首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We compared rates of desorption of heavy metals from goethite, an important soil constituent, in order to understand the mechanisms of sorption and desorption better. Samples of goethite were reacted with salt solutions of heavy metals for 2 hours or for 8 weeks. The metals were Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb. Desorption was then induced by successive treatments with 0.7 m HNO3 for up to 360 hours followed by complete dissolution of the goethite particles. After brief sorption (2 hours), a large proportion of the sorbed metals was desorbed by brief treatment (15 minutes) with HNO3. This suggests that the metals were mainly sorbed on, or close to, external goethite surfaces. After longer sorption (8 weeks), even 360 hours of extraction with 0.7 m HNO3 did not recover all of the sorbed metals. Complete dissolution of the goethite particles was necessary. This suggests that the eight heavy metals had penetrated the goethite particles deeply. When desorption was summarized using a pragmatic equation, it was only for brief sorption followed by brief desorption that indices of the rate of desorption were well correlated with measures of the rate of sorption as obtained in an earlier work. When desorption was described with a mechanistic model, observed desorption was often faster than predicted and the discrepancy was greatest with the shorter periods of desorption. The discrepancy was marked for Ni, Cr and Co. We think this was because large portions of these metals were incorporated into the goethite structure by lattice diffusion and were therefore held close to the surface. When the acid dissolved some of the goethite these metals were released. For long‐term desorption and for most metals, the ratio of observed to predicted desorption decreased with increasing ionic radius. We think that this reflects a changing balance between lattice and pore diffusion, with lattice diffusion more important for metals with radii near that of Fe (Cr, Co, Ni), and pore diffusion more important for the larger cations of Cd and Pb. Manganese was an exception. Desorption was at first faster than predicted but then declined to be close to predicted values. This suggests that Mn mostly penetrated more deeply by pore diffusion.  相似文献   

2.
A sample of goethite was mixed for periods which ranged from 2 hours to 8 weeks with solutions of dilute nitrate salts of Pb, Hg, Cd, Zn, Cu, Ni, Co, Mn, Cr and Al. The amount of sorption after each period was measured for an appropriate pH range for each metal. The sorption behaviour was characterized both by using characteristics of the sorption curves such as the pH at which half of the added metal was sorbed (pH50) and by fitting a model in which sorption was mainly characterized by an affinity constant and by a diffusion constant. Initial sorption, whether characterized by the pH50 or by the affinity constant, was closely correlated with the appropriate dissociation constants of the metals. The greater the affinity of the metals for hydroxide ions, the greater their affinity for the goethite surface. The metals differed in the rate at which they continued to react with the goethite. Lead had the slowest continuing reaction, cobalt the fastest. The continuing reaction was due to diffusion into the particles. It was characterized by the fitted diffusion constant and by the change with time in the pH50. For seven of the eight divalent metals, these were correlated with the ionic radius of the metals: the larger the radius, the slower the reaction. For Al and Cr, rates were slower than would be expected from the ionic radii and we suggest this shows that these ions react as the larger M(OH)2+ ions. The behaviour of Ni was consistent with oxidation of the surface species and diffusion of Ni(OH)2+ ions. The continuing reaction was similar to that observed when metal ions react with soils and suggests that their reaction with iron oxides is important in soils. The results also show that studies in which sorption is measured at only one period of reaction are incomplete and the application of equilibrium models to such results is misleading.  相似文献   

3.
Phytoextraction of heavy metals from polluted soils has often been found to be limited by the bioavailability of the pollutants. Inorganic or organic ligands are occasionally used as complexing agents to enhance the mobility of the heavy metals. However, the opposite effect is also possible. We studied the influence of the hydroxamate siderophore desferrioxamine B (DFOB) on the sorption of Cu, Zn and Cd to clay minerals, with the emphasis on the role of dissolved Fe(III) and Fe(III) minerals. Depending on the surface charge of the minerals and on pH, sorption of heavy metals can be either enhanced or diminished. We show here that this effect of DFOB disappears if dissolved Fe(III) is added to suspensions of clay minerals in excess to DFOB. We found that the solid Fe(III) phases ferrihydrite and goethite did not impede the effect of DFOB on the sorption of heavy metal, however. Between pH 4 and 10, DFOB completely prevented Cu sorption on ferrihydrite. A strong mobilizing effect was also observed for Zn, but not for Cd. In presence of goethite, concentrations of dissolved Cu, Zn and Cd were enhanced only above approximately pH 5, 7 and 8, respectively. Below these pH values the binding of these metals to goethite was even stronger with than without DFOB. In the absence of heavy metals, DFOB‐promoted dissolution of ferrihydrite was much faster than that of goethite due to the larger surface area of ferrihydrite. In the alkaline pH range, where sorption of DFOB on the surfaces of the iron oxides was greater, dissolution of both minerals was reduced.  相似文献   

