首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Journal of plant nutrition》2013,36(8):1381-1393
Abstract

Root and leaf ferric chelate reductase (FCR) activity in Annona glabra L. (pond apple), native to subtropical wetland habitats and Annona muricata L. (soursop), native to nonwetland tropical habitats, was determined under iron (Fe)-sufficient and Fe-deficient conditions. One-year-old seedlings of each species were grown with 2, 22.5, or 45 µM Fe in a nutrient solution. The degree of tolerance of Fe deficiency was evaluated by determining root and leaf FCR activity, leaf chlorophyll index, Fe concentration in recently mature leaves, and plant growth. Root FCR activity was generally lower in soursop than in pond apple. Eighty days after plants were put in nutrient solutions, leaf FCR activity of each species was lower in plants grown with low Fe concentrations (2 µM) than in plants grown with high (22.5 or 45 µM) Fe concentrations in the nutrient solution. Leaves of pond apple grown without Fe became chlorotic within 6 weeks. The Fe level in the nutrient solution had no effect on fresh and dry weights of soursop. Lack of Fe decreased the leaf chlorophyll index and Fe concentration in recently matured leaves less in soursop than in pond apple. The rapid development of leaf chlorosis in low Fe conditions and low root and leaf FCR activities of pond apple are probably related to its native origin in wetland areas, where there is sufficient soluble Fe for adequate plant growth and development. The higher leaf FCR activity and slower growth rate of soursop compared to pond apple may explain why soursop did not exhibit leaf chlorosis even under low Fe conditions.  相似文献   

2.
Several methods for determination of extractable iron (Fe; or so-called “active Fe”) have been proposed. In this study, three methods of Fe extraction were tested: 1.5% phenanthroline (pH 3) and 1 M hydrochloric acid (HCl) from fresh leaves, and 1 M HCl from oven-dry leaves. A six-year-old avocado orchard (cultivar ‘Hass’), grown on a calcareous soil in the proximity of Cabildo (Valparaíso region, Chile), was selected for the study. Samples of mature (5–7 moths-old) leaves of different degree of chlorosis were collected. Total Fe concentrations in chlorotic leaves were similar or even greater than in green leaves. Regressions between the extractable Fe concentrations and the leaf SPAD-color were statistically significant for phenanthroline method, while non-significant for HCl methods. Thus, phenanthroline method was superior over others for diagnosis of Fe deficiency in avocado. Phenanthroline-extractable Fe concentration of 6 mg kg?1 was considered as a critical value for mature avocado leaves.  相似文献   

3.
Distribution of iron in vine leaves with HCO3? induced chlorosis The distribution of Fe in chlorotic and healthy leaves of grapevine has been studied. Application of HCO3? had no significant influence on the long distance transport of labelled Fe, the translocation of Fe from the vascular tissue to the intercostal cells (cells between leaf veins), however, was much affected by HCO3?. Leaf samples collected from three different sites showed in most cases higher Fe contents in the chlorotic leaves as compared with healthy leaves. The solubility of leaf Fe in diluted HCl, however, was lower in chlorotic leaves than in green leaves. Enzymatic dissolution of leaves into vascular tissue, intercostal cells and chloroplasts revealed that the Fe-content in the intercostal cells of green leaves was significantly higher than in the intercostal cells of chlorotic leaves. In addition the intercostal cells of chlorotic leaves had extremly high Ca and P-contents. The P content of green and chlorotic leaves was not related to the level of available P in the soil. It is therefore concluded that the high P content in chlorotic leaves is the sequence and not the cause of Fe-chlorosis. On each of the three sites investigated, higher clay contents were found under chlorotic grapevine plants than under healthy ones. It is assumed that because of this higher clay content, soil compaction may occur, resulting in an accumulation of CO2 and in an increase of the HCO3? concentration in the soil solution.  相似文献   

