首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Sluszny  C.  Graber  E. R.  Gerstl  Z. 《Water, air, and soil pollution》1999,115(1-4):395-410
Fresh amendment of soil with sewage sludge and composted sewage sludge resulted in increased sorption of three s-triazine herbicides: atrazine, ametryn and terbuthylazine. The extent of increased sorption (as evaluated by sorption coefficients Kd or Kf) was a function of soil type, such that sorption in amended organic carbon-poor soil (0.4% OC) was more enhanced than in amended organic carbon-rich soil (1.55% OC). Despite significant differences between the organic amendments in terms of humic and fulvic acid content, humin content, soluble organic matter content, total organic matter content, and H/C and O/C atomic ratios, organic matter composition had no discernible effect on either sorption distribution coefficients or on isotherm linearity in amended soils. Soils amended with composted sludge had the same sorption potential as did soils amended with the analogous uncomposted sludge. After incubating soil-sludge mixtures for a year at room temperature, organic matter content decreased to original pre-amendment levels. Sorption coefficients for the three compounds similarly decreased to initial pre-amendment values. Organic carbon normalized sorption coefficients (Koc) were essentially identical in the soils, amended soils, and incubated amended soils, indicating that sludge and compost derived organic matter does not have a significantly different sorption capacity as compared with the original soils, despite compositional differences.  相似文献   

2.
Abstract

To evaluate contributions of organic matter, oxides, and clay fraction to copper (Cu) adsorption in six characterized soils, adsorption isotherms and distribution coefficients were obtained by a batch experimental method. Copper adsorption isotherms from untreated soil, organic matter removed from samples, and organic‐matter‐ and oxide‐removed samples were compared with curve patterns and correlated to Langmuir and Freundlich models. Copper sorption data on untreated soils described L or H‐curves, whereas in soils deprived of any component, their curves were S‐type. Distribution coefficients allowed knowing Cu adsorption capacity of untreated soil and of organic matter, oxides, and clay fraction. Soil organic matter is the main component that affects Cu adsorption as long as soil pH is near neutrality. At acid pH, oxides are the main component that affects Cu adsorption, although to a much smaller extent than organic matter near neutral conditions. Soil pH is the main soil factor that determines Cu adsorption.  相似文献   

3.
Partition coefficients K P of nonylphenol (NP) in soil were determined for 193 soil samples which differed widely in content of soil organic carbon (SOC), hydrogen activity, clay content, and in the content of dissolved organic carbon (DOC). By means of multiple linear regression analysis (MLR), pedotransfer functions were derived to predict partition coefficients from soil data. SOC and pH affected the sorption, though the latter was in a range significantly below the pKa of NP. Quality of soil organic matter presumably plays an important but yet not quantified role in sorption of NP. For soil samples with SOC values less than 3 g kg?1, model prediction became uncertain with this linear approach. We suggest that using only SOC and pH data results in good prediction of NP sorption in soils with SOC higher than 3 g kg?1. Considering the varying validity of the linear model for different ranges of the most sensitive parameter SOC, a more flexible, nonlinear approach was tested. The application of an artificial neuronal network (ANN) to predict sorption of NP in soils showed a sigmoidal relation between K P and SOC. The nonlinear ANN approach provided good results compared to the MLR approach and represents an alternative tool for prediction of NP partitioning coefficients.  相似文献   

4.
湘西植烟土壤有机质含量分布及其影响因素   总被引:12,自引:0,他引:12  
为了解湘西州植烟土壤有机质含量分布状况及其影响因素,测试了湘西州7个主要烟区488个土壤样本的有机质含量,采用传统统计学和地统计学方法分析了湘西州植烟土壤有机质含量分布及土壤类型、海拔高度、pH值等影响因素。结果表明:1湘西州植烟土壤有机质含量总体适宜,平均值为21.69g/kg,变幅为3.12~62.97g/kg,变异系数为40.64%,处于适宜范围内的样本占41.48%;2不同县之间的植烟土壤有机质含量差异达极显著水平,永顺县、凤凰县、龙山县植烟土壤有机质含量总体上处于适宜水平,其他各县总体处于较低水平;3湘西州植烟土壤有机质含量在空间分布上是从东北部、西部和西南部向州中部及东南方向减少,在永顺县东南部、保靖县的西部各有一个高值区;4不同植烟类型土壤的有机质含量差异达显著水平,灰黄棕土、水稻土、灰黄泥、浅灰黄泥、黄壤的有机质含量属适宜水平,其他类型土壤的有机质含量偏低;5不同海拔高度的植烟土壤有机质含量差异达极显著水平,湘西州植烟土壤有机质含量有随海拔升高而升高的趋势;6不同pH的植烟土壤有机质含量差异极显著,主要为pH>7.0的植烟土壤有机质含量较高。  相似文献   