4.
In the present study, a laboratory experiment was designed to compare the 0.01 M calcium chloride (CaCl2) and diethylenetriaminepentaacetic acid (DTPA) extraction methods for their ability to predict cadmium (Cd), copper (Cu), iron (Fe), Manganese (Mn), nickel (Ni), and zinc (Zn) availability and mobility in five calcareous soils. The soils were spiked with different amounts of metals (0, 50, 100, 200, and 400 mg kg?1) both in binary (Cu and Zn; Ni and Cd; Fe and Mn) and in multi-systems (Cd, Cu, Fe, Mn, Ni, and Zn) and incubated for 1 months at field capacity. In metal-spiked soils, both extraction methods showed a linear relationship of extractable to total metals for all soils. The fraction of total metals extracted by DTPA was much higher than the fraction extracted by CaCl2, which was attributed to the formation of soluble metal-complexes in the complexing extracts calculated by the Visual Minteq program. DTPA extraction method showed higher selectivity for Cu over other metals both in binary and in multi-systems. Different order of metals extractability was found in binary and multi-systems for both extraction methods. Solid/solution distribution coefficient (Kd) was calculated by the ratio of the solid phase to soil solution concentration of metals extracted by CaCl2 or DTPA extraction methods. Both in binary and in multi-systems, the average Kd (l kg?1) of metals by soils were in the order of Mn (5398) > Fe (4413) > Zn (3376) > Cu (2520) > Ni (969) > Cd (350) in the CaCl2-extractable metals and Fe (35) ≥ Ni (34) > Zn (18) > Mn (11.2) > Cu (6.3) > Cd (4) in the DTPA-extractable metals. Results showed that among the six studied metals, Cd had the lowest Kd, implying a relative higher mobility in these calcareous soils. The Visual Minteq indicated that in the CaCl2-extraction method and in both binary and multi-systems the dominant species for Cu, Mn, Ni, and Zn were Cu2+, Mn2+, Ni2+ and Zn2+, respectively, while for Cd and Fe, the dominant species were CdCl+ and Fe(OH)2+, respectively.  相似文献   

5.
This study evaluated the effect of competing copper, zinc, cadmium and nickel ions in 0.01 M Ca(NO3)2 on heavy metal sorption and desorption by soil clay fractions. Initial Cu addition levels varied from 99 mg kg-1 to 900 mg kg-1 and Zn, Cd and Ni levels were 94, 131 and 99 mg kg-1, respectively. Sorption of Cu conformed to a Freundlich equation. The amounts of metals not displaced by successive 48 h desorption cycles with 0.01 M Ca(NO3)2 were considered ‘specifically adsorbed’. Total sorption of Zn and Cd generally decreased in the order: Vertisol > Gleyic Acrisol > Planosol clay. More than 70% of the copper was specifically sorbed. Specific sorption of Zn was depressed by competition with Cu in the three clays investigated. At surface coverages higher than 200 mg Cu per kg of soil clay, zinc sorption in the Planosol and Gleyic Acrisol clays took place at low affinity sites. The exchangeable component of sorbed cadmium accounted for >:60% of the sorption in the Vertisol clay, >70% in the Gleyic Acrisol clay and was almost 100% in the Planosol clay. Nickel was not retained by the Planosol and Gleyic Acrisol clays and was ionexchangeably adsorbed by the Vertisol clay. At the conditions studied, Ni and Cd remain a ready source of pollution hazard.  相似文献   