4.
Mining wastes may pose risk nearby urban and agricultural areas. We investigated a lettuce crop land close to a former capped mine tailing in order to determinate the metal uptake by crops. Soil plot sampling design within the crop area and two transects along the tailing were performed. In addition, lettuces (root and leaves) were analyzed after transplant and harvest. The results showed a pH of around 7–8 for all the soil samples. Total metal concentrations were as follows: 190–510 mg kg?1 Pb, 13–21 mg kg?1 Cu, and 210–910 mg kg?1 Zn. Diethylene triamine pentaacetic acid-extractable Pb was around 18% of the total Pb in some samples. Transects along the base and on the plateau of the tailing showed high metal concentrations of Pb (up to 5,800 mg kg?1) and Zn (up to 4,500 mg kg?1), indicating that capping layer had been eroded. Lettuce leaves showed Pb concentrations within standard for human health (<0.3 mg kg?1 in fresh weight). For essential micronutrients such as Cu and Zn, leaves had optimal content (10–28 mg kg?1 Cu, 60–85 mg kg?1 Zn). A continued monitoring in metal uptake is needed in crop lands close to mining wastes in order to prevent risks in food safety. Capped tailings must be monitored and rehabilitation works performed from time to time.  相似文献   

5.
Abstract

A pot experiment was conducted under glasshouse conditions during 2004 at the Central Institute of Medicinal and Aromatic Plants (CIMAP) in Lucknow. The study presented here was aimed at evaluating the response of Mentha arvensis (cv. Kushal), an essential oil–bearing plant, to different concentrations of zinc (Zn) and iron (Fe) supply with respect to their influence on biomass, oil yield, and oil quality. Suckers of Japanese mint were grown with four graded levels each of Fe and Zn (viz. 0, 5.0, 10.0, 25.0 mg Fe kg?1 and 0, 2.5, 5.0, 15.0 mg Zn kg?1) and a combination of both the elements. The results indicated that the fresh weight, oil content, and chlorophyll content increased significantly with increase in Fe supply; the optimum level was recorded as 10 mg Fe kg?1. Iron uptake increased significantly with increases in its supply. Zinc, when applied singly, showed enhancement in growth parameters, but the effects were nonsignificant. The optimal levels of supply for Zn and Fe in M. arvensis was evaluated to be 5 mg Zn kg?1 and 10 mg Fe kg?1, respectively.  相似文献   

6.
《Journal of plant nutrition》2013,36(8):1683-1696
Abstract

Soil acidity is one of the limiting factors affecting the production and sustainability of pastures and crops in many parts of the world. An on‐farm experiment was conducted in Australia to investigate the cultivar variation in alfalfa (lucerne) (Medicago sativa L.) with respect to soil acidity and response to applied lime. The experimental site was a brown sandy clay loam with a soil pH of 4.8 (1:5 calcium chloride). Ten cultivars (Hunter River, Hunterfield, Sceptre, Aurora, Genesis, Aquarius, Venus, PL90, PL55, and breeding line Y8804) were tested at two levels of lime (0 and 2 t ha?1). Lime application significantly increased the root growth, nodulation, leaf retention, leaf to stem ratio, herbage yield, and crude protein content of alfalfa. Liming had a significant effect on elemental composition of alfalfa shoots. Aluminum (Al) concentration was reduced from 93 mg kg?1 DM in nil lime treatment to 45 mg kg?1 DM in +lime treatment. Similarly, manganese (Mn) and iron (Fe) shoot concentrations were reduced from 74 mg kg?1 DM and 92 mg kg?1 DM to 59 mg kg?1 DM and 76 mg kg?1 DM, respectively. Liming significantly improved the calcium (Ca) concentration of shoots, while there was a little effect on phosphorus (P) and zinc (Zn) concentrations of alfalfa shoots. Cultivars had differential response to lime application. Response to lime application was greater in Y8804 and Aurora alfalfa where yield increased by 32% and 31%, while yield increase was 11–22% in other cultivars. Cultivars also differed significantly in root growth, nodulation, leaf drop, leaf to stem ratio, crude protein content, and elemental composition of shoots. Cultivars with better performance in no liming treatment had comparatively lower shoot Al, Mn, and Fe concentrations compared with other cultivars.  相似文献   