5.
The sorption of zinc (Zn) by two acid tropical soils, Mazowe clay loam (kaolinitic, coarse, Rhodic Kandiustalf) and Bulawayo clay loam (coarse, kaolinitic, Lithic Rodustalf), was studied over a wide range of Zn solution concentrations. Samples of the two soils used in the experiments were collected at both uncleared, uncultivated (virgin) sites and cultivated sites. The two virgin soils showed similar abilities to bind Zn. Mazowe soil (40 g organic matter kg?1) presented the highest affinity for Zn. Yet, Bulawayo soil (23.5 g organic matter kg?1) sorbed almost the same amount. Bulawayo soil had higher pH and Fe and Mn-oxide content than Mazowe soil. Once cultivated, the two soils behaved quite differently. After 50 years, Mazowe soil had lost 60% of its organic matter and effective cation exchange capacity (ECEC). In this soil, Zn sorption capacity had also been decreased by 60%. Clearing and 10 years under cultivation had affected neither the organic matter content nor the ECEC of Bulawayo soil. For this soil, Zn sorption was even higher in the cultivated soil, presumably due to an increase in the amount of Fe and Mn oxide from subsoiling. Zinc sorption was dependent upon pH, with retention dramatically increasing in the pH range 6–7. Sorption occurred at pH values below the point of zero charge (PZC), indicating that the sorption reaction can proceed even in the presence of electrostatic repulsion between the positively charged soil surface and the cation. In the two soils, the reversibility of the sorption reaction was very low. More than 90% of the sorbed Zn was apparently strongly bonded.  相似文献   

6.
The transformation of isoxaflutole (ISOX) to its herbicidally active diketonitrile degradate (DKN) was significantly enhanced in the presence of soil and occurred more rapidly in systems containing soil with a greater soil pH. Sorption-desorption of ISOX and DKN in five soils collected within a field revealed both ISOX and DKN were more readily sorbed to soils with greater organic matter, clay content, and lower soil pH. Sorption of ISOX residues occurred within 2 h, and extracts contained similar concentrations of ISOX and DKN at 24 h, suggesting the 24-h sorption coefficients for ISOX-treated systems were actually for mixed ISOX residues. Freundlich sorption coefficients were 3 and 4 times greater for ISOX than for DKN. On the basis of the Freundlich organic carbon sorption constants, ISOX and DKN can be categorized in the very high and high mobility classes, suggesting their potential to leach in the soils needs to be evaluated.  相似文献   

7.
Abstract

The objective of this study was to determine the effect of clearing and cultivation on the sorption of cadmium (Cd) by two acid soils from Zimbabwe with differing cultivation stories. In their original state, not cleared‐not cultivated (virgin soils), the two soils exhibited noticeable and similar capacities to sorb Cd. The Mazowe soil contains the highest level of organic matter (40 g kg‐1) and a effective cation exchange capacity (ECEC) of 144 mmolc kg‐1. Yet, Bulawayo soil (23.5 g kg‐1 organic matter and ECEC of 146 mmolc kg‐1) has higher pH and Mn and Fe oxide content and these characteristics seemed to counteract the effect of lower organic matter. After 50 years of cultivation, The Mazowe soil has lost 60% of its organic matter and ECEC, and consequently the ability of its soil matrix to bind Cd has proportionally decreased. In Bulawayo (cleared in 1983 and first ploughed in 1984), on the contrary, the organic matter and ECEC of the cultivated soil remains over 95% of the values on its virgin counterpart. In this soil, the retaining ability for Cd has not still been affected. In the two soils Cd sorption was highly pH‐dependent. The extent of sorption was minimal under acidic conditions and increased sharply as the pH was raised. The immediate reversibility of the sorption process proved to be very low. When sorption and desorption data were compared it was clear that soil characteristics like high organic matter and oxide content which showed to enhanced Cd sorption, contributed at the same time to slow down the backward reaction.  相似文献   

8.
Metsulfuron methyl sorption-desorption in field-moist soils   总被引:4,自引:0,他引:4  
Pesticide sorption coefficients (K(d)) are generally obtained using batch slurry methods. As a consequence, the results may not adequately reflect sorption processes in field-moist or unsaturated soil. The objective of this study was to determine sorption of metsulfuron methyl, a weak acid, in field-moist soils. Experiments were performed using low density (i.e., 0.3 g mL(-)(1)) supercritical fluid carbon dioxide (SF-CO(2)) to convert anionic metsulfuron methyl to the molecular species and remove it from the soil water phase only, thus allowing calculation of sorption coefficients (K(d)) at low water contents. K(d) values for sorption of the metsulfuron methyl molecular species on sandy loam, silt loam, and clay loam soil at 11% water content were 120, 180, and 320 mL g(-)(1), respectively. Using neutral species K(d) values, the pK(a) of metsulfuron methyl, and the pH of the soil, we could successfully predict the K(d) values obtained using the batch slurry technique, which typically has a predominance of anionic species in solution during the sorption characterization. This application of supercritical fluid extraction to determine sorption coefficients, combined with sulfonylureas' pK(a) values and the soil pH, will provide an easy method to predict sorption in soil at different pH levels.  相似文献   