6.
This work is the first of several projects concerned with the study of higher-affinity reactions of Cd, Zn and Ni ions with soil clay fractions. Procedures for the separation of sorbed metals into fractions of lower and higher affinity for soil surfaces are described and evaluated.Various concentrations of Cd, Zn and Ni were allowed to react in the presence of 0.01 M Ca(NO3)2 with soil clays for 1 week after stabilization of suspension pH. The adsorbed metals were partitioned by a brief extraction with 0.01 M Ca(NO3)2 and the resultant fractions, called specifically and non-specifically sorbed metals, were measured by radioisotopic procedures.Measured separation factors showed that the fraction of sorbed metals that was desorbed by a rapid Ca(NO3)2 extraction still had a preference, sometimes marked, over Ca on the soil clay fraction. Separation of fractions of sorbed metals on the basis of affinity was reproducible, but the boundary conditions defined by separation factors vary appreciably between adsorbents, with values in the range 3–20 for amounts sorbed equivalent to ≦ 0.05% of cation exchange capacity and for pH values < 7.The proportions of Cd, Zn and Ni bound at high-affinity sites were strongly dependent on experimental conditions of pH, equilibrium time and surface saturation in relation to each soil clay. Hence, comparisons of affinities of trace metals for soils by reliance on measures of total sorption only, without assessing the contribution of lower-affinity forms, may prejudice conclusions and predictions arising from studies of the possible retention of metal pollutants in soils and fixation of micronutrients from fertilizers.  相似文献   

7.
Ageing reactions can reduce trace metal solubility and can explain natural attenuation of contaminated soils. We modelled ageing reactions in soil with an assemblage model that considers slow reactions in Fe‐oxyhydroxides and reversible sorption on organic matter and clay minerals. Metal adsorption kinetics on Fe‐oxyhydroxides was obtained from data with synthetic oxyhydroxides. Metal solubility and isotopic exchangeability data were obtained from 28 soils amended with Ni, Zn, Cu and Cd metal salts and monitored for 850 days. The assemblage model was constructed in WHAM 6.0 and used soil properties and dissolved organic matter as input data. The model was first validated to predict dissolved metal concentrations, based on the concentration of isotopic exchangeable metals. The model overestimated metal solubility without parameter adjustment by mean factors of 4–7, and successful fits were obtained by increasing the specific surface area of Fe‐oxyhydroxides from measured values of synthetic systems to a value of 600 m2 g?1 recommended by other authors. The effect of ageing on the isotopic exchangeable metal fraction was subsequently modelled starting from the predicted fraction of metals present on Fe‐oxyhydroxides immediately after soil spiking. The observed isotopic exchangeable metal fractions of Ni, Zn and Cd agreed reasonably well with predicted values. The model predicts that ageing reactions are more pronounced at higher pH because metal sorption is increasingly directed to oxyhydroxide surfaces with increasing soil pH. Modelling fixation of Cu requires more information on fixation of that metal in organic matter.  相似文献   

8.
Slow immobilization of trace metals in soil, termed ‘fixation’, affects their natural attenuation but it is still unclear which reactions occur. Twenty‐eight soils were selected to assess the role of Fe oxides and carbonates on fixation of Cu, Cd, Zn and Ni. Soils included samples from 2 toposequences (Vietnam, Spain) and 13 European topsoils with different soil characteristics (pH 3.4–7.7). Samples were amended with 250 mg Zn kg−1, 100 mg Cu kg−1, 80 mg Ni kg−1 and 2.5 mg Cd kg−1 as metal salts and incubated for 850 days. Fixation was measured as the increase of the fraction of added metals that were not isotopically exchangeable. Fixation increased with time and was, averaged over all the soils, 43% (Cu), 41% (Zn), 41% (Ni) and 28% (Cd) after 850 days. Metal fixation within samples from each toposequence was generally positively related to total Fe oxide concentration (Fed) for Zn, Ni and Cd. However, the fixation of Cd, Zn and Ni was mainly explained by pH and not by Fed when considering all soils. Fixation of Zn and Cd in soils with pH >7.0 increased with increasing concentrations of carbonates at initial ageing times. Fixed fractions of Zn, Ni and Cd were significantly released when experimentally removing 50% of carbonates by acidification. Fixation of Cu was most poorly related to soil properties. Our data suggest that fixation of Cd, Zn and Ni is related to a pH‐dependent diffusion into oxides and that of Cd and Zn also to diffusion and/or coprecipitation in carbonates. Fixation of Ni at neutral pH may also be related to stabilization of precipitates that form readily in soil.  相似文献   

