首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用不同人工模拟降雨方式对土壤可蚀性K值的研究   总被引:5,自引:0,他引:5  
运用两种人工模拟降雨方式研究土壤的可蚀性K值,结果表明II方式人工模拟降雨的土壤可蚀性K值比I方式更能显著的反映自然状态下实测的土壤可蚀性K值,因此用II人工模拟降雨试为研究土壤可蚀性K值将更为优越。  相似文献   

2.
河北省表层土壤可侵蚀性K值评估与分析   总被引:1,自引:0,他引:1  
曹祥会  龙怀玉  雷秋良  张认连 《土壤》2015,47(6):1192-1198
利用河北土系调查成果中的土壤颗粒组成、土地利用及土壤化学性质等资料,利用EPIC模型中土壤可蚀性K值算法以及结合地统计学方法,研究了不同土壤类型、不同质地及不同土地利用类型的土壤可侵蚀性K值和土壤可侵蚀性K值的空间变异特征。结果表明:1河北土壤可侵蚀性K值平均为0.27,其变化范围为0.12~0.40,土壤可蚀性K值在0.30~0.35之间易蚀性土壤面积占总土地面积的63.71%,土壤可蚀性K值在0.25~0.3之间较易蚀性土壤面积占总土地面积的21.52%,这说明该省易蚀性土壤面积较大。2不同质地的K值之间显著性差异,粉砂黏壤质的可侵蚀性K值最大,为0.37;壤砂质的可侵蚀性K值最小,为0.13。而在不同的土地利用类型之间的K值差异性不显著,耕地的K值最大,为0.33;草地的K值最小,为0.22。3河北土壤可侵蚀性K值存在较强的变异性,其变异系数为29%。因此,在土壤侵蚀定量监测、评价水土流失时,应考虑土壤可蚀性K值的这种空间变异状况。块金值/基台值为37.3%,表明在变程内具有中等强度的空间相关性。步长为23 km,变程为440 km,变程远大于步长,表明在小流域尺度下有较好的空间相关性,进行Kriging插值能得到较准确的结果。4河北土壤可蚀性K值大体呈现南高北低的空间分布特征,南部主要是耕作栽培区,北部主要是自然植被区。该研究结果为宏观大尺度土壤资源可持续利用与制定水土保持规划提供科学依据。  相似文献   

3.
土壤可蚀性特征及其K值图制作研究   总被引:6,自引:0,他引:6  
在土壤普查结果与实地采样的基础上,应用EPIC模型计算出南安市不同土壤的K值,并研究了土壤的可蚀性特征及K值图的编制方法。研究表明:研究区土壤类型表层平均K值为0.184-0.371;不同土壤层次K值明显不同,表层抗蚀性较强:不同土地利用方式其土壤可蚀性不同,密林地抗蚀性强,裸地最弱;随着土壤侵蚀的加剧,土壤可蚀性K值有增加的趋势;土壤K值图制作对水土流失定量遥感监测有重要意义。  相似文献   

4.
四川自然土壤和旱耕地土壤可蚀性特征研究   总被引:9,自引:1,他引:9  
应用美国通用土壤流失方程 (USLE)和土壤侵蚀预报模型 (WEPP)中的土壤可蚀性K值 ,对四川各类自然土壤和旱耕地土壤可蚀性特征进行了研究。结果表明 :土壤可蚀性K值与土壤理化性质直接相关 ,自然土壤和旱耕地土壤可蚀性K值在 0 2 68~ 0 3 44之间 ,紫色土的分布面积和K值较大 ,是易遭受侵蚀的土壤。应采取增施有机肥、实行坡改梯等措施 ,加强对耕地、高可蚀性土壤侵蚀的综合防治  相似文献   

5.
中国亚热带地区土壤可蚀性的季节性变化研究   总被引:3,自引:0,他引:3  
开展土壤可蚀性K值季节性变化规律的研究,对于精确预报土壤侵蚀及深入了解土壤可蚀性K值的机理具有重要意义.基于14个自然降雨条件下的田间小区实测数据.研究了中国亚热带有代表性的不同类型土壤可蚀性K值季节性变化规律,并对其季节性变化的原因作了初步分析.结果表明:各小区土壤可蚀性K值在不同季节间都存在动态变化,总体变化趋势是春、夏季高.而秋、冬季低,并且不同小区土壤其可蚀性K值的变动趋势和变动幅度不同,同一土壤可蚀性K值不同季节间最高和最低值之间相差最高达6倍.  相似文献   

