首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Biochar, compost and their combination are important organic amendment materials for improving the hydro-physical properties of sandy soils. Series of soil columns experiments were conducted for investigating the application effects of date palm biochar and compost on evaporation, moisture distribution, infiltration, sorptivity (Sp), saturated hydraulic conductivity (Ksat) and water holding capacity (WHC) at application rates of 1%, 2%, 3% and 4% (10, 20, 30 and 40 g kg?1). The columns were filled manually with air-dried soil with 35 cm depth and the thickness of surface amended layer was 10 cm (T10) and 20 cm (T20) from soil surface at bulk density of 1400 kg m?3. The results showed that the behavior of soil moisture distribution was influenced by application of biochar, compost and biochar-compost mixture. Moreover, in the amended layer T10, applying biochar at rate of 1%, 2%, 3% and 4% reduced significantly cumulative evaporation by 5.8%, 10.8%, 12.8% and 16.1%, respectively. Meanwhile, the reduction for the biochar-compost mixture at application rates of 1%, 2%, 3% and 4% was 10%, 12.2%, 14.5% and 20%, respectively. In layer T20, applying biochar at rate of 1%, 2%, 3% and 4% reduced cumulative evaporation by 10.24%, 13.0%, 18.3% and 21.5% but this reduction amounted to 18.2%, 21%, 23% and 24% for the biochar-compost mixture, respectively. It was generally observed that the highest application rate (4%) for applied amendments was the most effective impact on Sp, Ksat and WHC compared with other rates.  相似文献   

2.
In order to study the effect of plant growth promoting rhizobacteria (PGPR), Azolla compost and Azolla biochar on some soil quality indicators and rosemary growth, a greenhouse experiment was conducted in a completely randomized design with six replications. Treatments consisted of T1 (control), T2 (1% Azolla compost), T3 (1% Azolla biochar), T4 (PGPR (P. fluorescens), T5 (1% compost + PGPR) and T6 (1% biochar + PGPR). Rosemary growth parameters and nutrients concentration increased in all treatments compared to control. Treatments increased soil nutrient concentrations, soil microbial respiration (SMR) and microbial biomass C (MBC) but decreased soil metabolic quotient (qCO2) compared to control treatment. A significant enhancement in rosemary growth occurred due to the improved soil quality as a result of organic fertilizers application, particularly by co-application of P. fluorescens and compost or biochar of Azolla.  相似文献   

3.
Yang  Zhaoxue  Liang  Jie  Tang  Lin  Zeng  Guangming  Yu  Man  Li  Xiaodong  Li  Xuemei  Qian  Yingying  Wu  Haipeng  Luo  Yuan  Mo  Dan 《Journal of Soils and Sediments》2018,18(4):1530-1539
Purpose

Heavy metal pollution in soils has become a global environmental concern. The combination of biochar and compost has already been proved to be an attractive method in contaminated soil. The objective was to study the sorption-desorption characteristics of Cd, Cu, and Zn onto soil amended with combined biochar-compost.

Materials and methods

In this study, the soil was amended with combinations of biochar and compost with different ratios at 10% (w/w). To determine the sorption-desorption behaviors of heavy metals by biochar-compost amendment with different ratios, we determine the effects of different ratios on soil properties and use batch experiments to investigate sorption-desorption behaviors of Cd, Cu, and Zn.

Results and discussion

The results show that the Langmuir and Freundlich model can well describe the adsorption isotherm of Cd, Cu, and Zn in the soils with or without biochar-compost combinations. The incorporation of amendment combinations into soil significantly promotes the sorption affinity of soil on metals. The sorption capacity of Cd and Zn was improved as the compost percentage rose in biochar-compost more likely due to the increase of organic matter and available phosphorus, while that of Cu was stronger with 10 and 20% biochar addition in biochar-compost combinations likely as the result of the formation of new specific adsorption sites and the mobile Cu adsorption in compost after adding a certain amount of biochar in amendment mixtures. Additionally, a certain proportion of biochar applied into amendment mixtures could suppress desorption of Cd and Cu by pH change, and the Zn desorption rate gradually decreased as the compost ratio increased in amendment mixtures.

Conclusions

The results indicated that the various ratios between biochar and compost have a significant effect on sorption-desorption of metals in soil, which helps us consider the effective combination of biochar and compost in soil.