9.
Knowledge of differentiation of pollutants in urban runoff between dissolved and particulate matter is of great concern for a successful design of a water treatment process. Seasonal variations in pollutant load are of equal importance. Ten metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), as dissolved and particulate bound, was studied in the runoff from a major urban highway during a winter season and its following summer. Studded tyres and winter salting were expected to have an impact on the runoff water quality. The dissolved part of Al, Cd, Co, Cr, Mn and Ni was significantly higher in winter in comparison with summer (p?<?0.01). For Fe, however, the dissolved part was lower during winter. No significant difference was found for Cu, Pb and Zn between the two seasons. The mass concentration (mg kg?1) for all metals was significantly higher over the summer except for Al and Co, which showed a higher mass concentration during the winter. The concentration of selected metals vs. total suspended solids (TSS) showed a linear relationship (r 2?>?0.95) during winter runoff events except for Cd. A good correlation (r 2?>?0.90) was also found for the summer period for Al, Cu, Fe, Mn, Ni and Zn. It is suggested that the metal pollutant load during winter could be assessed indirectly by measurement of TSS.  相似文献   

10.
The reactions of Ni, Zn and Cd with goethite were studied over a range of initial metal concentrations (10−6 to 10−4M), pH values (4 to 8), reaction times (2h to 42d) and temperatures (5 to 35°C). The adsorption of metals increased with pH, reaction time and temperature. Adsorption of Ni increased relative to Zn and Cd with increasing time and temperature. The initially rapid adsorption of metals within a few hours was followed by a much slower reaction linearly related to time1/2, interpreted as diffusion–controlled penetration of goethite. The pH–dependent relative diffusion rates (Ni > Zn > Cd) were influenced by both affinity for goethite surfaces and by ionic radius. Diffusion coefficients of the three metals ranged from about 10−19to 10−20cm2s−1. The corresponding activation energies of diffusion were also calculated (Ni 35, Cd 55, Zn 90 kJ mol−1). Our view about the reactions of heavy metals with goethite involves (i) adsorption of metals on external surfaces, (ii) solid–state diffusion of metals from external to internal binding sites, and (iii) metal binding and fixation at positions inside the goethite particles. The general parameters of these processes are related to the hydrolytic properties (p K values) and the ionic radii of the metals. The results show that goethite may be an efficient sink for trace metals.  相似文献   

11.
The iron‐cyanide complexes ferrocyanide, [FeII(CN)6]4–, and ferricyanide, [FeIII(CN)6]3–, are anthropogenic contaminants in soil. We investigated their sorption on goethite, α‐FeOOH, in batch experiments in a time range from 1 d to 1 yr, their desorption by phosphate and chloride as well as their surface complexes on goethite by Fourier‐transform infrared spectroscopy (FTIR). The sorption of both complexes continued over the whole time range. Percent desorption of ferricyanide by phosphate decreased, whereas that of ferrocyanide increased until it amounted to approximately 87% for both complexes. By FTIR spectroscopy inner‐sphere complexation of both complexes on the goethite surface was indicated. With both complexes, a Berlin‐Blue‐like layer (Fe4[Fe(CN)6]3) was formed initially on the goethite surface which disappeared with increasing reaction time. After at least 30 d reaction time, ferricyanide was the only sorbed iron‐cyanide complex detected even when ferrocyanide was initially added. This resulted from slow oxidation of ferrocyanide, most probably by dissolved oxygen. Based on all results, we propose that ferricyanide forms monodentate inner‐sphere complexes on the goethite surface.  相似文献   

