首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
ABSTRACT

Preliminary norms for foliar tissue were developed for laurustine (Viburnum tinus L.), tobir (Pittosporum tobira Thumb.) and strawberry tree (Arbutus unedo L.) for its use in the diagnosis and recommendation integrated system (DRIS). These norms were generated from high quality plants grown in hydroponic cultures. The values were those of foliar tissues from two growing assays where the total (N) and (NO3 ?/NH4 +) ratio were optimized. These norms were applied to perform DRIS in plants grown in a mix of white peat and vermiculite (75:25 v:v). Nutrient reference levels obtained from hydroponic cultures were appropriate to be used as DRIS norms for these species, because DRIS indexes reflected the nutritive status of these species grown in a fertigated system. These results suggest the need to broaden the range of reference values to include the fertigation reference levels. DRIS detects the nutrient limitations as a consequence of the nutrient imbalance caused by the pH and nutrient concentration in the substrate solution. Therefore, DRIS is an adequate method of diagnosis and can be used to adjust the nutrient solution composition and to improve the nutritional status for these species.  相似文献   

2.
Oil palm (Elaeis guineensis Jacq.) is a heavy feeder of nutrients and requires balanced and adequate supply of nutrients for optimum growth and yield. Information regarding soil nutrient status and leaf nutrient concentration is very much required for proper fertilizer application. Therefore, a survey was conducted for assessment of soil nutrient status and leaf nutrient concentration in 64 oil palm plantations in the state of Goa lying in the west coastal region of India. Soil pH, electrical conductivity (EC), organic carbon (OC), available potassium (K) (ammonium acetate-extractable K) (NH4OAc-K), available phosphorus (P) (Bray’s-P), exchangeable calcium (Ca) (Exch. Ca) and magnesium (Mg) (Exch. Mg), available sulphur (S) (calcium chloride-extractable S) (CaCl2-S), and hot water soluble boron (B) (HWB) in surface (0–20 cm depth) soil layers ranged from 4.25 to 6.77, 0.05 to 1.06 dS m–1, 5.07 to 48.4 g kg–1, 58.1 to 1167 mg kg–1, 1.80 to 415 mg kg–1, 200 to 2997 mg kg–1, 36.0 to 744 mg kg–1, 3.00 to 87.7 mg kg–1 and 0.09 to 2.10 mg kg–1, respectively. Diagnosis and Recommendation Integrated System (DRIS) norms were established for different nutrient expressions and were used to compute DRIS indices. As per DRIS indices, the order of requirement of nutrients in the region was found to be P > Mg > K > nitrogen (N) > B. Optimum leaf nutrient ranges as per DRIS norms varied from 1.64 to 2.79%, 0.36 to 0.52%, 0.37 to 0.75%, 0.89 to 1.97%, 0.35 to 0.63%, 0.89 to 1.50%, 3.10 to 13.9 mg kg?1, 7.50 to 32.2 mg kg?1, 35.0 to 91.1 mg kg?1, 206 to 948 mg kg?1, and 895 to 2075 mg kg?1 for N, P, K, Ca, Mg, S, B, copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) respectively. On the basis of DRIS-derived sufficiency ranges, 14, 5, 11, 6, 6, 6, 8, 2, 3, 6, and 16% of leaf samples had less than optimum concentrations of N, P, K, Ca, Mg, S, B, Cu, Zn, Mn, and Fe respectively. The optimum ranges developed can be used as a guide for routine diagnostic and advisory purpose for balanced utilization of fertilizers.  相似文献   