  相似文献   

4.
Crop growth in sandy soils is usually limited by plant‐available nutrients and water contents. This study was conducted to determine whether these limiting factors could be improved through applications of compost and biochar. For this purpose, a maize (Zea mays L.) field trial was established at 1 ha area of a Dystric Cambisol in Brandenburg, NE Germany. Five treatments (control, compost, and three biochar‐compost mixtures with constant compost amount (32.5 Mg ha–1) and increasing biochar amount, ranging from 5–20 Mg ha–1) were compared. Analyses comprised total organic C (TOC), total N (TN), plant‐available nutrients, and volumetric soil water content for 4 months under field conditions during the growing season 2009. In addition, soil water‐retention characteristics were analyzed on undisturbed soil columns in the laboratory. Total organic‐C content could be increased by a factor of 2.5 from 0.8 to 2% (p < 0.01) at the highest biochar‐compost level compared with control while TN content only slightly increased. Plant‐available Ca, K, P, and Na contents increased by a factor of 2.2, 2.5, 1.2, and 2.8, respectively. With compost addition, the soil pH value significantly increased by up to 0.6 (p < 0.05) and plant‐available soil water retention increased by a factor of 2. Our results clearly demonstrated a synergistic positive effect of compost and biochar mixtures on soil organic‐matter content, nutrients levels, and water‐storage capacity of a sandy soil under field conditions.  相似文献   

5.
Our contemporary society is struggling with soil degradation due to overuse and climate change. Pre‐Columbian people left behind sustainably fertile soils rich in organic matter and nutrients well known as terra preta (de Indio) by adding charred residues (biochar) together with organic and inorganic wastes such as excrements and household garbage being a model for sustainable agriculture today. This is the reason why new studies on biochar effects on ecosystem services rapidly emerge. Beneficial effects of biochar amendment on plant growth, soil nutrient content, and C storage were repeatedly observed although a number of negative effects were reported, too. In addition, there is no consensus on benefits of biochar when combined with fertilizers. Therefore, the objective of this study was to test whether biochar effects on soil quality and plant growth could be improved by addition of mineral and organic fertilizers. For this purpose, two growth periods of oat (Avena sativa L.) were studied under tropical conditions (26°C and 2600 mm annual rainfall) on an infertile sandy soil in the greenhouse in fivefold replication. Treatments comprised control (only water), mineral fertilizer (111.5 kg N ha–1, 111.5 kg P ha–1, and 82.9 kg K ha–1), compost (5% by weight), biochar (5% by weight), and combinations of biochar (5% by weight) plus mineral fertilizer (111.5 kg N ha–1, 111.5 kg P ha–1, and 82.9 kg K ha–1), and biochar (2.5% by weight) plus compost (2.5% by weight). Pure compost application showed highest yield during the two growth periods, followed by the biochar + compost mixture. biochar addition to mineral fertilizer significantly increased plant growth compared to mineral fertilizer alone. During the second growth period, plant yields were significantly smaller compared to the first growth period. biochar and compost additions significantly increased total organic C content during the two growth periods. Cation‐exchange capacity (CEC) could not be increased upon biochar addition while base saturation (BS) was significantly increased due to ash addition with biochar. On the other hand, compost addition significantly increased CEC. Biochar addition significantly increased soil pH but pH value was generally lower during the second growth period probably due to leaching of base cations. Biochar addition did not reduce ammonium, nitrate, and phosphate leaching during the experiment but it reduced nitrification. The overall plant growth and soil fertility decreased in the order compost > biochar + compost > mineral fertilizer + biochar > mineral fertilizer > control. Further experiments should optimize biochar–organic fertilizer systems.  相似文献   

6.
The use of biochar as a soil amendment is gaining interest to mitigate climate change and improve soil fertility and crop productivity. However, studies to date show a great variability in the results depending on raw materials and pyrolysis conditions, soil characteristics, and plant species. In this study, we evaluated the effects of biochars produced from five agricultural and forestry wastes on the properties of an organic‐C‐poor, slightly acidic, and loamy sand soil and on sunflower (Helianthus annuus L.) growth. The addition of biochar, especially at high application rates, decreased soil bulk density and increased soil field capacity, which should impact positively on plant growth and water economy. Furthermore, biochar addition to soil increased dissolved organic C (wheat‐straw and olive‐tree‐pruning biochars), available P (wheat‐straw biochar), and seed germination, and decreased soil nitrate concentration in all cases. The effects of biochar addition on plant dry biomass were greatly dependent upon the biochar‐application rate and biochar type, mainly associated to its nutrient content due to the low fertility of the soil used. As a result, the addition of ash‐rich biochars (produced from wheat straw and olive‐tree pruning) increased total plant dry biomass. On the other hand, the addition of biochar increased the leaf biomass allocation and decreased the stem biomass allocation. Therefore, biochar can improve soil properties and increase crop production with a consequent benefit to agriculture. However, the use of biochar as an amendment to agricultural soils should take into account its high heterogeneity, particularly in terms of nutrient availability.  相似文献   