12.
-  Dedicated to Prof. Dr. Ulrich Förstner on his 65th birthdayGoal, Scope and Background   Goethite (&#945;-FeOOH) as the most frequently occurring iron oxide in the environment plays a significant role in the binding of inorganic pollutants. Accordingly, synthetic goethite is used for the purification of contaminated water. Goethite crystals can be prepared in different shape as porous and non-porous forms. The mineral can also be modified by partial substitution of structural Fe+3 for different foreign elements. The biggest possible substituent known so far is Cd+2 which causes a strong expansion of the unit-cell parameters. An incorporation of Pb+4 generates a permanent positive charge. Goethites with these morphological and structural modifications were selected for sorption experiments with Co2+, Ni2+, Zn2+, Cd2+, Pb2+, and arsenate. It was intended to demonstrate the potential of mineral modification for improving sorption properties.Methods   Batch sorption studies were carried out combining each mineral with a single element at different pH and reaction times. Cations were investigated at a single initial concentration only while arsenate was tested over a range of concentrations in order to establish sorption isotherms. The sorption step was followed by an extraction step to characterize time dependent immobilization reactions.Results and Discussion   A time dependent increase of trace metal and arsenate sorption is attributed to a migration of ions into pores of star-shaped goethite and to a binding by specific sorption sites at the surface. The migration into pores is related to the size of adsorbing cations. The almost identical sorption behaviour of Ni2+ and Co2+ on pure goethite is contrasted by a strong preference of Co over Ni on Cd-goethite. Expansion of the unit-cell dimensions in Cd+2 substituted goethite generates highly specific binding sites at the surface. These are accessible to Co and Zn only. A permanent positive charge in Pb+4 substituted goethite reduces the binding of cations and doubles the sorption capacity for arsenate. Pb-goethite also contains a limited portion of highly specific sites which can only be accessed by Zn2+. Immobilization takes place even after a short contact time of 16 hours. This process results in a growing fraction of non-extractable metals and arsenate with reaction time.Conclusions   Pores and foreign elements in the goethite structure greatly affect the reactivity of the mineral and the ability to immobilize inorganic pollutants. A possible mechanisms for the preferred sorption of Co and Zn by Cd-goethite is seen in the ability of these metal ions to adopt a smaller size: Co by oxidation of Co2+ to Co3+ and Zn by tetrahedral coordination of Zn2+. This kind of binding can be viewed as structural incorporation. The binding properties of modified goethites can well be characterized by sorption tests including an array of elements with different ionic size and charge.Recommendation and Outlook   There is considerable potential for designing goethite modifications with improved surface reactivity for specific purposes such as water purification and possibly catalysis of reactions.  相似文献   

13.
This study evaluated cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) sorption characteristics of three tropical soils. Data obtained conformed to Freundlich sorption model and the S-shaped isotherm curve. Sorption efficiency of Zn and Pb were highest in alkaline soil while slightly acid soil had the highest Cd and Cu sorption efficiency for monometal sorption. In competitive sorption, metals were more sorbed in slightly acid soil while the least efficiency was recorded in acid soil. Distribution coefficient; Kd (average across soil types) in monometal sorption followed the order: Pb > Zn > Cd > Cu. For competitive sorption, the order was Zn > Pb > Cu > Cd. When in competition, Cd was preferentially sorbed in slightly acid and alkaline soils and Zn for acid soil. Conclusively, lead is more in equilibrium solution when in competition with Cd, Zn and Cu making it potential agent of soil and groundwater pollution.  相似文献   

14.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

15.
Abstract

The study aims at determining the cobalt retention properties of various soil components. Therefore, cobalt (Co) sorptions and extractions were carried out using an Oxisol sample before (untreated) and after successive removal of organic matter and active manganese (Mn) oxides (H2O2‐treated) and iron (Fe) oxides (H2O2+CBD‐treated). A synthetic goethite was included for comparison. Sorption of the four sorbents was determined over a range of Co concentrations (initially 10‐8 M to 10‐4 M), pH values (3 to 8) and reaction times (2 hours to 504 hours). The Co species sorbed was Co(ll), since oxygen exclusion during sorption had no effect on the amount sorbed. The pH‐dependent sorption curve (sorption edge) was shifted to lower pH at decreasing initial Co concentration and increasing reaction time. The displacements, in particular of the sorption edges corresponding to the lowest initial Co concentrations, to successively higher pH following removal of Mn oxides, organic matter and Fe oxides could be attributed to sorption onto sites of decreasing Co affinity [Mn oxides (and organic matter) > Fe oxides > kaolinite]. Extractions of sorbed Co at pH 5.5–7.5 with 2 M HCI showed that the extractability decreased with increasing sorption time and decreasing initial Co concentration. The untreated and H2O2‐treated soil samples retained sorbed Co at least as firmly as the synthetic goethite, whereas the H2O2+CBD‐treated sample (kaolinite) was clearly less effective. The results emphasized the importance of the soil Mn and Fe oxides for Co retention in soils but also the necessity of taken interior sorption sites into consideration.  相似文献   