3.
Abstract

Nitrite (NO2 ?‐N) toxicity symptoms have been observed on lettuce (Lactuca sativa) at various locations in California. The objective was to evaluate the symptoms of ammonium (NH4 +‐N) and nitrite (NO2 ?‐N) toxicity on Sundevil iceberg lettuce and Paragon romaine lettuce and to determine lettuce growth and biomass production under different levels of NO2 ?‐N. Hydroponic studies under greenhouse conditions were conducted using nutrient solutions containing nitrate (NO3 ?‐N) and two other forms of nitrogen (NO2 ?‐N and NH4 +‐N) applied at a constant concentration (50 mg NL?1) or using different NO2 ?‐N levels (0, 5, 10, 20, 30, and 40 mg N L?1) and a constant NO3 ?‐N level (30 mg N L?1). Crown discoloration (brownish color) was observed for lettuce grown in both NO2 ?‐N and NH4 +‐N solutions approximately 3 weeks after transplanting into the hydroponic systems. Lettuce grown in NO3 ?‐N solution produced larger biomass and greater number of leaves per plant than lettuce grown in NO2 ?‐N or NH4 +‐N solutions. Increasing the concentration of NO2 ?‐N suppressed plant height, fresh and dry biomass yield, and number of leaves and increased the root vascular discoloration. Lettuce growth was reduced more than 50% at NO2 ?‐N concentrations greater than 30 mg N L?1. Even at 5 mg NO2 ?‐N L?1, growth was reduced 14 and 24% for romaine and iceberg lettuce, respectively, relative to that obtained in nitrate solution. Although concentrations between 5 and 40 mg NO2 ?‐N L ?1 reduced dry biomass similarly for both lettuce types, toxicity symptoms were more severe in iceberg lettuce than in romaine.  相似文献   

4.
Abstract

The Diagnosis and Recommendation Integrated System (DRIS) was used to identify nutrient status of mango fruit trees in Punjab, India. Standard norms established from the nutrient survey of mango fruit trees were 1.144, 0.126, 0.327, 2.587, 0.263, 0.141% for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S), and 15, 3.5, 145, 155, and 30 mg kg?1, respectively, for zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and boron (B) in dry matter. On the basis of DRIS indices, 16, 15, 12, 17, and 16% of total samples collected during nutrients survey of mango trees were low in N, P, K, Ca, and Mg, respectively. For micronutrients, 19, 18, 12, 20, and 6% samples were inadequate in Zn, Cu, Fe, Mn, and B, respectively. DRIS‐derived sufficiency ranges from nutrient indexing survey were 0.92–1.37, 0.08–0.16, 0.21–0.44, 1.71–3.47, 0.15–0.37, and 0.09–0.19% for N, P, K, Ca, Mg, and S and 11–19, 1–6, 63–227, 87–223, and 16–44 mg kg?1 for Zn, Cu, Fe, Mn, and B, respectively.  相似文献   

5.
Abstract

The Diagnostic and Recommendation Integrated System (DRIS) was employed for interpreting nutrient analyses of leaf tissue of guava fruit trees (Psidium guajava L.) cultivated in Punjab, northwest India. Standard reference DRIS norms were established for various nutrient ratios and used to compute DRIS indices, which assessed nutrient balance and order of limitation to yield. The DRIS evaluation and sufficiency range approach were equally effective and in agreement for diagnosing deficiencies of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sulfur (S), manganese (Mn), zinc (Zn), and copper (Cu). The results also show that the position of leaf tissue sampled does not have a major effect on the DRIS diagnosis. Nutrient sufficiency ranges derived from DRIS norms were 1.41–1.65, 0.10–0.17, 0.51–0.97, 1.16–2.12, 0.31–0.51, 0.18–0.28% for N, P, K, Ca, magnesium (Mg), and S and were 105–153, 58–110, 15–29, and 6–16 mg Kg?1 for iron (Fe), Mn, Zn, and Cu, respectively. According to these sufficiency ranges 35, 62, 51, 75, 70, and 68% of samples were sufficient, and 4, 29, 36, 9, 10, and 22% of samples were low in N, P, K, Ca, Mg, and S, respectively. More than 50 and 2% of the guava trees selected for sampling was found to deficient in N and P, respectively. For micronutrients, 15, 6, and 7% of samples were found to be low in Mn, Zn, and Cu.  相似文献   

