuous clover and the crop–legume rotation. The total (plant available + unavailable) micronutrient contents were lower in the four cropped-treatments compared to the fallow treatment. The addition of manure or P fertilizer increased total Zn, Fe, and Mn, but had no significant effect on total Cu. The results of correlation analysis and path analysis indicated that soil organic matter exerts a significant and direct effect on the availability of Zn, Mn, and Fe, but has little influence on available Cu. The effects of available P, CaCO3, and pH on micronutrient availability were indirect, passing through soil organic matter. The results of this study suggest that long-term cropping and fertilization altered several important soil properties and increased the plant available micronutrient content of this loess-derived soil.  相似文献   

8.
Low and unstable fruit yield, poor quality of fruits, and excessive fruit dropping are major problems in a lime crop and are due to either micronutrient deficiencies or nutrient imbalance. A study was conducted to assess the micronutrient status in a lime orchard at the Central Soil and Water Conservation Research and Training Institute (CSWCRTI)’s research farm in Kota, Rajasthan, India. Plant and soil samples were collected during September and October in 2006–2007. The micronutrients extracted with diethylenetriaminepentaacetic acid (DTPA) in soils were in the order of manganese (Mn) > iron (Fe) > zinc (Zn) > copper (Cu). The mean values of DTPA Mn, Fe, Zn, and Cu in surface soils varied from 13.98 to 22.70, 2.48 to 8.66, 0.79 to 1.19, and 0.14 to 0.46 mg kg?1, respectively, whereas in subsurface soils they varied from 12.94 to 23.06, 4.84 to 6.52, 0.51 to 0.83, and 0.07 to 0.20 mg kg?1, respectively. Results reveal that except for Fe, the other DTPA-extractable micronutrients decreased with depth. Total Mn, Fe, Zn, and Cu in plant leaves varied from 22 to 83, 70 to 630, 40 to 932, and 37 to 3057 mg kg?1, respectively, indicating greater or toxic concentrations of total micronutrient in leaf samples. Total Mn, Fe, Zn, and Cu in petiole samples varied from 7 to 60, 235 to 574, 70 to 827, and 101 to 2623 mg kg?1, respectively. High concentration of Cu and Zn in leaves resulted in Fe and Mn deficiencies (exhibited as leaf chlorosis) in lime plants. Results of the study indicated that Fe and Mn deficiencies are major disorders in lime plantation. Similarly, the measure of DTPA-extractable micronutrients showed the low statuses of Fe and Cu and marginal status of Zn in soils along the Chambal region.  相似文献   

9.
The effect of source and sink manipulation on accumulation of micronutrients (Fe, Zn, Mn, Cu) and protein in wheat grains was studied in a field experiment and ear culture. The source and sink manipulation was obtained by reducing assimilate source (through defoliation and spike shading) or sink (through 50% spikelets removal) after anthesis in the field and by changing sucrose or NH4NO3 levels of the culture media in ear culture. In the field experiment, reducing source and sink generally increased Fe, Zn, Mn, Cu, and protein concentrations except defoliation which decreased Mn concentration. Grain yield as well as micronutrient and protein contents in grains were all reduced by reducing source and sink sizes, suggesting that the accumulation of micronutrients and protein in grains was restricted by source supply and sink capacity. In ear culture, the supply of 20 to 80 g L–1 sucrose increased grain weight and yield, but decreased grain Fe, Zn, Mn, Cu, and protein concentrations. The supply of 0.57 to 2.28 g L–1 NH4NO3 increased grain yield and the concentrations and contents of micronutrients and protein. All these results show that micronutrient and protein accumulation in grains can be affected by the source–sink relationship of carbohydrate and nitrogen. Adequate N supply can simultaneously increase grain yield and the accumulation of Fe, Zn, Mn, Cu, and protein.  相似文献   

10.
The imbalanced use of chemical fertilizers under intensive cultivation practices over a period of years leads to various soil-associated problems particularly nutrient availability. Thus, to examine the effect of long-term application of balanced and imbalanced inorganic fertilizer and farm yard manure (FYM) application on the chemical fraction of DTPA-extractable micronutrients under rice–wheat cropping system after 29 years, the observations were recorded from the ongoing field experiment at Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India. An application of balanced inorganic fertilizer with FYM in rice, while without FYM in wheat significantly improved the DTPA-extractable Zn, Fe, Mn and Cu after rice and wheat crops in both the surface and sub-surface soil layers. Lowest DTPA-extractable Zn, Fe, Mn and Cu were recorded, in surface and sub-surface soil under rice and wheat crops in control. The highest DTPA-extractable Zn, in both surface and sub-surface layers of rice (3.31, 1.62 mg kg−1, respectively) and wheat (2.96, 0.99 mg kg−1, respectively) was recorded because of application of N180+P80+K40+Zn(F) + FYM in rice and N180+P80+K40+Zn(F) in wheat. However, the DTPA-extractable Fe, Mn and Cu were highest in rice and wheat because of N120+P40+K40+FYM and N120+P40+K40 application, respectively. The balanced use of inorganic fertilizer with FYM (N180+P80+K40+Zn(F) + FYM) in rice and without FYM [N180+P80+K40+Zn(F)] in wheat supported the highest rice (6.74 t ha−1) and wheat (3.50 t ha−1) grain yields, while lowest in control. Based on the study results, long-term application of FYM at 5 tonnes ha−1 in rice crop sustained the availability of DTPA-extractable cationic micronutrients to rice and wheat in Mollisols.  相似文献   