7.
Copper/zinc bioaccumulation and the effect of phytotoxicity on the growth of lettuce (Lactuca sativa L.) were studied in plastic vessels containing (i) non-contaminated soil, (ii) copper-contaminated soils at concentrations of 75.0 and 125.0 mg kg?1, (iii) zinc-contaminated soils at concentrations of 1200 and 2400 mg kg?1, and (iv) soil enriched with swine manure. Copper and zinc concentrations in lettuce leaves were determined by flame atomic absorption spectrometry during 42 days of growth. Copper concentrations from 0.92 to 13.06 mg kg?1 were found in lettuce leaves grown in copper-contaminated soils and zinc concentrations from 58.13 to 177.85 mg kg?1 were found in lettuce leaves grown in zinc-contaminated soils. Copper and zinc concentrations in lettuce leaves grown in swine manure-enriched soils ranged from 0.82 to 8.33 and 0.68 to 13.27 mg kg?1, respectively. Copper and zinc bioaccumulation caused a decrease in lettuce growth in metal-contaminated soils and an increase in phytotoxicity effects when compared to growth in non-contaminated and manure-enriched soils. These findings were confirmed by measuring leaf areas and biomasses. Copper was less toxic to lettuce than zinc due to the different concentrations in the soil. Lettuce growth and development was better in the swine manure-enriched soil than non-contaminated soil, which indicates that swine manure is a safe agricultural biofertilizer when used in appropriate amounts to avoid metal bioaccumulation in soil and plants.  相似文献   

8.
Reasons for chlorosis of vine (Vitis vinifera L.) under field conditions
  • 1 Analysis of leaf and soil samples from green and chlorotic vineyards did not result in a clear correlation between chlorosis and one of the soil factors determined (pH, concentration of HCO3?, water soluble P, DTPA-extractable Fe, Mn, Zn, Cu).
  • 2 In severe chlorotic leaves the concentration of all elements investigated was increased, while in weak chlorotic leaves the concentration of Fe, Mn, Zn, Cu and P stayed unchanged.
  • 3 There was no change neither in the P: Fe nor in the K: Ca ratio of the leaves due to chlorosis, but significant differences existed in the ratio extractable Fe: total Fe and total P: extractable Fe between green and chlorotic leaves.
  • 4 The increased amount of Mn and Zn in severe chlorotic leaves reached a 100 %, the also increased amount of Fe only a 20% extractability by 0,5 n HCl, which together with the high P-concentration can be assumed as a main reason for chlorosis.
  相似文献   

9.
Abstract

The effect of cadmium (Cd) and sulphur (S) on dry weight, biochemical parameters and anatomical features of mustard (Brassica campestris L. cv. Pusa Bold) plant was investigated in a pot culture experiment using Cd (25, 50, and 100 mg kg?1 of soil), S (40 mg kg?1 of soil), and the combination of Cd+S (25+40 mg kg?1 of soil, 50+40 mg kg?1 of soil, and 100+40 mg kg?1 of soil). Sulphur treatment was given at sowing and Cd treatment was given when seedlings were fully established. Observations were recorded at the flowering stage. A significant and antagonistic interaction of Cd and S was observed. Compared to the control, leaf dry weight, total chlorophyll content, sugar content, nitrate reductase activity, and protein content decreased significantly with each Cd treatment, whereas the reverse was observed with S treatment. Combined treatments of Cd+S also reduced these parameters, but this reduction was less than the one observed with Cd treatments alone. However, nitrate accumulation in the leaves was 2.35 times higher with treatment of 100 mg Cd+40 mg S kg?1 of soil than in the controls, whereas it was 3.5 times higher with Cd (100 mg kg?1 of soil) alone. The relative proportion of vasculature in the stem, stoma length and width, and stomata length and width were inhibited with Cd treatments, whereas the combined treatments mitigated the adverse effect caused by Cd. Thus, S could alleviate the Cd induced impairment of biochemical and anatomical features of the plant and the enhancement of nitrate accumulation in the leaves.  相似文献   