6.
The diagnosis and recommendation integrated system (DRIS) approach was used to interpret nutrient analyses of leaf tissues from pomegranate cv. Bhagwa orchards grown in southwestern Maharashtra, India. The DRIS norms were established for three growth stages,viz. 50% flowering, fruit development and first harvesting of pomegranate. Various nutrient ratios were obtained from high-yielding population and were used to compute DRIS indices for diagnosing nutrient imbalances and their order of limitation to yield. Nutrient sufficiency ranges at 50% flowering derived from DRIS norms were 1.32–2.15% nitrogen (N), 0.18–0.24% phosphorus (P), 1.29–1.99% potassium (K), 0.64–1.20% calcium (Ca), 0.23–0.45% magnesium (Mg), 0.16–0.26% sulfur (S), 103.04–149.12 mg kg?1 iron (Fe), 39.60–72.85 mg kg?1 manganese (Mn), 15.99–26.10 mg kg?1 zinc (Zn), 6.16–9.32 mg kg?1 copper (Cu), 23.38–39.88 mg kg?1 boron (B) and 0.29–0.47 mg kg?1 molybdenum (Mo). Similarly, the sufficiency range at fruit development and first harvesting was developed for computing DRIS indices. The requirement of Fe, Mg, S, Zn and N by the pomegranate plant was higher at 50% flowering and fruit development stages. According to these DRIS-derived indices, 87.85, 73.83, 70.09, 69.16 and 65.42% orchards were deficient in Fe, S, Mg, Zn, and N, respectively, at 50% flowering, while 70.03, 66.36, 63.55, 61.68, and 68.22% orchards were found to be deficient in respective nutrients during the fruit development stage.  相似文献   

7.
Nitrogen (N) optimization of a nutrient solution for ornamental conifers was obtained with two different experiments in hydroponic cultures: First, by using three different NO3 /NH4 + ratios (60/40, 55/45, and 40/60 in percentages of the total N supplied); and, secondly by testing three total N levels (3.7; 4.7 and 5.5 mmol L‐1). Best growth was obtained with a NO3 /NH4 + ratio of 55/ 45 and a total N level of 3.7 mmol L‐1. With these experiments, reference levels of foliar concentrations of the macronutrients N, phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and the biochemical indices, such as chlorophyll and starch levels, were obtained with the treatments corresponding to the plants with the higher growth. In the course of a growth cycle, a substrate assay with two different pot mixes (moss peat plus perlite and black peat plus sepiolite 60/40 ‐% v/v‐) was carried out by using the best N ratios and doses in nutrient solutions as obtained in hydroponics. The results indicated that the same N fertilization in fertigation systems changes depending on the different physicochemical properties of the substrates used; in this case, depending on the different physical properties of the two substrates. By applying DRIS to perform nutritional diagnosis, it is possible to find nutritional limitations to plant growth, but not additional factors, such as water‐air relationships in the growth media.  相似文献   

8.
Effects of foliar applications of some micro- and macro-nutrients on mineral nutrient content of tomato leaves and fruits were investigated in an aquaponic system in comparison with a hydroponic system. Fourteen days old tomatoes seedlings were transplanted on to growth bed of aquaponic and hydroponic systems. Foliar nutrients application began 30 days after transplantation. Eight treatments were used, untreated control and foliar application at the rate of 250 mL plant?1 with 0.5 g L?1 potassium sulfate (K2SO4), magnesium sulfate (MgSO4 7H2O), ferrous (Fe)- ethylenediamine-N,N′-bis (EDDHA), manganese sulfate (MnSO4 H2O), boric acid (H3BO3), zinc chloride (ZnCl2), and copper sulfate (CuSO4 5H2O). Foliar application of potassium (K), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) increased their corresponding concentrations in the leaves of aquaponic-treated plants. On the other hand, foliar spray of K, Fe, Mn, Zn, and Cu caused a significant increment of applied element concentrations in the fruits of hydroponic-grown plants. These findings indicated that foliar application of some elements can effectively alleviate nutrient deficiencies in the leaves of tomatoes grown on aquaponics.  相似文献   