11.
Soil fertility exerts a direct influence on the essential micronutrient contents of food crops. The focus in this study was on the role that long-term inorganic fertilization (nitrogen (N), phosphorous (P) and potassium (K)) plays in increasing the micronutrient output of the paddy cropping system. After more than 45 years of inorganic fertilizer application, the combined application of fertilizers (PK > NP > NK) substantially increased As (arsenic), B (boron), Cd (cadmium), Co (cobalt), Cr (chromium), Cu (copper), Fe (iron), Mn (manganese), Mo (molybdenum), Ni (nickel), Se (selenium), V (vanadium) and Zn (zinc) density in the soil and rice grain. Optimized and continuous application of PK fertilizers increased the overall micronutrient densities in rice milling fractions (grain and bran). Micronutrient concentrations were usually the highest in bran. Both grain and bran were rich in Fe, Mn and Zn. Correlation analysis indicated that soil pH and organic matter exert a significant and direct effect on the micronutrient concentration of rice. Although long-term fertilization enhanced the proportion of micronutrients in rice grain, the levels were still much lower than the recommended dietary intake levels for micronutrients. We therefore suggest high consumption levels of brown rice (with micronutrient-dense bran layer) because they may increase the daily intake level of micronutrients and meet the nutritional requirements that people need for sound health.  相似文献   

12.
Salt-affected soils in arid and semi-arid tracts of the Indian Punjab are prone to deficiency of micronutrients. Nine profiles from alluvial terraces, sand dunes and palaeochannels in the southwestern Punjab were investigated for total and diethylenetriamine-penta-acetic acid (DTPA) extractable Zn, Cu, Mn and Fe. Soil physiography exerted significant influence on the spatial distribution of micronutrients. Total contents varied from 20–78 for Zn, 8–32 for Cu, and 88–466 mg kg?1 for Mn and 0.82–2.53% for Fe. DTPA-extractable contents varied from 0.10–0.98 for Zn, 0.14–1.02 for Cu, 0.54–13.02 for Fe and 0.82–9.4 mg kg?1 for Mn. Total contents were higher in fine-textured soil than in coarse-textured soils. Concentration of micronutrients in the surface layer was low and there occurred more accumulation in the Cambic horizon. Organic carbon, pH, clay, silt and calcium carbonate exerted strong influence on the distribution of micronutrients. DTPA extractable Zn, Cu, Mn and Fe increased with increasing organic carbon but decreased with increase in pH and calcium carbonate content. Total micronutrient contents increased with increase in clay, silt and calcium carbonate contents and decreased with increase in sand content.  相似文献   

13.
Identification of genotypic differences in micronutrient concentrations of staple food crops is essential if plant breeding strategies are to improve human mineral nutrition. The concentrations of zinc (Zn), iron (Fe), copper (Cu), and manganese (Mn) in polished grains of 285 rice (Oryza sativa L.) genotypes and the relationship between concentrations of the four micronutrient elements and concentrations of protein and lysine were examined. Significant differences (P<.01) were found in the concentrations of Zn, Fe, Cu, and Mn in polished rice with a fairly normal distribution among rice genotypes. On average, Cu and Zn concentrations of Indica rice were about 2‐fold higher than Japonica rice, while Fe concentrations of Japonica rice were slightly higher than Indica rice. Among Indica rice genotypes, red rice contained higher Zn than white rice. Protein and lysine concentrations differed considerably among the genotypes, but no close relationship between the micronutrients and protein or lysine concentrations was observed among genotypes. Sixteen genotypes with significantly higher grain Zn, Fe, Cu, and Mn concentrations were identified.  相似文献   