10.
Desilication and leaching are processes that accompany plinthilization, leading to nutrient depletion. Soils from 12 profiles in a plinthitic landscape were analyzed for extractable micronutrients [iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu)]. Soils of the landscape from crestal to lower‐slope position contain plinthite in the profile, whereas those of the valley floor are devoid of plinthite. The micronutrients were extracted using diethylenetriaminepentaacetic acid (DTPA) and 0.1 M hydrochloric acid (HCl). The results showed that 0.1 M HCl extracted more of the micronutrients than DTPA. The DTPA‐extractable Fe, Zn, Mn, and Cu in all the soils ranged from 1.15 to 12.44 (mean, 3.69); 0.71 to 2.75 (mean, 1.86); trace 12.44 (mean, 3.35), and trace 3.76 (mean, 0.63) mg kg?1, respectively. The DTPA‐extractable micronutrient contents were generally greater than the critical available level (4.5 mg kg?1 for Fe, 0.8 mg kg?1 for Zn, 1.0 mg kg?1 for Mn, and 0.2 mg kg?1 for Cu). The 0.1 M HCl‐extractable micronutrients in the landscape ranged from 8.00 to 30.40 (mean, 15.19); 0.30 to 6.49 (mean, 1.35); 1.00 to 27.20 (mean, 7.74); and 0.26 to 15.0 (mean, 2.77) mg kg?1 for Fe, Zn, Mn, and Cu, respectively. Both DTPA‐ and 0.1 M HCl‐extractable micronutrients were generally lower in the plinthitic horizons than in the nonplinthitic horizons and higher in the Ap than the subsoil horizons. Correlation analysis showed a significant relationship between DTPA‐Fe and DTPA‐Mn, Cu, and organic carbon (r = 0.913**, 0.411**, and 0.385**). There was a significant and positive relationship between 0.1 M HCl‐extractable Mn and organic carbon (C), total nitrogen (N), and available phosphorus (P) (r = 0.413**, 0.337**, and 0.350**, respectively).  相似文献   

11.
Available iron, zinc, copper and manganese were determined in six pedons located in upper slope, middle slope and valley bottom soils derived from Abeokuta geological materials in Nigeria. The soils had an average of 639.8 g kg?1 sand, 241.8 g kg?1 clay and 118.4 g kg?1 silt. The fertility status of the soils was low–medium with a strongly acid–neutral reaction, 1.3–15.1 g kg?1 organic carbon contents, moderate–high exchangeable bases and 1.38 mg kg?1 available phosphorus. Both Fe (122.50 mg kg?1) and Mn (111.40 mg kg?1) occurred at toxic levels, whereas the mean Cu (1.27 mg kg?1) and Zn (2.56 mg kg?1) contents were found to be adequate for most crops grown in the region. There were significant positive correlations among the micronutrients and also between soil pH, organic carbon, particle size fractions and micronutrients. The high levels of Fe and Mn were probably due to the presence of oolitic ironstone in the parent material.  相似文献   