9.
The Diagnosis and Recommendation Integrated System (DRIS) has been proposed to determine nutrient balance in plants at different stages of growth. The DRIS index for each nutrient allows ranking of nutrients in order of their deficiency. Preliminary DRIS norms for potato (Solanwn tuberosum L.) were developed during the 1991 growing season in Damavand area located 70 km. northeast of Tehran. The soil and leaf samples at flowering stage (early tuber development stage) were collected from 50 different farms. Average concentrations of nutrients in both high‐ and low‐yielding populations were calculated. The following average foliar nutrient concentration were obtained from the high‐yielding populations: N = 5.22, P = 0.38, K = 4.20, Ca = 1.50, and Mg = 0.65 percent; and Fe = 150, Mn = 50, Zn = 40, Cu = 11, and B = 38 ppm. The average nutrient concentrations for the low‐yielding population were close to those in high‐yielding ones except for K which was 3.23 in contrast to 4.20‐percent. There was no significant relationship between different soil nutrient availability indices and yield except for K. The DRIS indices ranked K as the most limiting nutrient in the low yielding farms with only one exception. It seems high rates of N and P fertilization have created a lack of balance between these nutrients and K.

As a result of this study, the following appropriate norms for potato leaves are suggested for the calcareous soils of Iran: N = 4.5, P = 0.30, K= 5.00, Ca = 1.50, and Mg = 0.65 percent; and Fe = 150, Mn = 50, Zn = 40, Cu = 11, and B = 38 ppm. These results will be verified by field fertilizer experiments for N, P, K, Zn, and Fe which are some times deficient in potato soils.  相似文献   

10.
A nutrient solution experiment was done to evaluate effects of different concentrations of nitrogen (N), phosphorus (P) and potassium (K) on leaf mineral concentrations and some enzymes activity of melon seedlings (Cucumismelo var. inodorus subvar. Khatouni). Different levels of these nutrients including 0, 53, 105, 158 and 210?mg L?1 N; 0, 8, 16, 23 and 31?mg L?1 P; 0, 59, 118, 176 and 235?mg L?1 K, all corresponding to 0, 25, 50, 75 and 100% of their concentrations in Hoagland nutrient solution, were applied to plants. The results showed that the highest leaf nitrate reductase (NR) activity was observed at highest N and P levels, whereas the three highest K levels showed the highest NR activity. The highest leaf peroxidase activity was observed at 8?mg L?1 P, 59?mg L?1 K and 158?mg L?1 N. The leaf catalase activity was highest at zero concentration of P, 158?mg L?1 N and 176?mg L?1 K; however, catalase activity was decreased by increasing P levels. Leaf protein content showed an increasing trend with increasing N, P and K levels of nutrient solution, while there was no significant difference between 158 and 210?mg L?1 N. The highest leaf concentrations of N, P, K and Mg were observed at highest nitrogen, potassium and phosphorus levels of nutrient solution, whereas the highest leaf concentration of Ca were obtained at 53 or 105?mg L?1 N, 176?mg L?1 K and 23–31?mg L?1 P. The highest iron concentration of leaves was obtained from 23 to 31?mg L?1 P, 176?mg L?1 K and 210?mg L?1 N.  相似文献   

11.
A survey was conducted for assessment of soil fertility status, leaf nutrient concentration and finding yield-limiting nutrients of oil palm (Elaeis guineensis Jacq.) plantations in Mizoram state situated in the northeastern part of India. Soil pH, electrical conductivity (EC), organic carbon (OC), available potassium (K), available phosphorus (P) (Bray's-P), exchangeable calcium (Ca) (Exch. Ca) and magnesium (Mg) (Exch. Mg), available sulfur (S) (CaCl2-S), and hot-water-soluble boron (B) (HWB) content in surface (0–20 cm depth) and subsurface (20–40 cm depth) soil layers varied widely. Diagnosis and Recommendation Integrated System (DRIS) norms were established for different nutrient expressions, and DRIS indices were computed. As per DRIS indices, the order of requirement of nutrients was found to be B > K > Mg > P > nitrogen (N). Optimum leaf nutrient ranges as per DRIS norms varied from 1.91% to 2.95%, 0.46% to 0.65%, 0.63% to 1.00%, 0.48% to 0.88%, and 9.41 to 31.0 mg kg?1 for N, P, K, Mg, and B, respectively. On the basis of DRIS-derived optimum ranges, 32%, 9%, 27%, 12%, and 12% leaf samples had less than optimum concentration of N, P, K, Mg, and B, respectively. The optimum ranges developed could be used as a guide for routine diagnostic and advisory purpose for efficient fertilizer application.  相似文献   