7.
Both biochar and compost may improve carbon sequestration and soil fertility; hence, it has been recommended to use a mixture of both for sustainable land management. Here, we evaluated the effects of biochar–compost substrates on soil properties and plant growth in short rotation coppice plantations (SRC). For this purpose, we planted the tree species poplar, willow, and alder in a no‐till field experiment, each of them amended in triplicate with 0 (= control) or 30 Mg ha?1 compost or biochar–compost substrates containing 15% vol. (TPS15) and 30% vol. biochar (TPS30). For three years running, we analyzed plant growth as well as soil pH, potential cation exchange capacity (CEC), stocks of soil organic carbon (SOC), total N, and plant‐available phosphate and potassium oxide.Biochar‐compost substrates affected most soil properties only in the topsoil and for a limited period of time. The CEC and total stocks of SOC were consistently elevated relative to the control. After three years the C gain of up to 6.4 Mg SOC ha?1 in the TPS30 plots was lower than the added C amount. Especially in the case of TPS30 treatment, C input was characterized by the greatest losses after application, although the black carbon of the biochar was not degraded in soil. Additionally, tree growth and woody biomass yield did not respond at all to the treatments. Overall, there were few if any indications that biochar–compost substrates improve the performance of SRC under temperate soil and climate conditions. Therefore, the use of biochar for such systems is not recommended.  相似文献   

8.
干旱土壤中生物炭对黑麦草生长的促进机制   总被引:2,自引:0,他引:2       下载免费PDF全文
通过控制不同生物炭添加量和降水量,分析土壤理化性质及黑麦草(Lolium perenne L.)的各项生长指标,探究不同添加量的生物炭对缺水植物生长促进的直接与间接作用。结果表明:生物炭的添加可以提高土壤的田间持水率、土壤中速效磷的含量以及土壤的pH;干旱条件下,增加生物炭的用量能促进黑麦草植株的增高,但高剂量的生物炭抑制黑麦草的生长;生物炭加入并不能持续性的保持土壤中的水分,高浓度(>15%)的生物炭反而增大土壤中水分的流失,但由于生物炭中钾元素为植物对抗干旱提供了必要条件。适当添加生物炭(5%)可缓解黑麦草在缺水时生长发育受到的抑制作用,并促进黑麦草的根系生长以及保证较高的发芽率。土壤中添加生物炭对干旱条件下植物的生长有促进作用,有利于缓解植物受干旱胁迫的影响。  相似文献   

9.
In the near future, composted bio‐solids are expected to play a major role in agriculture. In order to evaluate their contribution to plant growth and nutrition, a mixed sorghum–poultry manure compost was prepared using 15N‐labeled materials. Four treatments were compared in a pot trial: fertilized with compost vs. unfertilized, both of them combined with (cultivated) and without (bare) plants of fibre sorghum (Sorghum bicolor [L.] Moench.). Soil mineral nitrogen (N‐min), plant growth, and N uptake were monitored over a whole growing season (167 d after fertilizer treatment; DAT). Apparent soil mineralization (ASM) and apparent recovery fraction of nitrogen by the plant (ARF) were assessed, as well as the 15N recovery fraction by the plant (15NRF). Compost enhanced sorghum biomass at mid growth (+ 200% of dry weight compared to the unfertilized). However, the difference between the control and the fertilized plants progressively decreased towards the end of the season (+ 70%). Fertilized and unfertilized plants followed different growth patterns over time, although of the same sigmoid type. Conversely, N concentration in plant tissues followed a common dilution curve, indicating that fertilized sorghum efficiently used the supplied N, avoiding luxury consumption. Apparent soil mineralization approximately reached 45% of compost total N in pots without plants. Apparent recovery fraction attained 100% at about two third of the growing season (DAT 111), then declined to about 50% because of root and leaf decline. Compared to it, 15NRF only reached ≈ 20% at mid growth (DAT 83), then declined to 12%. Despite the large difference in absolute values, ARF and 15NRF exhibited a significant correlation, indicating a common trend in time. In contrast to 15NRF, the amount of nutrient derived from fertilizer (Ndff) taken up by the plant decreased over the growth season, proving that compost contributed more to plant nutrition in the early (Ndff ≈ 50%) than in the late growing season (Ndff ≈ 25%). The large difference between ARF and 15NRF suggests that sorghum exerted a strong nutrient demand on the soil and on the fertilizer. Both 15NRF and ARF are considered valuable traits: the former better describes fertilizer behavior and actual supply of N, while the latter outlines the overall effect of fertilizer application on crop nutrition.  相似文献   