14.
利用O3-FACE平台研究近地面臭氧浓度升高(目标值比周围大气高50%)对2009—2010年间麦季各生育期不同深度(0~5cm,5~10cm和10~15cm)耕层土壤微量元素有效性和成熟期地上部分微量元素累积量的影响。结果表明,近地层大气O3浓度增加提高了麦季耕层(0~15cm)土壤中有效性Fe、Mn含量,降低了有效性Cu、Zn含量,对Zn的减幅达27.3%(P〈0.05);大气O3浓度升高对土壤5~10cm土层DTPA提取态Fe、Mn、Cu、Zn的影响最大;高O3浓度显著降低了5~10cm和10~15cm土壤DTPA-Zn含量(P〈0.05)。O3浓度升高降低了小麦成熟期生物量和微量元素累积量。对不同层次土壤有效态微量元素和成熟期微量元素累积量对O3浓度升高响应进行了分析,同时指出应从土壤性质和作物生长两个方面进一步研究全球大气环境变化对土壤有效态微量元素的影响机制。  相似文献   

15.

Purpose

The balance of micronutrients in soils is important in nutrient use efficiency, environmental protection and the sustainability of agro-ecological systems. The deficiency or excess of micronutrients in the plough layer may decrease crop yield and/or quality. Therefore, it is essential to maintain appropriate levels of micronutrients in soil, not only for satisfying plant needs in order to sustain agricultural production but also for preventing any potential build-up of certain nutrients.

Materials and methods

A long-term fertilizer experiment started in 1969 at Central Rice Research Institute, Cuttack, Odisha, India. Using this experiment, a study was conducted to analyze the balance of micronutrients and their interrelationship. The experiment was composed of ten nutrient management treatments viz. control; nitrogen (N); N + phosphorus (NP); N + potassium (NK); nitrogen, phosphorus and potassium (NPK); farmyard manure (FYM); N + FYM; NP + FYM; NK + FYM; and NPK + FYM with three replications. Micronutrients in soil (total and available), added fertilizers and organic manures and in rice plant were analyzed. Besides, atmospheric deposition of the micronutrients to the experimental site was also calculated. A micronutrient balance sheet was prepared by the difference between output and input of total micronutrients.

Results and discussion

Application of FYM alone or in combination with chemical fertilizer increased the diethylenetriamine pentaacetate (DTPA)-extractable Fe, Mn and Zn over the control treatment. The treatment with NPK + FYM had the highest soil DTPA-extractable Fe, Mn, Zn and Cu after 41 years of cropping and fertilization. Application of chemical fertilizers without P decreased the DTPA-extractable Zn over the control while the inclusion of P in the fertilizer treatments maintained it on a par with the control. The application of P fertilizer and FYM either alone or in combination significantly increased the contents of total Fe, Mn, Zn and Cu in soil mainly due to their micronutrient content and atmospheric depositions. A negative balance of Zn was observed in the N, NP, NK and NPK treatments, while a positive balance observed in the remaining treatments. The balance of Mn was negative in all the treatments, due to higher uptake by the rice crop than its addition.

Conclusions

Long-term application of chemical fertilizers together with FYM maintained the availability of micronutrients in soil and, thus, their uptake by rice crop.
  相似文献   

16.
Pyrite (FeS2) is usually a waste from complex sulfide ores. Yet, it may be a remediation additive for calcareous soils deficient in iron (Fe) and other micronutrients such as copper (Cu), zinc (Zn), and manganese (Mn). In this study, leaching experiments were conducted under laboratory conditions and a 30-day pot trial (with wheat) to evaluate the effect of applying different amounts of pyritic tailings on micronutrient and heavy-metal concentrations in a calcareous soil and on crop growth (dry-matter production). The application of pyritic tailings to the calcareous soils improved the levels of Fe, Cu, Zn, and Mn, and dry-matter biomass of wheat also significantly increased. The heavy-metal contents in soil and plant were well below the permissible limit for soil and plants.  相似文献   

17.
Soil micronutrients have different degrees of residual effect to crops; again crops differ in their sensitivity to micronutrient requirement. Evaluation of residual effects of micronutrient application to cauliflower, okra, and transplant aman rice in a pattern was studied in piedmont soil of Bangladesh. In this study, seven treatment combinations including a control treatment were tested, and the treatments were designed taking the micronutrients following the additive element trial technique. The rates of micronutrients were 3 kg zinc (Zn), 2 kg boron (B), 2 kg Cu, 3 kg manganese (Mn), 5 kg iron (Fe), and 1 kg molybdenum (Mo) per hectare. Both Zn and B were found responsive for the first crop. As second crop, okra responded to both residual Zn and B, whereas in the third crop, residual effects of only Zn were reported. Zn fertilizer need not to apply in each crop of a cropping pattern.  相似文献   