12.
Hydroponic production of rocket as a salad vegetable has become increasingly important in recent years. Rocket is known to be a high nitrate (NO3)-accumulating vegetable, which can be grown throughout the year. In the present study, rocket was grown in a floating hydroponic system at three levels of nitrogen (N) and sodium chloride (NaCl). The highest yield was obtained at 14 mM N, whereas the yield was lower at 20 mM and 40 Mm NaCl. Leaf elongation was more sensitive to salinity than leaf differentiation. Adding NaCl to the nutrient solution increased the relative chlorophyll content. Na+ and Cl concentrations increased as salinity increased. NO3? levels in fresh biomass increased with increased amounts of NO3? in the nutrient solution, and plants at 18 mM N were able to maintain a higher NO3? : Cl? ratio than those at 10 mM N.  相似文献   

13.
《Journal of plant nutrition》2013,36(12):2831-2851
ABSTRACT

The Diagnosis and Recommendation Integrated System (DRIS) approach evaluates plant nutritional status. The Diagnosis and Recommendation Integrated System is based on a comparison of crop nutrient ratios with optimum values from a high-yielding group (DRIS norms). Several researchers affirm that once DRIS norms based on foliar composition have been developed for a given crop, they are universal and applicable to that particular crop grown at any place and at any stage of its development. But different diagnoses with DRIS norms established for the same crop but under different growth conditions have been found. The objectives of this study were (i) to evaluate the confidence intervals of three DRIS norms of sugarcane crop, (ii) to compare sugarcane nutritional diagnosis with three DRIS norms, and (iii) to evaluate the universal use of DRIS norms in sugarcane crop. Sugarcane DRIS norms were tested. Means for nitrogen (N)/phosphorus (P), N/calcium (Ca), N/copper (Cu), manganese (Mn)/N, N/zinc (Zn), Ca/P, Cu/P, Mn/P, Zn/P, potassium (K)/Ca, K/Cu, Mn/K, Zn/K, Mn/Ca, Zn/Ca, Cu/magnesium (Mg), Mn/Mg, Zn/Mg, Mn/Cu, Zn/Cu, and Zn/Mn of these three DRIS norms were significantly different (?p<0.05). The sugarcane nutritional diagnosis derived from norms published in the literature was different. These three DRIS norms were not universally applicable to the sugarcane crop. Therefore, in the absence of DRIS norms locally calibrated, norms developed under one set of conditions only should be applied to another if the nutrient concentrations of high-yielding plants from these different set of conditions are similar.  相似文献   

14.
Abstract

To optimize the efficient use of nutrients in pig slurry by crops and to reduce the pollution risks to surface and groundwater, a full knowledge of the fate of nitrogen (N) in amended soils is needed. A 120 day laboratory incubation experiment was conducted to study the effects of pig slurry application on soil N transformations. Pig slurry was added at the rates of 50 and 100 g kg?1. A nonamended soil was used as a control treatment. Soil samples were taken after 0, 7, 14, 30, 45, 60, and 120 days of incubation and analyzed for NH4 +‐N and NO3 ?‐N. Initially, the application of pig slurry produced significant increases in NH4 +‐N, especially at the highest application rate, whereas NO3 ?‐N content was not affected. Nitrification processes were active during the entire incubation time in the three treatments. In the control soil, the net N mineralization rate was highest during the 1st week (5.7 mg kg?1 d?1), followed by a low‐steady phase. Initially, net N mineralization rate was slower in soil with the lowest slurry rate (2.7 mg kg?1 d?1), whereas in the treatment with the highest slurry rate, a net N immobilization was observed during the 1st week (4.8 mg kg?1 d?1). Mineral‐N concentrations after 120 days were 180, 310, and 475 mg kg?1 in soils amended with 0, 50, and 100 g kg?1 of pig slurry, respectively. However, when results were expressed as net mineralized N, the opposite trend was observed: 74, 65, and 44 mg kg?1. Of the six kinetic models tested to describe the mineralization process, a two‐component, first exponential model (double model) offered the best results for all treatments.  相似文献   