6.
红壤坡地土壤可蚀性K值研究   总被引:4,自引:0,他引:4  
为探讨红壤坡地土壤可蚀性K值特征,通过在典型的红壤坡地区建立15个标准径流小区进行连续5年的定点观测,运用诺模公式和EPIC公式计算红壤可蚀性K值,并对不同土地利用方式下的红壤K值进行分析。结果表明:2种经验公式均适用于红壤坡地土壤可蚀性K值计算,且K值与地表覆盖/土地利用相关。  相似文献   

7.
武夷山山地土壤可蚀性K值的垂直分异及成因分析   总被引:2,自引:0,他引:2  
土壤可蚀性K值反映了土壤的抗蚀能力。对武夷山山地10个土壤剖面A层土壤可蚀性K值进行计算,结果表明:武夷山山地土壤以较低可蚀性为主,且呈现随海拔增高,土壤可蚀性K值逐渐递减的规律。一方面,垂直山地不同海拔有机碳的含量造成了土壤可蚀性K值的分异;另一方面,土壤可蚀性与土壤质地存在相互影响,土壤可蚀性K值与粘粒和粉粒含量均呈显著正相关,与砂粒含量呈显著负相关。  相似文献   

8.
梁博  聂晓刚  万丹  喻武  孙启武  赵薇 《土壤学报》2018,55(6):1377-1388
探讨喜马拉雅山脉南麓典型林地土壤结构稳定性及可蚀性K值强弱与分布特征,为区域生态保护提供科学理论及数据基础。选取落叶常绿混交林、针阔混交林、常绿阔叶林三种林分,采集0~20cm土壤,测定团聚体、团聚体破坏率、颗粒组成及其有机质,以EPIC模型计算K值。结果表明:(1)不同林地土壤各理化指标具有差异,湿筛及干筛条件下团聚体以0.25 mm为主;团聚体破坏率在10.16%~24.74%间;颗粒组成以粉砂粒为主,黏粒仅占0.51%~3.02%。有机质在92.53~133.79g·kg-1间;(2)研究区土壤K值在0.1862~0.3430间,均值为0.2635,K值总体较高;(3)经相关分析,K值与黏粒、有机质含量及团聚体破坏率呈正相关,与粉粒呈极显著正相关,与砂粒呈极显著负相关,一定程度,团聚体破坏率可评价土壤可蚀性。  相似文献   

9.
在壤土和沙壤土地上采用高流量集流沟道来确定耕作对土壤分散率的影响。耕作地块上的土壤分散率要比免耕土壤大得多。基于线性恒定参数的土壤分散模型,耕作上的土壤可蚀性比免耕土的大7倍。免耕土的临界剪应力值是耕作土的2倍。当上壤可蚀性和临界剪应力值与用吊式穿透仪、十字板剪切仪测定的土壤强度系数的田间测定值相关时,土壤分散模型的决定系数有所提高。落锥系数比剪切系数更适合于模拟土壤的可蚀性和临界剪应力。线性方程和指数方程都可用来模拟土壤的分散率。土壤的可蚀性和临界剪应力都是土壤强度的线性函数,基于土壤极限剪应力的指数方程是用高流量集中水流预测土壤分散率的推荐模式。  相似文献   

10.
沂河流域土壤可蚀性空间变异研究   总被引:2,自引:0,他引:2  
对土壤可蚀性K值进行研究有助于探索和分析沂河流域土壤侵蚀的空间分布特征。利用GIS空间分析和统计功能,探讨了土壤可蚀性K值的空间分布特征及其与土壤类型、土地利用、高程、坡度等影响因子之间的相互关系。结果表明:(1)研究区K值范围在0.031 1~0.193 3之间,均值为0.099 5,以较低可蚀性和中等可蚀性土壤分布最广,上游河谷和下游平原地区土壤可蚀性明显高于沂山、蒙山等高海拔地区;(2)不同土壤类型的可蚀性K值存在差异,粗骨土、石质土、山地草甸土和棕壤的可蚀性值较低,红黏土、水稻土、砂姜黑土、新积土和潮土的可蚀性值较高,易受到侵蚀;(3)土地利用方式对K值有明显的影响作用,不同土地利用方式的可蚀性K值大小依次为:耕地未利用地草地林地;(4)随着海拔高度的上升,土壤可蚀性呈现逐渐降低的趋势;(5)不同坡度区间的K值存在差异,土壤可蚀性随坡度增加整体上呈现减小趋势。  相似文献   

