首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
通过盆栽试验,分析了紫苏(Perilla frutescens(L.)Britt.)在Cd、Cu胁迫下生长响应及其对Cd、Cu的耐性、吸收和累积特征。结果表明,在Cd处理浓度≤60 mg.kg^-1和Cu处理浓度为≤600 mg.kg^-1时,紫苏株高和根长均随处理浓度提高而增加,此后则随处理浓度增加胁迫作用渐趋明显。植株地上部和根部Cd的最高含量分别是331.51和991.14 mg.kg^-1,Cu的最高含量分别为228.65和2 030.63 mg.kg^-1。植株地上部Cd和Cu的最大富集量分别为66.70和36.52μg.plant^-1。植株Cd、Cu富集系数分别为2.59-15.42和0.14-1.24,迁移系数分别为0.35-1.44和0.07-0.56。因此,该植物可用于Cd、Cu污染土壤的修复。  相似文献   

2.
杨艳  吴宗萍  张敏  李政  李凌 《农业环境保护》2010,(11):2094-2099
以野生地被植物头花蓼为试验材料,采用温室盆栽法,对重金属Cd在该植物体内的吸收、累积分布以及迁移特性进行了初步研究。结果表明,Cd对头花蓼生长未造成显著影响,甚至低浓度(≤5mg.kg-1)Cd具有一定的生长促进作用,表现为植物的生物量增加。当Cd处理浓度达到50mg.kg-1时,植物的生物量虽有所降低,但与对照相比并无显著差异。植株不同部位对Cd的积累具有分异特性,地下部根系的累积量最大,叶次之,茎最小,且随处理浓度的增加而增加,在Cd处理浓度为50mg.kg-1时均达到最大值,分别为182.69、31.49mg.kg-1和10.34mg.kg-1。植株对Cd富集系数和转移系数分别为0.46~1.55和0.14~0.67,且地上部对Cd的最大迁移总量高达100.09μg.plant-1。说明头花蓼对修复Cd污染土壤具有一定的潜力,是一种修复Cd污染较好的景观地被植物种质资源。  相似文献   

3.
采用盆栽试验,通过研究不同浓度镉(1、5、10mg·kg-1)胁迫下4种基因型番茄圣粉1号、东圣1号、农城906和宝冠1号幼苗地上部及根部生物量、镉吸收量、活性氧含量(ROS)及其他生理指标,筛选出镉低积累基因型番茄品种。结果表明,不同基因型番茄对镉胁迫响应存在差异。随镉处理浓度增加,4个品种番茄幼苗地上部生物量显著下降(P〈0.05)。地上部Cd吸收量呈增加趋势,在中浓度(5mg·kg-1)镉处理下达到峰值,品种间为宝冠1号〉圣粉1号、农城906〉东圣1号。4个品种番茄幼苗Cd转移率随镉处理浓度增加显著降低,其中东圣1号Cd转移率较低,根部Cd滞留较多,向地上部转移较少。4个品种番茄幼苗生理活性存在差异,宝冠1号番茄幼苗ROS含量及抗氧化酶(POD,CAT)活性随镉处理浓度增加变化幅度较大,东圣1号变化幅度相对较小。综合各项指标,4个基因型番茄中东圣1号为镉低积累品种。  相似文献   

4.
采用室内盆栽试验,研究了在不同浓度cd处理下,两种生态型水蜈蚣的生长和对cd的吸收和富集特性。结果表明:(1)在2mg·kg^-1Cd处理时,Cd对两种生态型水蜈蚣生物量的影响较小。之后随着cd处理浓度的增加,两种生态型水蜈蚣生物量均呈降低的趋势,且差异显著。在200mg·kg^-1Cd处理时,矿山生态型水蜈蚣死亡,而非矿山生态型仍能维持一定生长,表现出较强的cd耐性。(2)在高浓度cd处理下,非矿山生态型水蜈蚣比矿山生态型具有更强的Cd富集能力。在2、10、50mg·kg^-1Cd处理时,两种生态型水蜈蚣Cd含量和积累量均呈增加的趋势。在200mg·kg^-1Cd处理时,非矿山生态型水蜈蚣地上部和地下部Cd含量分别达到498.66mg·kg^-1和1016.09mg·kg^-1,积累量分别为86.00μg·pot^-1和123.82μg·pot^-1,具有较强的cd富集能力。(3)在不同浓度Cd处理下,两种生态型水蜈蚣地上部富集系数均大于1,表现出较强的cd富集能力;矿山生态型水蜈蚣转移系数最大值为0.55,非矿山生态型为0.53。两种生态型水蜈蚣对cd均有一定的富集特性,而在高浓度Cd处理时非矿山生态型水蜈蚣的cd富集能力更强。  相似文献   