10.
Purpose

The environmental benefits of biochar application, ranging from improvements in crop yield to global change mitigation, have been extensively studied in the last decade. However, such benefits have not been profusely demonstrated under a Mediterranean climate and still less in combination with high pH soils. In our study, the short to medium effects of biochar application on a soil-plant system under Mediterranean conditions in an alkaline soil were assessed.

Material and methods

Barley plants were grown in field mesocosms during three agronomical years at three biochar addition rates (0, 5, and 30 t ha?1). Related to soil, different physicochemical parameters were analyzed as well as microbial respiration, biomass, and functional diversity. In the plant domain, in vivo ecophysiology variables such as leaf transpiration rate, stomatal conductance, and photosynthesis rate were determined while photosynthetic pigment content and soluble protein concentrations were measured in the laboratory. Additionally, crop yield and nutrient composition were also analyzed. The soil-plant connection was investigated by the N content ratio in both fractions establishing the nitrogen efficiency in the system.

Results and discussion

The highest rate of biochar amendment enhanced soil moisture and electrical conductivity combined with an increase of SO42?, Cl?, Mg2+, and K+, and decrease of NO3? and HPO4?. Notable variations regarding nutrition and moisture were induced in this Mediterranean alkaline soil after biochar addition although pH remained stable. Contrastingly, there were no major effects on microbial activity, but a lower abundance of the nosZ functional gene was found. Similarly, plant parameters were unaffected regarding chemical composition and ecophysiology although biochar induced a higher efficiency in the plant nitrogen uptake without increasing crop yield.

Conclusions

Biochar addition at the highest rate (30 t ha?1) reduced soil-soluble nitrate although N uptake by the plant remained invariable, in turn coupled to no effects on crop productivity. Our study showed that, in a Mediterranean agroecosystem, a wood biochar produced by gasification was unable to increase crop yield, but enhanced soil water retention, decreased the need for N fertilization, and decreased soil-soluble nitrate concentrations, something that could help to mitigate the excessive nitrate levels associated with over-fertilization.

  相似文献   

11.
Aims : The aim of this study was to explore interactive effects between quality (types) and quantity (application rates) of biochar as well as of arbuscular mycorrhiza (AM) symbiosis on the growth of potato plants. Methods : A low P sandy loam soil was amended with 0%, 1.5%, or 2.5% (w/w) of either of 4 types of biochar, which were produced from wheat straw pellets (WSP) or miscanthus straw pellets (MSP) pyrolyzed at temperatures of either 550°C or 700°C. Potato plants grown in pots containing the soils or soil biochar mixture were inoculated with or without AM fungus (AMF), Rhizophagus irregularis. The experiment was carried out under fully irrigated semi‐field conditions and plants were harvested 101 days after planting. Results : Application of high temperature biochar decreased growth, biomass and tuber yield of potato plants, while the low temperature biochar had a similar effect on yield as plants grown without biochar amendment. Total biomass of potato plants were decreased with the increasing rate of biochar. Arbuscular mycorrhizal fungus inoculation stimulated the growth of potato plants in all organs, increased tuber biomass significantly in 1.5% MSP700 amended plants, and to a lesser degree for WSP700, MSP550, and WSP550. In addition, plant biomass gain was linearly related to N, P, and K uptake, the ratio of P to N in the leaf of plants indicated that all treatments were mainly P‐limited. A multiple linear regression using P uptake and biochar rate as independent variables explained 91% of the variation in total biomass. The single effect of AMF inoculation, type and rate of biochar affected plant N, P and K uptake similarly. While AMF inoculation significantly increased P uptake in potato plants grown in soil with WSP700 or MSP700 despite of the rate of biochar. In general, application of biochar significantly increased AMF root colonization of potato plants. Conclusions : The application of MSP550 at 1.5% combined with AMF stimulated growth of potato the most. Furthermore, the results indicated that the interactive effect of AMF inoculation, biochar type and application rate on potato growth to a large extent could be explained by effects on plant nutrient uptake.  相似文献   

12.