16.
Background, Aim and Scope   Manganese oxides are widely known as highly efficient heavy metal adsorbing materials. Therefore the use of natural materials containing Mn-oxihydroxides for the treatment of drinking water containing heavy metals in developing countries could be a cheap but nevertheless practical method. In the Karst area of Gunung Sewu, Java, Indonesia, people use the underground water resources as drinking water, which are endangered by heavy metal pollution. Local household filters have been considered for heavy metal elimination, to guarantee high quality drinking water from the Karst water. The aim of this study was to examine the suitability of mineral deposits containing Mn-oxihydroxides found in the Karst cave Bribin as filter material. Materials and Methods: Batch experiments were performed with the selected divalent cations Cd2+, Zn2+ and Ni2+ to test the adsorption efficiency of the Mn-rich deposits from Bribin to immobilize dissolved heavy metals. Results: Maximum adsorption capacities of 285 μmol/g for Cd2+, 217 μmol/g for Zn2+, and 178 μmol/g for Ni2+ were achieved after 24 h reaction time. These values are higher than literature values of Ni, Cd and Zn adsorption to other synthetic and natural manganese oxides. Discussion: Kinetic data from the batch experiments suggest that metal fixation occur in two steps; fast surface adsorption followed by a slower intercalation of the metal ions into the Mn-oxihydroxide lattice. Multi-element analysis of blank samples and samples under competitive conditions implies no desorption of metals from Mn-oxihydroxides. Conclusions: The sorption kinetics and capacities achieved in these experiments suggest that Mn-oxihydroxides from Bribin could be an effective filter material for drinking water purification. Recommendations and Perspectives: Nevertheless, reducing conditions in a filter system must be avoided to prevent Mn-oxides being reductively dissolved and the sorbed heavy metals mobilized.  相似文献   

17.
High Cd and Ni concentrations in sandy soils were built up in a field experiment, receiving an unusually metal-polluted sewage sludge between 1976 and 1980, at Bordeaux, France. The study evaluates the availability of metals and their after effects on maize at one point in time, the 8th year following termination of sludge application (1988). Plant parts (leaves, stalks, roots, grains) and soil samples were collected from plots which received 0 (Control), 50 (S1) and 300 Mg sludge DW ha?1 (S2) as cumulative inputs. Dry-matter yield, plant metal concentrations, total, and extractable metals in soils were determined. Metal inputs resulted in a marked increase in total and extractable metals in soils, except for extractable Mn and Cu with either 0.1 N Ca(NO3)2 or 0.1 N CaCl2. Total metal contents in the metal-loaded topsoils (0–20 cm depth) were very often lower, especially for Cd, Zn, and Ni, than the expected values. Explanation was partly given by the increases of metal contents below the plow layer, particularly for Cd at the low metal loading rate, and for Cd, Ni, and Cu at the high one (Gomez et al., 1992). In a control plot beside a highly metal- polluted plot, Cd, Zn, and Ni concentration in soil increased whereas the concentration of other metals was unchanged; lateral movement, especially with soil water, is plausible. Yield of leaves for plants from the S2 plot was reduced by 27%, but no toxicity symptoms developed on shoots. Yields of stalks for plants in both sludge-treated plots numerically were less than the controls but the decrease was not statistically significant. Cd and Ni concentrations increased in all plant parts with metal loading rate while Mn concentrations decreased. Leaf Cd concentration in plants from sludge-treated plots (i.e. 44 and 69 mg Cd kg?1 DM for S1 and S2) was above its upper critical level (i.e. dry matter yield reduced by 10%: 25μg Cd g?1 DM in corn leaves, Macnicol and Beckett, 1985). Yield reduction at the high metal-loading rate was probably due to 3 main factors: Mn deficiency in leaves, the accumulation of Ni especially in roots, and the increase of Cd in leaves. The amount of metal taken up by plants from the control plot ranked in the following order (mole ha?1): Fe(22)? Mn(7)>Zn (5.6)?Cu (0.7), Ni (0.6), Cd (0.4). For sludge-treated plots, the order was (values for S1 and S2 in mole ha ?1): Fe (16, 15)>Zn (7.9, 7.7)>Ni (4.3, 4.7)>Cd (1.9, 2.1)>Cu (1.0,1.2), Mn (1.5, 1.1). Zn and Cd had the greatest offtake percent from the soil to the above ground plant parts. Cd or Ni uptake by maize were correlated with extractable metals by unbuffered salts (i.e. 0.1 N Ca(NO3)2 and 0.1 N CaCl2). It is concluded that part of the sludge-borne Cd and Ni can remain bioavailable in this sandy soil for a long period of time (e.g. 8 yr) after the termination of metal-polluted sludge application.  相似文献   