5.
在盆栽种植龙葵条件下,研究土壤质地、碳氮比和外源投加Cd对龙葵地上、下部富集重金属Cd、土壤有效态Cd含量和地上部生物量的影响。结果表明,相同Cd投加浓度时,不同质地和碳氮比处理,植株地上、地下部Cd含量、富集系数均为砂土粘土壤土和25∶135∶115∶1,但植株地上部带走Cd量以壤土和碳氮比25∶1为最高;土壤有效态Cd含量为砂土壤土粘土,碳氮比处理25∶135∶115∶1;地上部生物量以壤土和碳氮比15∶1为最高。同一质地和碳氮比下,随着外源添加Cd含量增加,植株地上、地下部Cd含量、植株地上部Cd含量除粘土、砂土先增后降外,其他处理均呈增加趋势,且土壤有效态Cd含量也随之增大,但富集系数随之减小,Cd投加量大于20~40mg/kg时对龙葵生长产生一定的抑制作用。  相似文献   

6.
采用盆栽试验的方法,对比研究了来源于大宝山矿区和惠州博罗非矿区的两个五节芒种群在不同Cd含量土壤中的生长反应、Cd富集能力及对土壤Cd形态的影响。结果表明,来源不同的两个五节芒(Miscanthus floridulus)种群植株对土壤中不同浓度的Cd的生长反应不同,低浓度Cd处理,非矿区种群的地上部生物量即受到显著影响,而矿区种群受到的影响不显著。Cd处理浓度提高时,非矿区种群的地上部生物量为对照的30.17%~42.07%,矿区种群地上部生物量为对照的57.80%~67.04%。非矿区种群根部生物量随处理浓度的增加而降低,为对照的57.75%-64.08%,而矿区种群显著升高,为对照的117.43%~135.56%。五节芒矿区种群地上部和根部的Cd含量随着土壤Cd处理浓度的升高而迅速升高,其升高速度明显快于非矿区种群。五节芒矿区种群根部积累的Cd总量远大于非矿区种群,且随着土壤中Cd添加量的增加而显著增加(P〈0.05)。随着Cd胁迫程度的加重,五节芒两种群转移系数和耐性指数都有不同程度的下降,矿区种群的转移系数和耐性指数明显高于非矿区种群。Pearson相关性分析发现,五节芒根部生物量与地上部生物量极显著正相关,地上部生物量与根部和地上部Cd含量均呈极显著负相关关系,地上部Cd含量与根部Cd含量及转移系数(Translocation Factor,TF)均呈极显著正相关关系,耐性指数(Tolerant Index,TI)与根部和地上部Cd含量均呈极显著负相关关系,反映了根部和地上部Cd的累积对植物产生了毒性,并对五节芒的生长产生了抑制作用。矿区种群表现出对Cd更强的耐性以及富集作用。  相似文献   