Purpose

Biochar has been suggested as a soil conditioner to improve soil fertility and crop productivity while simultaneously mitigate global climate change by storing carbon in the soil. This study investigated the effect of pine (Pinus radiata) biochar application on soil water availability, nitrogen (N) and carbon (C) pools and growth of C3 and C4 plants.

Materials and methods

In a glasshouse pot trial, a pine biochar (untreated) and nutrient-enriched pine biochar were applied to a market garden soil with C3 (Spinacia oleracea L.) and C4 (Amaranthus paniculatus L.) plants at rates of 0, 1.0, 2.0, and 4.0 % (w/w). Plant biomass, soil pH, moisture content, water holding capacity (WHC), hot water extractable organic C (HWEOC), and total N (HWETN), total C and N, and their isotope compositions (δ 13C and δ 15N) of soils and plants were measured at the end of the experimentation.

Results and discussion

The soil moisture content increased while plant biomass decreased with increasing untreated biochar application rates. The addition of nutrient-enriched biochar significantly improved plant biomass in comparison to the untreated biochar addition at most application rates. Biochar application also increased the levels of labile organic C and N pools as indicated by HWEOC and HWETN.

Conclusions

The results suggested that the addition of pine biochar significantly improved soil water availability but not plant growth. The application of nutrient-enriched pine biochar demonstrated that the growth of C3 and C4 plants was governed by biochar nutrient availability rather than its water holding capacity under the pot trial condition.
  相似文献   

13.
This study investigated the effects of vermicompost tea (aqueous extract) on yield and chemical quality of pak choi (Brassica rapa cv Bonsai, Chinensis group) grown in three media (two soils and a peat-perlite medium) under two fertilizer regimes (compost and synthetic fertilizer). The impacts of tea application on the chemical and biological properties of the growth media were also investigated. Vermicompost teas were prepared using various extraction methods (non-aerated, aerated, aerated with additives) with 1:10 (v:v) chicken manure-based vermicompost to water dilution and applied weekly at the rate of 200 mL plant?1 for 4 weeks. Application of vermicompost tea increased plant production, total carotenoids and total glucosinolates in plant tissue. This effect was most prominent under compost fertilization. Total phenolic was lower in vermicompost tea treated plants compared to those treated with only mineral nutrient solution and the water control. Vermicompost tea improved mineral nutrient status of plants and media, and enhanced the biological activity of the media. Variability in yield and chemical quality of plants across treatments was explained largely by variability in tissue N uptake and dry matter accumulation. Dehydrogenase activity and soil respiration of vermicompost tea-treated growth media were approximately 50% higher than untreated media. This study confirmed that vermicompost tea can positively influence plant yield and quality and increase soil biological activity in multiple soil types.  相似文献   

14.
Maize plant has an absolute requirement of nutrients (N, P, and K) for growth and development. The microbial application can facilitate in addressing limited access to chemical fertilizer concern. Moreover, biochar and phosphorus-solubilizing bacterial (PSB) community can contribute together in nutrient availability. Both have the P-supply potential to the soil, but their interaction has been tested less under semiarid climatic conditions. The purpose of the study was to evaluate the potential of biochemically tested promising PSB strains and biochar for maize plant growth and nutritional status in plant and soil. Therefore, two isolated PSB strains from maize rhizosphere were biochemically tested in vitro and identified by 16S rDNA gene analysis. The experiment was conducted in the greenhouse where the plant growth and nutrient availability to the plants were observed. In this regard, all the treatments such as PSB strain-inoculated plants, biochar-treated plants, and a combination of PSBs + biochar-treated plants were destructively sampled on day 45 (D45) and day 65 (D65) of sowing with four replications at each time. PSB inoculation, biochar incorporation, and their combinations have positive effects on maize plant height and nutrient concentration on D45 and D65. In particular, plants treated with sawdust biochar + Lysinibacillus fusiformis strain 31MZR inoculation increased N (32.8%), P (72.5%), and K (42.1%) against control on D65. Besides that, only L. fusiformis strain 31MZR inoculation enhanced N (23.1%) and P (61.5%) than control which shows the significant interaction of PSB and biochar in nutrient uptake. PSB and biochar have the potential to be used as a promising amendment in improving plant growth and nutrient absorption besides the conventional approaches.  相似文献   