18.
The relationships between heavy metal concentrations and physico-chemical properties of natural lake waters and also with chemical fractions of these metals in lake sediments were investigated in seven natural lakes of Kumaun region of Uttarakhand Province of India during 2003–2004 and 2004–2005. The concentrations of Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb in waters of different lakes ranged from 0.29–2.39, 10.3–38.3, 431–1407, 1.0–6.6, 5.3–12.1, 12.6–166.3, 0.7–2.7 and 3.9–27.1 μg l?1 and in sediments 14.3–21.5, 90.1–197.5, 5,265–6,428, 17.7–45.9, 13.4–32.0, 40.0–149.2, 11.1–14.6 and 88.9–167.4 μg g?1, respectively. The concentrations of all metals except Fe in waters were found well below the notified toxic limits. The concentrations of Cr, Mn, Ni, Cu, Zn, Cd and Pb were positively correlated with pH, electrical conductivity, biological oxygen demand, chemical oxygen demand and alkalinity of waters, but negatively correlated with dissolved oxygen. The concentrations of Cr, Ni, Zn, Cd and Pb in waters were positively correlated with water soluble + exchangeable fraction of these metals in lake sediments. The concentrations of Zn, Cd and Pb in waters were positively correlated with carbonate bound fraction of these metals in lake sediments. Except for Ni, Zn and Cd, the concentrations of rest of the heavy metals in waters were positively correlated with organically bound fraction of these metals in lake sediments. The concentrations of Cr, Mn, Ni, Cu and Zn in waters were positively correlated with reducible fraction of these metals in lake sediments. Except for Cd, the concentrations of rest of the metals in waters were positively correlated with residual fraction and total content of these heavy metals in lake sediments.  相似文献   

19.
Studies of Cd and Zn sorption using Na-saturated kaolinite and montmorillonite, and low metal solution concentrations similar to those found in the environment, showed that metal sorption affinity (measured by K d values) decreased markedly with increasing surface metal loading for both layer silicates. For equilibrium solution concentrations <0.1 μmol L?1 for Cd, and < 1 μmol L?1 for Zn, both metals were sorbed with greater affinity by kaolinite than montmorillonite. These results were probably due to the higher proportion of weakly acidic edge sites present on kaolinite surfaces. In the case of Zn there was an affinity reversal for equilibrium solution concentrations > 1 μmol L?1, which was attributed to the permanent charge sites of montmorillonite. Cadmium ions were sorbed, by kaolinite, with greater affinity than Zn for equilibrium solution concentrations between 0.3 to 1.5 μmol L?1. This result was attributed to retention of these metal ions through electrostatic attraction by permanent charge sites present on the kaolinite used in this work. According of these results it seems that metal sorption by these layer silicates involves predominantly edge weak acid sites at lower surface coverages (higher affinity sites), and permanent charge sites at higher metal coverages (lower affinity sites). It was concluded that Cd and Zn sorption by those two layer silicates is greatly influenced by surface metal coverage, and results cannot be extrapolated from low to high surface coverages, and viceversa.  相似文献   

20.
Sorption on the mineral matrix is an important process restricting the movement of dissolved organic matter (DOM) in soils. In this study, we aimed to identify the chemical structures responsible for the retention of DOM by sorption experiments with total DOM and acidic humic substances (AHS), containing humic and fulvic acids, on soil samples and minerals (goethite, ferrihydrite, and amorphous Al(OH)3). The AHS remaining in solution after sorption were studied by 13C nuclear magnetic resonance (NMR) analysis, and total DOM and AHS for bed on the surfaces of minerals by diffuse reflectance Fourier-transform infrared (DRIFT) spectroscopy. The soil samples were taken from strongly sorbing Bw horizons of two Inceptisols rich in pedogenetic Fe (29 and 35 g kg ?1) and containing little C (7 and 22 g kg?1). The 13C-NMR spectra showed that sorption causes a preferential removal of aromatic and carboxyl C from the solution, whereas alkyl-C accumulates in the solution. No change was observed for O-alkyl C. The DRIFT spectra of sorbed total DOM and AHS showed a relative increase of the band intensity of carboxyl groups compared to DOM in the initial solution, confirming the importance of those groups for the sorption to mineral surfaces. The spectra also indicated reactions of carboxyl groups with metals at the mineral surfaces. The extent to which the carboxyl groups are bound depended on the surface coverage with DOM and the type of mineral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号