7.
铅锌矿区分离丛枝菌根真菌对万寿菊生长与吸镉的影响   总被引:3,自引:0,他引:3  
盆栽试验研究了土壤不同施Cd水平(0、20、50 mg kg-1)下,接种矿区污染土壤中丛枝菌根真菌对万寿菊根系侵染率、植株生物量及Cd吸收与分配的影响。结果表明:接种丛枝菌根真菌显著提高了Cd胁迫下万寿菊的根系侵染率和植株生物量;随着施Cd水平提高,各处理植株Cd浓度和Cd吸收量显著增加。各施Cd水平下万寿菊地上部Cd吸收量远远高于根系Cd吸收量,尤其在20 mg kg-1施Cd水平下,接种处理地上部Cd吸收量是根系的3.90倍,对照处理地上部Cd吸收量是根系的2.33倍;同一施Cd水平下接种处理地上部Cd吸收量要显著高于对照。总体上,试验条件下污染土壤中分离的丛枝菌根真菌促进了万寿菊对土壤中Cd的吸收,并增加了Cd向地上部分的运转,表现出植物提取的应用潜力。  相似文献   

8.
杨卓  陈婧  李博文 《农业环境保护》2011,(12):2428-2433
通过盆栽试验研究了印度芥菜对土壤Cd污染的耐性及其生理生化特性响应。结果表明,印度芥菜对Cd胁迫表现了较强的耐性,在Cd添加量为0~200mg·kg-1的情况下,印度芥菜能够顺利发芽、生长,其生物量出现了先增后降的"抛物线型"变化规律,Cd主要影响其生殖生长,大量的Cd使印度芥菜延迟进入生育期。植株体内Cd浓度随土壤Cd浓度增加而升高,地上部可达7.824~102.672mg·kg-1,地下部可达0.374~191.910mg·kg-1。地上部富集系数呈逐渐降低的趋势,而地下部富集系数呈逐渐升高的趋势。转移系数为20.920~0.535,呈逐渐降低趋势。随着土壤Cd胁迫浓度的增加,印度芥菜3种酶活性均呈先增后降的"抛物线型"变化趋势,并且出现抗性酶活性高峰所对应的土壤Cd浓度相同,均为120mg·kg-1,在Cd高浓度水平下酶活性普遍受到抑制,在最高浓度处理时的酶活性均明显低于对照。根区土壤中微生物数量为细菌〉放线菌〉霉菌,随着Cd添加量的增加,土体内微生物的数量也增加,但当Cd添加量〉160mg·kg-1时,微生物数量下降。  相似文献   

9.
通过盆栽试验,设置单独Cd处理与Cd+Se复合处理(土壤镉浓度为0~200 mg kg~(-1)),研究不同处理下,壶瓶碎米荠(Cardamine hupingshanensis)植株的镉含量特征。结果表明:两种处理方式下,壶瓶碎米荠植株地上部和地下部镉含量随土壤中镉浓度升高而增加,呈线性相关。单独Cd处理,壶瓶碎米荠植株地上部镉含量变化范围为0.02~808.51 mg kg~(-1),地上部与地下部镉含量的平均比值为1.10,变化范围为1.05~1.23;富集系数的平均值为5.65,变化范围为4.04~7.85。Cd+Se复合处理,相同镉浓度处理下,壶瓶碎米荠地上部和地下部的镉含量均低于单独Cd处理组,最高浓度达到617.74 mg kg~(-1)和531.48 mg kg~(-1)。表明,壶瓶碎米荠是一种富集镉能力强的超积累植物,而添加硒可以降低其对Cd的富集,且不会影响其对Cd的吸收和向地上部转运的能力,在Cd污染场地的修复中前景较好。  相似文献   

10.
选取花生(Arachis hypogaea)、大豆(Glycine max)、向日葵(Helianthus annuus)、蓖麻(Ricinus communis)4种油料作物,采用不同浓度的Cr3+、Pb2+水培处理,研究了4种油料作物对Cr3+、Pb2+的耐受能力和富集特征。结果表明,随着Cr3+、Pb2+处理浓度的升高,4种油料作物株高、根长、地上部与根部生物量和耐受指数均不同程度降低。其中,花生、向日葵地上部生物量降幅较小。4种作物地上部Cr、Pb含量随处理浓度的升高呈增加趋势,200mg.L-1 Cr3+处理下大豆地上部Cr含量最高(5322mg.kg-1),400mg.L-1 Pb2+处理下向日葵地上部Pb含量最高(1439mg.kg-1)。4种作物地上部对重金属的富集量随着Cr3+、Pb2+处理浓度的升高而增加,并且大部分重金属积累在根部。其中,花生Cr、Pb积累量和迁移率均较高,100mg.L-1 Cr3+、200mg.L-1 Pb2+处理下地上部Cr、Pb积累量分别为420.5、492.4μg.株-1,迁移率分别为23.1%、11.7%。综合分析表明,花生对Cr3+、Pb2+具有较强的耐受和积累能力,可作为Cr3+、Pb2+污染环境中植物修复的油料作物。  相似文献   