15.
This study was conducted to evaluate whether biochar, produced by pyrolysis at 300°C from rice husk and grape pomace (GP), affects plant growth, P uptake and nutrient status. A 3-month period of ryegrass (Lolium perenne L.) cultivation was studied on two Mediterranean agricultural soils. Treatments comprised control soils amended only with compost or biochar, and combinations of biochar plus compost, with the addition of all nutrients but P (FNoP) or without any fertilization at all (NoF). Application of both types of biochar or/with compost, in the presence of inorganic fertilization except P, significantly increased (< 0.05) dry matter yield of ryegrass (58.9–77.6%), compared with control, in sandy loam soil, although no statistically significant increase was observed in loam soil. GP biochar and GP biochar plus compost amended loam soil harvests gave higher P uptake than control, in the presence of inorganic fertilization except P, whereas in sandy loam soil, a statistical increase was recorded only in the last harvest. In addition, Mn and Fe uptake increased with the addition of the amendments in both soils, while Ca increased only in the alkaline loam soil. Biochar addition could enhance ryegrass yield and P uptake, although inorganic fertilization along with soil condition should receive special attention.  相似文献   

16.
Previous studies have reported positive, negative, or neutral effects on maize yield by the application of biochar and/or compost in the presence or absence of inorganic fertilization. This study investigated the influence of biochar, compost, and mixtures of the two, along with N fertilization, on maize (Zea mays L.) growth and nutrient status in two agricultural Mediterranean soils. Biochars (BC) were produced from grape pomace (GP) and rice husks (RH) by pyrolysis at 300°C (BC-GP; BC-RH). Maize was grown for 30 days after seedling emergence in a greenhouse pot trial in two Mediterranean soils (Sandy Loam-SL and Loam-L) amended with biochar or/and compost (BC-GP+compost; BC-RH+compost) at 2% (w/w) application rate with nitrogen (N) fertilization. The addition of BC-GP amendment resulted in the highest increase of aboveground dry weight (16 g/pot) compared to the control (6.27 g/pot) in SL soil, whereas in L soil the highest increase of aboveground dry weight resulted from BC-RH+compost (13.03 g/pot) compared to the control (2.43 g/pot). The addition of BC-GP+compost significantly increased phosphorus (P) concentration of the aboveground and belowground tissues only in L soil. Potassium (K) concentration of aboveground and belowground tissues significantly increased almost by all the amendments with the greatest increase being observed after the addition of BC-GP+compost in SL soil. To conclude, biochar addition could enhance plant growth, although soil conditions, type of biochar and additional fertilization should receive special attention in order to be used as a tool for sustainable agriculture.  相似文献   

17.
Abstract

Composts may be incorporated into container mixes for several purposes, including to supply nutrients, add organic matter, or suppress plant diseases. The objective of this research was to assess the nutritional benefits of two composts derived in common from composted chicken manure and used in formulation of container media for growth of tomato (Lycopersicon esculentum Mill.). The composts differed in extractable and total plant nutrients so that one of the composts was considered a nutrient‐rich material and the other a nutrient‐poor material. Media were formulated from soil or peat with the composts added in a progressive array of concentrations from a medium with no compost addition to a medium that was all compost. Half of the media were treated with a water‐soluble, complete fertilizer and half were left unfertilized. Optimum growth occurred in media in which compost did not exceed 25% of the volume. The beneficial effects of the composts on plant growth were associated with increased supply of nutrients for the plants. The suppressive effects were attributed to restricted accumulation of nutrients with the nutrient‐poor compost and to excessive potassium supply and accumulation with the nutrient‐rich compost. Fertilization was beneficial in increasing plant growth with the nutrient‐rich compost and was essential for plant growth with the nutrient‐poor compost. The research demonstrated that composts can be used in formulation of media for container growth of plants.  相似文献   