18.
Iron (Fe) availability is low in calcareous soils of southern Iran. The chelate Fe-ethylenediamine di (o-hydroxy-phenylacetic acid) (Fe-EDDHA), has been used as an effective source of Fe in correcting Fe deficiency in such soils. In some cases, however, its application might cause nutritional disorder due to the antagonistic effect of Fe with other cationic micronutrients, in particular with manganese (Mn). A greenhouse experiment was conducted to evaluate the influence of soil and foliar applications of Fe and soil application of manganese (Mn) on dry matter yield (DMY) and the uptake of cationic micronutrients in wheat (Triticum aestivum L. var. Ghods) in a calcareous soil. Results showed that neither soil application of Fe-EDDHA nor foliar application of Fe sulfate had a significant effect on wheat DMY. In general, Fe application increased Fe uptake but decreased that of Mn, zinc (Zn), and copper (Cu). Application of Mn increased only Mn uptake and had no significant effect on the uptake of the other cationic micronutrients. Iron treatments considerably increased the ratio of Fe to Mn, Zn, Cu, and (Mn + Zn + Cu). Failure to observe an increase in wheat DMY following Fe application is attributed to the antagonistic effect of Fe with Mn, Zn, and Cu and hence, imbalance in Fe to (Mn + Zn + Cu) ratio. Due to the nutritional disorder and imbalance, it appears that neither soil application of Fe-EDDHA nor foliar application of Fe-sulfate is appropriate in correcting Fe deficiency in wheat grown on calcareous soils. Hence, growing Fe-efficient wheat cultivars should be considered as an appropriate practice for Fe chlorosis-prone calcareous soils of southern Iran.  相似文献   

19.

Purpose

Although micronutrients are essential to higher plants, it remains unclear whether the projected future climate change would affect their availability to plants. The objective of this study was to investigate the effect of carbon dioxide (CO2) enrichment and warming on soil micronutrient availability and plant uptake.

Materials and methods

This study was conducted in an open field experiment with CO2 enrichment and plant canopy warming. Four treatments were included: (1) free-air CO2 enrichment up to 500 ppm (CE); (2) canopy warming by plus 2 °C (WA); (3) CO2 enrichment combined with canopy warming (CW), and (4) ambient condition as control. Plant and soil samples were collected, respectively, at the jointing, heading, and ripening stage over the whole wheat growing season in 2014. The micronutrient concentrations both in soil and plant were both analyzed, and the accumulated uptake by wheat harvest was assessed.

Results and discussion

Both CO2 enrichment and warming increased the availability of most soil micronutrients. The availability of Fe, Mn, Cu, and Zn under CO2 enrichment increased by 47.7, 22.5, 59.8, and 114.1 %, respectively. Warming increased the availability of Fe, Cu, and Zn by 60.4, 23.8, and 15.3 %, respectively. The plant growth induced changes in soil pH and in soil microbial biomass carbon (MBC) accounted to the changes in soil micronutrient availability. The enrichment of CO2 and warming had significant effects on micronutrient uptake by wheat. The enrichment of CO2 decreased the concentration of Fe by 9.3 %, while it increased the concentrations of Mn and Zn by 18.9 and 8.1 % in plant shoot, respectively. Warming increased the concentration of Fe and Cu by 24.3 and 7.6 % in plant shoot, respectively. The increase in soil micronutrient availability did not always lead to the increase in micronutrient uptake. The element types and crop growth stage affected the uptake of micronutrients by wheat under CO2 enrichment and warming. Additionally, CO2 enrichment decreased the translocation of Fe and Zn by 25.3 and 10.0 %, respectively, while warming increased the translocation of Fe, Mn, Cu, and Zn across stages.

Conclusions

Our results demonstrated that CO2 enrichment and warming would improve availability of some micronutrients and their uptake by wheat. However, it is still unclear whether a net removal of micronutrient through crop straw harvest would occur under CO2 enrichment and warming.
  相似文献   

20.
A survey was conducted in order to estimate micronutrient levels in plants and soils of 215 farms in Greece cultivated with sugar beet. Soils were analyzed for particle-size distribution, pH, organic carbon (C), CaCO3, and DTPA-extractable copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn). Sugar beet leaves were analyzed for the same metals. Also, aboveground biomass (top), root, and raw sugar yields were recorded. DTPA-extractable Fe and Mn were above critical levels in all cases, whereas Cu and Zn were above critical levels in 49% and 24% of the soil samples, respectively. Concentrations of the four metals in plant tissue were similar or higher than the sufficiency range. Concentrations of DTPA-extractable Fe and Mn, and plant Zn and Mn, were significantly and negatively correlated with soil pH. Soil pH and DTPA-extractable Fe seemed to have a significant positive impact on root, top, and raw sugar yields. However, in all cases, less than 14% of the variance of the sugar beet parameters was explained by soil characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号