12.
Abstract

Iron (Fe) chlorosis is a common symptom in many soybean (Glycine max L. Merr.) producing areas throughout the United States. On the Blackland soils found in northeast Texas, Fe chlorosis occasionally appears during vegetative growth, but often abates by the time plants flower. However, it is not clear whether preplant additions of Fe will enhance soybean growth or yield on this soil or whether different sources of Fe give different responses. In a greenhouse study, soil from a pH 8.4 Houston Black clay (fine, smectitic, thermic Udic Haplusterts), with a DTPA‐extractable concentration of 11.7 mg Fe kg?1, was treated with FeSO4 (0, 3, 10, 30, and 100 ppm Fe), sodium ferric diethylenetriamine pentaacetate (FeDTPA) (0, 0.3, 1.0, 3, and 10 ppm Fe) or sodium ferric ethylenediamine‐di (o‐hydroxyphenylacetate) (FeEDDHA) (0, 0.3, 1.0, 3, and 10 ppm Fe). Pot size was 19 L and soil dry mass was 10 kg. Soybean (cv. Hutcheson) seed were planted in November 2000 and seedlings were thinned to three per pot at the first true leaf stage. The third uppermost fully expanded leaf of each plant was harvested at growth stage R3 for nutrient analysis. Between 20 and 100 days after planting, six nondestructive leaf chlorophyll readings were obtained from the third uppermost fully expanded leaf. Entire plants were harvested at R6 (mid podfill) for nutrient and biomass yield determination. Leaf blade Fe concentration ranged from 79 to 87 mg kg?1 in the untreated check plants to a high of 109 mg kg?1 for the 10 ppm FeDTPA‐Fe treatment, all of which were greater than the acknowledged critical level of 60 mg kg?1. No visible Fe‐deficiency symptoms appeared during the study. Chlorophyll (SPAD 502) values during the R3 to R5 growth stages were greater for all of the FeSO4 treatments than for the 0 ppm treatment. The 10 ppm FeDTPA‐Fe treatment and the 3 ppm FeEDDHA‐Fe treatment exhibited higher leaf chlorophyll readings than the untreated checks during the R3 to R5 growth stage. The average seed yield from the 12 Fe fertilized treatments at growth stage R6 was only 12% greater (not significant) than the untreated check. Total biomass (root plus shoot) was not affected by the treatments. There was no evidence that the higher rates of Fe caused reduced growth. Overall, our results do not suggest that soil‐applied Fe will consistently stimulate soybean growth or yield on this soil, at least when DTPA‐extractable soil Fe is at 12 mg kg?1 or higher. However, because of the trends for increased seed yield in some of the Fe treatments, field studies using soil‐ and/or foliar‐applied Fe are warranted.  相似文献   

13.
A nutrient solution experiment was done to evaluate effects of different concentrations of nitrogen (N), phosphorus (P) and potassium (K) on leaf mineral concentrations and some enzymes activity of melon seedlings (Cucumismelo var. inodorus subvar. Khatouni). Different levels of these nutrients including 0, 53, 105, 158 and 210?mg L?1 N; 0, 8, 16, 23 and 31?mg L?1 P; 0, 59, 118, 176 and 235?mg L?1 K, all corresponding to 0, 25, 50, 75 and 100% of their concentrations in Hoagland nutrient solution, were applied to plants. The results showed that the highest leaf nitrate reductase (NR) activity was observed at highest N and P levels, whereas the three highest K levels showed the highest NR activity. The highest leaf peroxidase activity was observed at 8?mg L?1 P, 59?mg L?1 K and 158?mg L?1 N. The leaf catalase activity was highest at zero concentration of P, 158?mg L?1 N and 176?mg L?1 K; however, catalase activity was decreased by increasing P levels. Leaf protein content showed an increasing trend with increasing N, P and K levels of nutrient solution, while there was no significant difference between 158 and 210?mg L?1 N. The highest leaf concentrations of N, P, K and Mg were observed at highest nitrogen, potassium and phosphorus levels of nutrient solution, whereas the highest leaf concentration of Ca were obtained at 53 or 105?mg L?1 N, 176?mg L?1 K and 23–31?mg L?1 P. The highest iron concentration of leaves was obtained from 23 to 31?mg L?1 P, 176?mg L?1 K and 210?mg L?1 N.  相似文献   