18.
Organic wastes can be usefully recovered to produce organic amendments, for example, compost, to be used for crop production, thus reducing impacts through efficient waste management. The aim of this work was to study the effects of compost obtained from municipal waste in combination with poultry manure on plant growth, nitrate reductase (NR) activity and absorption and distribution of heavy metals (HM) in plant tissues of tomatoes, grown in pots in greenhouses. Two compost types obtained from municipal waste mixed with poultry manure (C1?=?3:2 and C2?=?2:3) were used at two different ages (105 d and 173 d) and at two mix rates with soil (32.5?g pot?1 and 65?g pot?1); soil with no compost amendment was used as control. The experiment was conducted using tomato plants in pots and plant growth and nutrient plant uptake was determined after 65?days from plant transplanting. Results obtained indicated that compost type and compost rate affected biomass production. However, compost age did not influence the development of plants. Nutrient status of tomato plants was also investigated with reference to the N cycle. Nitrite accumulation in the leaves increased with the increase in compost doses. The accumulation of NO2? was associated with a significant increase in NR activity. HM content in leaves decreased with compost use. HM accumulated preferentially in roots and leaves and the soil to root metals transfer was in this order: Fe (1.08–2.14)> Co (0.53–4.10)>Cu (0.28–2.28) >Mn (0.3–1.34) >Zn (0.87–1.21)>Cr (0.12–1.64). The highest and lowest dynamic bioaccumulation factors (BAFdyn) were observed in roots and stems, respectively. The root system acted as a barrier for Cd and Pb. It was concluded that compost use is beneficial for tomato plants, with particular reference to the compost obtained by using a higher amount of poultry manure (C2) in the mix.  相似文献   

19.
Grassland ecosystems in south-eastern Australia are important for dairy and livestock farming. Their productivity relies heavily on water availability, as well as the ecosystem services provided by soil microbial communities including carbon and nutrient cycling. Management practices such as compost application are being encouraged as a means to improve both soil water holding capacity and fertility, thereby buffering against the impacts of increasing climate variability. Such buffering consists of two complementary processes: resistance, which measures the ability of an ecosystem to maintain community structure and function during a period of stress (such as drying); and resilience, which measures the ability of an ecosystem to recover community structure and function post-stress. We investigated the effects of compost on the resistance and resilience of the grassland soil ecosystem under drying and drying with rewetting events, in a terrestrial model ecosystem. Overall, compost addition led to an increase in soil moisture, greater plant available P and higher plant δ15N. Soil C:nutrient ratios, mineral N content (NH4+ and NO3) and soil microbial PLFA composition were similar between amended and unamended soils. Rainfall treatment led to differences in soil moisture, plant above-ground and below-ground biomass, plant δ15N, soil mineral N content (NH4+ and NO3) and microbial biomass C, N and P composition but had no effects on soil C:nutrient ratios, plant available P and soil microbial PLFA composition. There was little interaction between rainfall and compost. Generally, the soil microbial community was resistant and resilient to fluctuations in rainfall regardless of compost amendment. However, these properties of the soil microbial community were translated to resilience and not resistance in soil functions. Overall, the results below-ground showed much greater response to rainfall than compost amendment. Water was the key factor shaping the soil microbial community, and nutrients were not strong co-limiting factors. Future projections of increasing rainfall variability will have important below-ground functional consequences in the grassland, including altered nutrient cycling.  相似文献   

20.
The application of biochar in soils has been hypothesised to improve soil quality whilst enhancing carbon (C) sequestration. However, its effect on nitrogen (N) dynamics in the soil–plant system is still not fully understood. In the present work, N isotope composition (δ15N) was used to facilitate the understanding of the processes involved in the N cycling when biochar is applied. We evaluated, through a wheat pot trial, the effect of different application rates of two types of biochar produced from jarrah and pine woodchips on the wheat biomass at harvest and on the soil and plant C and N contents and δ15N. In addition, the potential benefit of using nutrient-saturated biochar for the soil–plant system was also investigated. Whilst biochar produced from different feedstocks had similar effects on soil and plant nutrient contents, they induced differences in wheat grain biomass and plant δ15N. The effect of the biochar application rate was more pronounced, and at rates higher than 29 t ha?1, the application of biochar decreased grain biomass by up to 39 % and potentially increased N losses. Isotopic analyses indicated that this acceleration of N dynamics had probably occurred before the stage of wheat grain formation. The application of nutrient-enriched biochar resulted in an improved wheat grain production, most likely due to the enhanced nutrient availability, and in reduced N cycling rates in the plant–soil system, which could offset the competition between biochar and plants for nutrients and could decrease adverse environmental impacts due to N losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号