11.
采用盆栽试验方法,研究了硫营养对Pb/Zn富集植物--小花南芥(Arabis alpinal Var.parviflora Franch)生长和铅锌累积能力的影响。结果表明:小花南芥地上部生物量随硫营养质量分数的增加而显著增加,增幅为49.5%~118.6%;64mg·kg^-1硫营养处理,小花南芥植株地下部生物量增加114.5%;硫营养促进小花南芥对铅的累积,植株地上部铅累积量增加1.74-2.92倍,地下部增加2.01-3.86倍;8mg·kg^-1和24mg·kg^-1硫营养处理促进小花南芥对锌的累积。试验揭示适当的硫营养能促进小花南芥生长和对铅锌的累积。  相似文献   

12.
采用室内盆栽试验,研究复合污染土壤中施加氮肥(NH4Cl)、磷肥(Na2HPO4)和钾肥(KCl)对高生物量经济作物玉米(Zeamays L.)幼苗生长以及吸收和积累重金属的影响。结果表明,不同施肥方式和浓度处理对玉米生物量变化以及吸收重金属有不同影响,NH4Cl能显著提高玉米地上部生物量、土壤Pb、Cd有效态含量,增加玉米对重金属Pb、Cd、As的提取量,最大分别可提高1.7、2.0倍和1.2倍。不同施肥方式和处理浓度均显著影响土壤有效态Pb含量,Na2HPO4在中浓度处理时显著降低土壤Pb的有效性,高浓度时则显著增加土壤有效态As含量,使玉米地上部对As的积累量有明显提高。在不同的浓度水平下,钾肥处理使玉米提取Pb含量显著高于氮肥和磷肥,其中低浓度KCl处理使玉米提取Pb量比对照增加2.4倍。对Pb-Cd-As复合污染农田土壤来说,施用氮肥(NH4Cl)处理对强化玉米的修复效果最好。  相似文献   

13.
在自然条件下,采用人工模拟水缸培养方法,研究了湖泊底泥不同Cu、Cd处理对沉水植物伊乐藻生长、叶绿素含量以及Cu、Cd吸收和积累的影响。结果表明,较低浓度Cu刺激伊乐藻的生长(生物量、叶绿素),高浓度抑制伊乐藻的生长;随着Cd处理浓度的增加,伊乐藻的生物量、叶绿素含量均一直降低,在底泥Cd含量为168.69mg·kg^-1 DW(含背景值)时,植株出现死亡。随着Cu处理浓度的增加,伊乐藻体内的Cu含量一直增加,在底泥cu含量为414mg·kg^-1DW(含背景值)时,根部、叶部的富集系数均达到最大(0.21和0.17);伊乐藻体内的Cd含量随Cd处理浓度的增加先增后减,底泥Cd含量为88.69mg·kg^-1 DW时,根部、叶部的富集系数均达到最大(0.07和0.09)。以上结果说明,伊乐藻对Cu、Cd具有很强的耐受性,可以作为原位修复Cu和Cd污染底泥的植物种类应用。  相似文献   