11.
以丹江源区鹦鹉沟小流域为研究对象,采用EPIC模型计算了不同地类的土壤可蚀性,研究了土壤可蚀性空间变异特征和不同植被类型对土壤可蚀性K值的影响,结果表明:研究区土壤养分差异显著,变化范围为0.027~0.062[t·hm~2·h/(hm~2·MJ·mm)],均值为0.047[t·hm~2·h/(hm~2·MJ·mm)],变异系数为12.8%,说明K值变异程度属中等变异;随着土层深度的增加K值逐渐变大,说明土壤表层可蚀性最小,抗侵蚀能力最强,6种不同植被类型土壤表层0~10 cm K值的大小排序为栎树林花生地草地玉米地松林茶园;K值半方差函数理论模型为球状模型;K值从南至北、自东向西逐渐减小,条带状分布明显,反映了流域北部森林覆盖区土壤抗侵蚀能力较强,东南部及中东部耕作种植、居住生活区和未受关注的山体土壤抗侵蚀能力较弱。  相似文献   

12.
中国亚热带土壤可蚀性K值预测的不确定性研究   总被引:7,自引:0,他引:7  
土壤可蚀性K值是土壤侵蚀模型(如USLE和RUSLE)的必要参数,直接套用经验模型估算土壤可蚀性K值会给土壤侵蚀预报带来不可估计的误差。本文以我国亚热带7种典型土壤可蚀性K值的观测值为依据,选用平均绝对误差(MAE)、平均相对误差(MRE)、均方根误差(RMSE)和精度因子(Af)四种数学统计项为指标,评价了诺谟图模型、修正诺谟图模型、EPIC模型、几何平均粒径模型和Torri模型等5种土壤可蚀性K值预测模型的不确定性。结果表明,5种模型的不确定性从小到大的顺序为:Torri模型<修正诺谟图模型和诺谟图模型相似文献   

13.
广东省土壤可蚀性现状及影响因素分析   总被引:11,自引:0,他引:11  
土壤可蚀性是土壤侵蚀预报和土地利用规划的重要参数,本文采用EPIC(Erosion Productivity Im-pact Calculator)模型中土壤可蚀性因子K值为指标,利用第二次土壤普查资料,探讨广东省土壤可蚀性K值及分布特征,并绘制了广东省土壤可蚀性K值图,结果表明:广东土壤可蚀性K值为0.116~0.415,加权平均K值为0.25,主要分布在较低-中高可侵蚀性范围;以铁铝土为例,成土母质对土壤侵蚀影响是多因素的,由于母质的特性差异,母质所发育土壤可蚀性K值并不能完全代表其侵蚀危害性,从总体上看,土壤经过多年耕种,抗侵蚀能力明显下降。  相似文献   

14.
青藏高原土壤可蚀性K值的空间分布特征   总被引:4,自引:2,他引:2  
土壤可蚀性反映了土壤对水力侵蚀作用的敏感性,是进行土壤侵蚀评价和预报的重要参数。收集了青藏高原1 255个典型土壤剖面资料,采用模型计算和面积加权分析方法确定了每一个土壤亚类的土壤可蚀性K值,结合青藏高原1∶100万土壤类型图,分析了青藏高原土壤可蚀性K值的空间格局特征。结果表明,青藏高原土壤可蚀性K值平均为0.230 8,低可蚀性、较低可蚀性、中等可蚀性、较高可蚀性和高可蚀性土壤面积分别占该区面积的5.60%,18.23%,24.35%,44.02%和7.80%。土壤可蚀性以中等可蚀性和较高可蚀性为主,二者分布面积之和达1.77×106 km2,占青藏高原总面积的68.37%;较高可蚀性、高可蚀性土壤主要分布在青藏高原中西部的羌塘高原、柴达木盆地和横断山区的低海拔河谷中。青藏高原土壤可蚀性K值具有明显的垂直分异特征,在横断山区最为显著,土壤可蚀性随海拔高度升高而降低。不同海拔高度的水热分异影响了土壤的理化特性,进而决定了青藏高原土壤可蚀性的垂直分带特征。  相似文献   