9.
Solution cadmium (Cd) concentrations and sorption and desorption of native and added Cd were studied in a range of New Zealand soils. The concentration of Cd in solution and the concentrations and patterns of native soil Cd desorbed and added Cd sorbed and desorbed varied greatly between the 29 soils studied. Correlation analysis revealed that pH was the most dominant soil variable affecting solution Cd concentration and sorption and desorption of native and added Cd in these soils. However, organic matter, cation exchange capacity (CEC) and total soil Cd were also found to be important. Multiple regression analysis showed that the log concentration of Cd in solution was strongly related to soil pH, organic matter and total Cd, which in combination explained 76% of the variation between soils. When data from the present study were combined into a single multiple regression with soil data from a previously published study, the equation generated could explain 81% of the variation in log Cd solution concentration. This reinforces the importance of pH, organic matter and total Cd in controlling solution Cd concentrations. Simple linear regression analysis could at best explain 53% of the total variation in Cd sorption or desorption for the soils studied. Multiple regression analysis showed that native Cd desorption was related to pH, organic matter and total Cd, which in combination explained 85% of the variation between soils. For sorption of Cd (from 2 μg Cd g–1 soil added), pH and organic matter in combination explained 75% of the variation between soils. However, for added Cd desorption (%), pH and CEC explained 77%. It is clear that the combined effects of a range of soil properties control the concentration of Cd in solution, and of sorption and desorption of Cd in soils. The fraction of potentially desorbable added Cd in soils could also be predicted from a soil’s Kd value. This could have value for assessing both the mobility of Cd in soil and its likely availability to plants.  相似文献   

10.
Abstract

Environmental changes and management practices which alter soil properties may affect the capacity of soils to sorb trace metals, such as copper (Cu), zinc (Zn), and cadmium (Cd), and thus influence the bioavailability and leach ability of the metals. Two agricultural soils were treated to partially oxidize organic matter and to decrease soil pH for evaluating the effects of acidification and organic matter oxidation on trace metal sorption onto soils. For the one soil with a pH value of 6.74 and organic carbon (C) content of 46.9 g‐kg‐1, loss of 11% of its organic matter reduced by 97, 72, and 62% the original sorption capacity for Cu, Zn, and Cd, respectively, while the corresponding values caused by acidifying the soil one pH‐unit were 32, 16, and 29%. For the another soil with a pH of 4.69 and organic C content of 16.3 g‐kg‐1, a decrease in pH by one unit resulted in a loss of 43, 21, and 52% of the sorption capacity for Cu, Zn, and Cd, respectively.  相似文献   

11.
12.
Pesticide sorption or binding to soil is traditionally characterized using batch slurry techniques. The objective of this study was to determine linuron sorption in field-moist or unsaturated soils. Experiments were performed using low-density (i.e., 0.25 g mL(-)(1)) supercritical carbon dioxide to remove linuron from the soil water phase, thus allowing calculation of sorption coefficients (K(d)) at low water contents. Both soil water content and temperature influenced sorption. K(d) values increased with increased water content, if less than saturated. K(d) values decreased with increased temperature. K(d) values for linuron sorption on silty clay and sandy loam soils at 12% water content and 40 degrees C were 3.9 and 7.0 mL g(-)(1), respectively. Isosteric heats of sorption (DeltaH(i)) were -41 and -35 kJ mol(-)(1) for the silty clay and sandy loam soils, respectively. The sorption coefficient obtained using the batch method was comparable (K(f) for sandy loam soil = 7. 9 microg(1)(-)(1/)(n)() mL(1/)(n)() g(-)(1)) to that obtained using the SFE technique. On the basis of these results, pesticide sorption as a function of water content must be known to more accurately predict pesticide transport through soils.  相似文献   