14.
以金针菇为试验材料,在基质中分别单独添加和同时添加不同浓度的Cd、Zn,采用栽培袋接种培养法研究了食用菌富集Cd、Zn以及Cd、Zn交互作用对食用菌累积重金属的影响。结果表明,低浓度的Cd(〈1mg·kg^-1)、Zn(〈600mg·kg^-1)能够促进金针菇的生长,但是高浓度的Cd、Zn对金针菇生长会产生抑制作用。随着栽培基质中Cd、Zn处理浓度的增高,金针菇子实体中的Cd、Zn浓度也随之增加。Cd—Zn之间表现为互相拈抗作用,金针菇子实体内的Cd含量随着培养基质中Zn浓度的增加而显著降低(P〈0.05),Cd浓度降低比例与Zn/Cd比值之间呈显著的正相关(P〈0.01)。在Zn处理浓度为600mg·kg^-1,Cd处理浓度分别为1mg·kg^-1和10时,与不加Zn相比,金针菇子实体Cd含量分别降低29%和11%。Cd对Zn也表现出一定的拮抗作用,但是除在Zn为0和Cd为10mg·kg^-1处理时拈抗作用显著(P〈0.05)外,其余处理没有达到显著水平。而在10mg·kg^-1 Cd和600mg·kg^-1 Zn处理条件下,金针菇生物量显著下降,可能是由于Cd—Zn协同作用,造成毒害作用的结果。  相似文献   

15.
研究了不同Cd浓度(0、10、25、50、100、200mg.kg-1)对麻疯树的生理指标和Cd积累特征的影响。结果表明,在土壤中的Cd≤50mg.kg-1时,麻疯树的生长未受到明显影响(P〉0.05),当Cd≥100mg.kg-1时,其生长受到明显抑制(P〈0.05);同时,麻疯树叶中叶绿素含量随土壤中Cd浓度的增加而下降,而其体内Cd含量则呈增加趋势,且表现根〉茎〉叶的富集特征;麻疯树叶中的SOD、POD活性随Cd浓度的增加呈先升高后降低趋势,而CAT活性仅在Cd为200mg.kg-1时显著增加,麻疯树叶中的MDA、脯氨酸、可溶性糖和可溶性蛋白、酸溶性巯基和谷胱甘肽含量随Cd浓度的增大呈增加趋势,这可在一定程度上缓解金属Cd对麻疯树的毒害。因此,麻疯树在重金属镉污染土壤修复方面具有一定的应用潜能。  相似文献   

16.
The effects of inoculation of earthworms and arbuscular mycorrhiza separately, and in combination, on Cd uptake and growth of ryegrass were studied in soils contaminated with 0, 5, 10, 20 mg of Cd kg−1 soil. Both earthworms and mycorrhiza were able to survive in all the treatments with added Cd. Earthworm activity significantly increased mycorrhizal infection rate of root and ryegrass shoot biomass. Earthworm activity decreased soil pH by about 0.2 units, and enhanced root Cd concentration and ryegrass Cd uptake. Mycorrhiza inoculation increased shoot and root Cd concentration substantially, and at the highest dosage of 20 mg Cd kg−1 decreased biomass of ryegrass. Inoculation of both earthworms and mycorrhiza increased ryegrass shoot Cd uptake at low Cd concentrations (5 and 10 mg Cd kg−1 soil), when compared with inoculation of earthworms or mycorrhiza alone. In conclusion, earthworm, mycorrhiza and their interaction may have a potential role in elevating phytoextraction efficiency in low to medium level metal contaminated soil.  相似文献   

17.
随着土壤中添加镉量的增加,杂交苏丹草的株高明显降低,生物量显著下降。镉添加量为40mg kg土的处理,杂交苏丹草株高和地上部的生物量分别只有对照的48%和8.4%。不加镉的对照,杂交苏丹草根、茎、叶的含镉量分别为3.2,2.7,3.2μg g-1,各部位含镉量没有显著差异;而在添加镉的土壤中,则呈现出根>茎>叶的变化规律;土壤添加镉的量越大,杂交苏丹草各部位含镉量越高,当镉添加量为40mg kg-1土时,根、茎、叶的含镉量分别为451.9,132.5,79.4μg g-1。杂交苏丹草植株中镉含量与土壤中镉的添加量呈现为显著的直线正相关,镉的累积量呈现为先上升后下降的规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号