14.
Comparative physiological studies on iron (Fe) chlorosis of Vicia faba L. and Helianthus annuus L. were carried out. High internal Fe contents in Vicia cotyledons (16–37 μg) were completely used for plant growth and Fe chlorosis was not inducible by the application of nitrate (with or without bicarbonate). In Helianthus, low quantities of Fe in the seeds (4 μg) were insufficient for normal growth and without Fe in the nutrient solution, Fe chlorosis was obtained in all treatments. This chlorosis was an absolute Fe deficiency. Also, the treatment with 1 μM Fe in the nutrient solution and nitrate (with or without bicarbonate) led to severe chlorotic symptoms associated with low leaf Fe concentrations and high Fe concentrations in the roots. In contrast, Helianthus grown with NH4NO3 and 1 μM Fe had green leaves and high leaf Fe concentrations. However, with NO3 supply (with or without bicarbonate), Fe translocation from the roots to the upper plant parts was restricted and leaves were chlorotic. Chlorotic and green sunflower leaves may have the same Fe concentrations, leaf Fe concentration being dependent on Fe translocation into the leaf at the various pH levels in the nutrient solution. At low external pH levels (controlled conditions) more Fe was translocated into the leaf leading to similar leaf Fe concentrations with higher chlorophyll concentrations (NH4NO3) and with lower chlorophyll concentrations (NO3). This indicates a lower utilization of leaf Fe of NO3 grown sunflower plants. Utilization of Fe in faba bean leaves is presumably higher than in sunflower leaves. In Vicia xylem sap pH was not affected by nitrate. In contrast, the xylem sap pH in Helianthus was permanently increased by about 0.4 pH units when fed with nitrate (with or without bicarbonate) compared with NH4NO3 nutrition. The xylem sap pH is indicative of leaf apoplast pH. From our earlier work (Mengel et al., 1994; Kosegarten und Englisch, 1994) we therefore suppose that in Helianthus, Fe immobilization occurs in the leaf apoplast due to high pH levels when grown with nitrate (with or without bicarbonate).  相似文献   

15.
The effect of high concentrations of nickel (Ni) and chromium (Cr) in alkaline serpentine Fluvisol (FL 1) on their uptake by grapevine as a perennial plant was compared to their accumulation on alkaline Fluvisol (FL 2) and an acid Cambisol (CM). The FL 1 revealed high pseudo total Ni (900–1737 mg kg?1) and Cr (263–775 mg kg?1) concentrations, whereas those in FL 2 and CM were low. Diethylenetriaminepentaacetic acid (DTPA)–extractable Ni was greatest in FL 1; DTPA‐extractable Cr was less than the detection limit. Concentrations of metals in grapevines revealed the pattern root > leaves > shoots > grapes. At FL 1, high Ni and Cr concentrations (40.7–68.8; 23.3–41.3 mg kg?1) in roots were measured. In grapes, these concentrations were low (Ni 0.4–0.9; Cr 0.1–0.6 mg kg?1), whereas those on FL 1 do not differ significantly from others, indicating that alkaline serpentine soils may be used for grapevine or other perennial plant growth.  相似文献   

16.
《Journal of plant nutrition》2013,36(10-11):1985-1996
Abstract

A field experiment was carried out in a drip‐irrigated orchard of Clementine (Citrus clementina Ort. ex. Tan) grafted on Troyer citrange (C. sinensis × Poncirus trifoliata) rootstock located in the Valencian Citrus area (Spain). The trees received a single iron (Fe) EDDHA (ethylene diamine diorthohydroxyphenyl acetate) rate (3 g Fe tree?1) supplied in different application frequencies from April to September (8‐, 4‐, 2‐, or 1‐week intervals). Leaf chlorophyll (Chl) concentrations were estimated every month by using an SPAD‐502 meter. The foliar contents of Fe were also evaluated with time. Mineral composition of leaves, total Chl concentration, yield, and fruit quality were also evaluated at the end of the assay. SPAD readings, Chl, N, K, Mg, Fe, and Mn concentration in leaves increased as a result of Fe application. The concentration of Zn, however, significantly decreased in comparison to the control trees. Iron treatment increased yield and some of the fruit quality parameters, like total juice, sugar, and acid contents. Iron application frequency had not a consistent effect on the concentrations of macro and micronutrients in leaves, yield, and fruit quality. The highest values of SPAD readings and the leaf Chl content were obtained when Fe was applied at 4‐week intervals along the year. These results suggest that soil Fe‐EDDHA application with a moderate frequency could be recommended to the Citrus farmers in the area for a more rational Fe application along the growth cycle in Citrus orchards.  相似文献   