15.
Abstract

Nitrogen‐form effect on nutrient uptake and the subsequent concentration of nutrients in turfgrass plant tissue has not been thoroughly investigated. This study evaluated the effects of clipping regime and N‐form on the tissue concentration of macronutrients and micronutrients and macronutrient uptake in ‘Penncross’ creeping bentgrass (Agrostis palustris Huds.). Turfgrass plugs were grown under greenhouse conditions in a modified Hoagland's solution with a combination of three nutrient solutions (100% NO3 ?, 100% NH4 +, and 50:50 ratio of NH4 +:NO3 ?) and two cutting regimes (cut and uncut). Concentrations of macronutrients and micronutrients were determined for shoot, root and verdure. Nutrient uptake was determined weekly. Uncut NO3 ?‐treated plants accumulated higher concentrations of K, Ca, Mg, B and Cu in the shoot tissue; P, K, Ca, Mg, B, Cu, Mn and Zn in the root tissue; and P, Ca, Mg, B, Fe and Mn in the verdure compared to uncut NN4 +‐treated plants. Nitrate uptake was greater with uncut NO3 ?‐treated plants than was NH4 + absorption with uncut NH4 +‐treated plants. Plants grown with the uncut 50:50 treatment adsorbed more NH4 + than NO3 ?. Plants grown with the uncut NO3 ? and 50:50 treatments adsorbed higher amounts of P, K, and Ca compared to the NH4 + treatment. The cut NO3 ?‐treated plants accumulated higher concentrations of K in the shoot tissue; P, Ca, Mg, B, Cu, Fe and Mn in the root tissue; and B in the verdure than did the cut NH4 +‐treated plants. Cut NO3 ?‐treated plants adsorbed less NO3 ? than did cut NH4 +‐treated plants adsorbed NH4 +. The cut 50:50 treatment adsorbed more NH4 + than NO3 ?. Plants grown with NO3 ? and 50:50 treatments, under both cutting regimes, resulted in higher concentrations of most macro‐ and micronutrients and greater nutrient uptake compared to the NH4 +‐treated plants.  相似文献   

16.
The Diagnosis and Recommendation Integrated System (DRIS) of interpreting results of foliar analysis is an alternative to the Critical Nutrient Level (CNL) system. DRIS uses indices of ratios of nutrient concentrations and has been found to be more accurate in predicting nutrient needs for numerous crops than the CNL system. The objectives of this research were to estimate and validate DRIS norms for dry bean (Phaseolus vulgaris L.) determined from a broad‐based data set. The previously recommended foliar CNL's of 3.0% N, 0.25% P, and 1.0% K were found to be too low to be useful in predicting responses to applied fertilizers in the test environments. Prediction based on levels of 4.7% N, 0.32% P, and 1.4% K was more accurate than with the lower CNL values. DRIS was more accurate than either set of CNL values in predicting responses to applied N, P, and K. Diagnosis with DRIS was less affected by plant age than CNL.  相似文献   