15.
我国亚热带土壤可蚀性的对比研究   总被引:6,自引:0,他引:6       下载免费PDF全文
本文用人工模拟降雨法和田间实测法对比研究了我国亚热带七种代表性土壤的可蚀性,结果表明,两种方法测得的土壤可蚀性K值都以红砂岩土发育的(耕作)铝质湿润淋溶土和紫色砂页发育的紫色湿润雏形为最高,最低的是第四纪红色粘土发育的红色湿润新成土,本文还对每个供试土壤分别建立了这两种条件下求得K值间的定量关系,为今后利用人工模拟降雨试验开展各种研究提供了基础。  相似文献   

16.
太湖流域苏皖汇流区土壤可蚀性K值及其应用的研究   总被引:12,自引:2,他引:12  
利用土壤普查成果中的土壤图和理化分析等资料 ,采用公式计算法研究了该区土壤的可蚀性K值 ,改进和完善了K值图编制方法 ,并用微机首次制出具有准确几何位置、可与地形图配准的土壤可蚀性K值图。同时 ,还依据该区K值的分布特点讨论了它在水土保持、土壤年流失量监测、生态农业建设和防洪减灾中的应用。  相似文献   

17.
以观音寺小流域为例,通过高密度采样,利用EPIC模型中土壤可蚀性K值计算公式计算了可蚀性K值,并运用逆距离加权插值方法生成了研究区的K值分布图。经典统计学方法分析表明,在小流域尺度下土壤可蚀性K值存在很强的空间变异性,其变异系数达39.94%。因此,定量监测、评价流域水土流失时,K值的这种空间变异性不能忽略。对不同采样密度下K值空间估值精度的评价表明,当采样点数目均匀地减少一半时,即4个/km2的样点密度下,K值估计误差仍然可以控制在25%以内。  相似文献   

18.
喀斯特地区原状土的可蚀性   总被引:1,自引:0,他引:1  
 研究喀斯特地区原状土的可蚀性,有助于掌握土壤抗蚀的本底特征,对比研究耕作前后的土壤可蚀性变化,揭示人类加速侵蚀对石漠化过程的影响。通过对喀斯特地区原状土壤剖面的调查,分析土壤质地、有机质含量,选用Sharply等的EPIC模型,计算土壤可蚀性K值。结果表明:喀斯特地区原状土壤可蚀性K值集中在0.20.3之间,平均为0.269,比其他常见土壤的K值低。研究结果可用于与耕作土K值进行对比研究。  相似文献   

19.
为研究不同岩性发育形成的坡耕地土壤在耕犁扰动下的土壤可蚀性变化,为区域水土流失防治和生态环境建设提供参考,选取由紫色砂岩、砂页岩和石灰岩3种岩性发育形成的坡耕地为研究对象,采集耕犁层和犁底层土壤,测定土壤颗粒组成和有机质质量分数,利用EPIC模型,计算土壤可蚀性K值,根据K值变化分析不同岩性区坡耕地受耕犁扰动的影响.结...  相似文献   

20.
基于吉林省汪清林业局所辖林场10块近天然林样地,采集0—20,20—40和40—60cm土层土壤样品,对土样进行了粒径分析及养分测定。运用侵蚀—土地生产力影响评估模型(EPIC)对研究区土壤可蚀性因子K值进行了估算,分析讨论了K值的影响因素及其与土壤养分之间的相关性。结果表明,研究区内土壤可蚀性K值平均为0.060 7t·hm2·h/(MJ·mm·hm2);0—20cm深度的土壤可蚀性K值较20—60cm土层土壤大,针阔混交林的K值比阔叶混交林的大;当林分密度小于1 200株/hm2,郁闭度小于0.75时,K值随林分密度和郁闭度的增大而减小。K值与土壤养分的相关性由高到低依次为:全氮速效钾有效磷全磷,除全氮外其他土壤养分均与K值呈负相关。最适林分密度为750~1 200株/hm2,在该密度下各土壤养分含量状况较好且土壤抗蚀能力较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号