17.
Abstract

Athyrium yokoscense, a type of fern that grows vigorously in mining areas in Japan, is well known as a Cd hyperaccumulator as well as a Cu, Pb and Zn tolerant plant. However, no information is available on As accumulation of A. yokoscense, although it often grows on soils containing high levels of both heavy metals and As. In this study, young ferns collected from a mine area were grown in media containing As-spiked soils or mine soil in a greenhouse for 21 weeks. Athyrium yokosense was highly tolerant to arsenate and survived in soils containing up to 500 mg As (V) kg?1. The addition of 100 mg As (V) kg?1 resulted in the highest fern biomass (1.95 g plant?1) among As-spiked soils. Although the As concentration of the fern was lower than other As hyperaccumulators, such as Pteris vittata, A. yokoscense could hyperaccumulate As in mature and old fronds. Arsenic was accumulated most efficiently in old fronds (922 mg kg?1) in the media containing 5 mg As (III) kg?1. Moreover, higher As accumulation was found in the roots of the ferns, with a range from 506 to 2,192 mg kg?1. In addition, in the mine soil with elevated concentrations of As and heavy metals, A. yokoscense not only hyperaccumulated As (242 mg As kg?1 in old fronds), but also accumulated Cd, Pb, Cu and Zn at concentrations much higher than those reported for other terrestrial plants. Athyrium yokoscense accumulated Cd mostly in fronds in high concentrations, up to 1095 mg kg?1, while it accumulated Cu, Zn and Pb mainly in the roots and the concentrations were 375, 2040 and 1165 mg kg?1, respectively.  相似文献   

18.
Oil palm (Elaeis guineensis Jacq.) is a heavy feeder of nutrients and requires balanced and adequate supply of nutrients for optimum growth and yield. Information regarding soil nutrient status and leaf nutrient concentration is very much required for proper fertilizer application. Therefore, a survey was conducted for assessment of soil nutrient status and leaf nutrient concentration in 64 oil palm plantations in the state of Goa lying in the west coastal region of India. Soil pH, electrical conductivity (EC), organic carbon (OC), available potassium (K) (ammonium acetate-extractable K) (NH4OAc-K), available phosphorus (P) (Bray’s-P), exchangeable calcium (Ca) (Exch. Ca) and magnesium (Mg) (Exch. Mg), available sulphur (S) (calcium chloride-extractable S) (CaCl2-S), and hot water soluble boron (B) (HWB) in surface (0–20 cm depth) soil layers ranged from 4.25 to 6.77, 0.05 to 1.06 dS m–1, 5.07 to 48.4 g kg–1, 58.1 to 1167 mg kg–1, 1.80 to 415 mg kg–1, 200 to 2997 mg kg–1, 36.0 to 744 mg kg–1, 3.00 to 87.7 mg kg–1 and 0.09 to 2.10 mg kg–1, respectively. Diagnosis and Recommendation Integrated System (DRIS) norms were established for different nutrient expressions and were used to compute DRIS indices. As per DRIS indices, the order of requirement of nutrients in the region was found to be P > Mg > K > nitrogen (N) > B. Optimum leaf nutrient ranges as per DRIS norms varied from 1.64 to 2.79%, 0.36 to 0.52%, 0.37 to 0.75%, 0.89 to 1.97%, 0.35 to 0.63%, 0.89 to 1.50%, 3.10 to 13.9 mg kg?1, 7.50 to 32.2 mg kg?1, 35.0 to 91.1 mg kg?1, 206 to 948 mg kg?1, and 895 to 2075 mg kg?1 for N, P, K, Ca, Mg, S, B, copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) respectively. On the basis of DRIS-derived sufficiency ranges, 14, 5, 11, 6, 6, 6, 8, 2, 3, 6, and 16% of leaf samples had less than optimum concentrations of N, P, K, Ca, Mg, S, B, Cu, Zn, Mn, and Fe respectively. The optimum ranges developed can be used as a guide for routine diagnostic and advisory purpose for balanced utilization of fertilizers.  相似文献   