17.
A survey was conducted for the nutritional status of aonla orchards in the state of Uttar Pradesh lying in Central Indo-Gangetic plains. Preliminary diagnosis and recommendation integrated system (DRIS) norms were established for different nutrient ratios and used to compute the DRIS indices, which assessed the nutrient balance and order of limitations to yield. Maximum fruit yield of 40.2 kg plant?1 was recorded for the plants at the age group of 10–15 years and lowest yield was recorded 28.3 kg plant?1 in the age of above 20 years. Nutrient sufficiency ranges for aonla derived from DRIS norms were 1.30– 1.64, 0.054–0.092, 0.40–0.64%, and 32.4–45.9 ppm for nitrogen (N), phosphorus (P), potassium (K), and zinc (Zn), respectively. On the basis of these sufficiency ranges 33, 51, 47, and 46% of samples were found sufficient whereas 34, 22, 18 and 27% of samples were low and 26, 8, 1 and 17% deficient in N, P, K, and Zn, respectively. When compared age wise, a relative deficiency for N, P, and K corresponding to relative sufficiency for Zn was detected by DRIS technique for the plants above the age group of 15 onwards. For the younger orchards (5yrs old) a relative deficiency of N, Zn, and K corresponding to the relative sufficiency of P was detected. Nitrogen was found most limiting elements in all age group of plant. When the DRIS indices were compared on basis of soil pH, Zn and K was found to be relatively lesser in order of requirement than N and P.  相似文献   

18.
Abstract

Foliar analysis is an effective method to diagnose the nutritional status of plants. However, the mineral concentration in foliar tissue has traditionally been evaluated by assessing the activity of each element, without considering the interactions between them. To address this, dual interactions were calculated using the Diagnosis and Recommendation Integrated System (DRIS) to identify which crop nutrients are most influential in nutrient imbalances and which are the most limiting nutrients for the nutritional status of banana crops in Ecuador. To achieve this, a regional survey of the nutritional status and its productivity levels was conducted for 188 different sites during the crop season in 2017–2018, involving banana cultivars ‘Vallery’ and ‘Williams’, from the Cavendish subgroup. The DRIS calculation method was combined with Beaufils and Jones functions. From the initial 188 foliar samples, 83 samples (representing 44% of the population) were considered to represent the high-yield reference population, with yields of 38–60 t ha?1. The DRIS method defined the mean nutritional balance index, which was not found to be statistically correlated (p?>?0.05) with productivity, revealing that there was no significant association with the nutritional status of the plants. Specific DRIS norms were obtained and indicated that deficiencies in K, N, Ca, and Fe, and excesses in Mn, B, Cl, Zn, S, Cu, and Mg were the most limiting nutrients for banana cultivars in the south of Ecuador.  相似文献   

19.
In herbaceous plants grown in controlled environmental conditions nitrate (NO3?) uptake increases during the day and decreases in the night. The aim of this work was to measure NO3? uptake rates along the day-night cycle, in rose (Rosa hybrida L.) plants grown under controlled environmental conditions. Two independent experiments were conducted inside a growth chamber at 20 ºC and 25 ºC, using rose mini-plants cv. Texas, grown in a hydroponic nutrient film technique (NFT) set-up with at 3.0 mol m?3 NO3? concentration. Dry matter and nitrogen (N) accumulation were registered during growth and NO3? uptake rates were measured during a day-night cycle, using 15N as 15NO3?. In both experiments the hourly estimated N-NO3? accumulation rates are near to the measured uptake rates of 15NO3? and nitrate uptake decrease during the day and increase in the night, in contrast with the herbaceous plants. Results are discussed on the basis of N plant demand and carbohydrates availability.  相似文献   

20.
ABSTRACT

The objective of this work was to establish and compare Diagnosis and Recommendation Integrated System (DRIS) norms with the sufficiency range approach, and apply these methods on nutritional diagnosis of Arabian coffee, in field samples collected in summer and winter in Southern Brazil. DRIS norms and sufficiency range were established in groves with average biennial yield equal or above 3000 kg ha? 1. The “t” test was used to verify the differences between the sufficiency range and the DRIS norms. The foliar concentrations of nitrogen (N), phosphorus (P), and sulfur (S) were higher in summer, and iron (Fe), and manganese (Mn) in winter. The reference values should be specific for the period of the year. There were differences in the foliar nutritional diagnosis, between the DRIS method and the sufficiency range approach. In samples during the summer analyzed with DRIS, copper (Cu), S, potassium (K), and zinc (Zn) were considered more limited nutrients and Mn, S, K, and calcium (Ca) when the sufficiency range was used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号