19.
《Journal of plant nutrition》2013,36(10-11):2243-2252
Abstract

A research was carried out to evaluate the leaves' ability to utilize Fe supplied as a complex with water‐extractable humic substances (WEHS) and the long‐distance transport of 59Fe applied to sections of fully expanded leaves of intact sunflower (Helianthus annuus L.) plants. Plants were grown in a nutrient solution containing 10 µM Fe(III)‐EDDHA (Fe‐sufficient plants), with the addition of 10 mM NaHCO3 to induce iron chlorosis (Fe‐deficient plants). Fe(III)‐WEHS could be reduced by sunflower leaf discs at levels comparable to those observed using Fe(III)‐EDTA, regardless of the Fe status. On the other hand, 59Fe uptake rate by leaf discs of green and chlorotic plants was significantly lower in Fe‐WEHS‐treated plants, possibly suggesting the effect of light on photochemical reduction of Fe‐EDTA. In the experiments with intact plants, 59Fe‐labeled Fe‐WEHS or Fe‐EDTA were applied onto a section of fully expanded leaves. Irrespective of Fe nutritional status, 59Fe uptake was significantly higher when the treatment was carried out with Fe‐EDTA. A significant difference was found in the amount of 59Fe translocated from treated leaf area between green and chlorotic plants. However, irrespective of the Fe nutritional status, no significant difference was observed in the absolute amount of 59Fe translocated to other plant parts when the micronutrient was supplied either as Fe‐EDTA or Fe‐WEHS. Results show that the utilization of Fe complexed to WEHS by sunflower leaves involves an Fe(III) reduction step in the apoplast prior to its uptake by the symplast of leaf cells and that Fe taken up from the Fe‐WEHS complexes can be translocated from fully expanded leaves towards the roots and other parts of the shoot.  相似文献   

20.
《Journal of plant nutrition》2013,36(10-11):1997-2007
Abstract

Two tomato (Lycopersicon esculentum Mill., cvs. Pakmor and Target) genotypes differing in resistance to iron (Fe) deficiency were grown in nutrient solution under controlled environmental conditions over 50 days to study the relationships between severity of leaf chlorosis, total concentration of Fe, and activities of Fe‐containing enzymes in leaves. The activities of Fe‐containing enzymes ascorbate peroxidase, catalase, and guaiacol peroxidase, and additionaly the activity of glutathione reductase, an enzyme that does not contain Fe, were measured. Plants were supplied with 2 × 10?7 M (Fe deficient) and 10?4 M (Fe sufficient) FeEDTA, respectively. Leaf chlorosis appeared more rapidly and severely in Target (Fe deficiency senstive genotype) than Pakmor (Fe deficiency resistant genotype). On day 50, Pakmor had 2‐fold more chlorophyll than Target under Fe deficiency, while at adequate supply of Fe the two genotypes were very similar in chlorophyll concentration. Despite distinct differences in development of leaf chlorosis and chlorophyll concentrations, Pakmor and Target were very similar in concentrations of total Fe under Fe deficiency. In contrast to Fe concentration, activities of Fe‐containing enzymes were closely related to the severity of leaf chlorosis. The Fe‐containing enzymes studied, especially catalase, showed a close relationship with the concentration of chlorophyll and thus differential sensitivity of tomato genotypes to Fe deficiency. Glutathione reductase did not show relationship between Fe deficiency chlorosis and enzyme activity. The results confirm that measurement of Fe‐containing enzymes in leaves is more reliable than the total concentration of Fe for characterization of Fe nutritional status of plants and for assessing genotypical differences in resistance to Fe deficiency. It appears that Fe deficiency‐resistant genotype contains more physiologically available Fe in tissues than the genotype with high sensitivity to Fe deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号