13.
Abstract

Copper (Cu) is bound strongly to organic matter, oxides of iron (Fe) and manganese (Mn), and clay minerals in soils. To investigate the relative contribution of different soil components in the sorption of Cu, sorption was measured after the removal of various other soil components; organic matter and aluminum (Al) and Fe oxides are important in Cu adsorption. Both adsorption and desorption of Cu at various pH values were also measured by using diverse pasture soils. The differences in the sorption of Cu between the soils are attributed to the differences in the chemical characteristics of the soils. Copper sorption, as measured by the Freundlich equation sorption constants [potassium (K) and nitrogen (N)], was strongly correlated with soil properties, such as silt content, organic carbon, and soil pH. The relative importance of organic matter and oxides on Cu adsorption decreased and increased, respectively, with increasing solution Cu concentrations. In all soils, Cu sorption increased with increasing pH, but the solution Cu concentration decreased with increasing soil pH. The cumulative amounts of native and added soil Cu desorbed from two contrasting soils (Manawatu and Ngamoka) during desorption periods showed that the differences in the desorbability of Cu were a result of differences in the physico‐chemical properties of the soil matrix. This finding suggests that soil organic matter complexes of Cu added through fertilizer, resulted in decreased desorption. The proportions of added Cu desorbed during 10 desorption periods were low, ranging from 2.5% in the 24‐h to 6% in the 2‐h desorption periods. The desorption of Cu decreased with increasing soil pH. The irreversible retention of Cu might be the result of complex formation with Cu at high pH.  相似文献   

14.
Abstract

The adsorption of selenium (Se) in the selenate form and its desorption by phosphate in four soils with different physiochemical properties were studied in the laboratory. To determine adsorption isotherms for selenate 25 mL of solutions containing 1 to 100 ppm of Se were added to 2.5 g of soil. Desorption isotherms were determined by resuspending the samples in phosphate solution. The selenate sorption process was adequately described by the Freundlich equation. In pine forest and woodland soils, characterized by the highest organic matter content and cation exchange capacity (CEC) values, the isotherms were classified as L type, since the amount of Se sorbed appeared to move towards saturation. The organic matter content played the most important part in the adsorption of Se, while pH appeared to have a small effect on the ability of the soil to adsorb Se. The high CaCO3 content of the pine forest soil may have contributed in increasing the Se adsorption notwithstanding the high pH value. The cultivated and arable soils showed a reduced sorption capacity. The sorption could be described by an S type curve. At low concentrations of Se the affinity of the solid phase was less than that of the liquid phase. By increasing the concentration of Se in solution, the affinity of the solid phase increased and the sorption was favored. Selenate desorption by water was negligible, whereas the amount of Se desorbed by phosphate varied among the different soils. The desorption experiments indicated that a significant portion of the sorbed Se was irreversibly retained. This suggests the existence of linkages which allow the release of Se in the soil solution only after physico‐chemical variation such as exchange with phosphate ions.  相似文献   

15.
活化过硫酸钠(Sodium persulfate,SPS)氧化技术是一种新型的土壤修复技术。为了更科学地评价化学氧化处理后土壤的环境风险,本文通过亚铁离子活化过硫酸钠法对有机质(Organic matter,OM)含量存在显著差别的两种土壤进行氧化处理,比较了活化过硫酸钠氧化前后两种土壤样品对3种挥发性有机污染物的吸附特性。结果表明,亚铁活化的SPS能够氧化土壤中腐殖酸和胡敏素类的有机质。对OM含量较高的1号土,SPS氧化对有机质的去除率为71.9%。而对OM含量较低的2号土,SPS氧化对有机质的去除率为49.9%。1号土样对3种挥发性有机物的吸附以分配作用为主,氧化后的1号土样对3种物质的吸附机制不变,但吸附量有所增加;2号土样对3种挥发性有机污染物的吸附有一定的非线性,而氧化后的2号土样对3种物质的吸附线性特征增强。吸附数据用对数形式的Freundlich方程拟合得到分配系数lg Kf值,比较有机碳标化后的分配系数lg Kfoc,氧化后的土壤有机质对3种挥发性有机污染物的吸附特性有所提高。分析表明,SPS氧化了有机质中较多的极性组分(如羧基及羟基等),从而使处理后的土壤中有机质的非极性增强,强化了对非极性化合物的吸附。  相似文献   

16.
Liming is a practice commonly used to modify soil acidity, neutralize aluminum, and increase calcium and magnesium in the soil. Liming can change herbicide retention processes and consequently weed control and potential environmental contamination. The effects of liming on the sorption and desorption of hexazinone in different soils were evaluated. Samples from seven Brazilian soils were collected and separated into two subsamples, with and without limestone incubation. Hexazinone was quantified using ultra high-performance liquid chromatography. The sorption and desorption coefficients were determined in soils using Freundlich isotherms. Increasing the pH did not alter the sorption kinetics of hexazinone in the same soil class. The shortest sorption time of hexazinone occurred in soils with higher organic matter (OM) and clay content. Liming reduced the sorption and increased the desorption of hexazinone in the soils, which was caused by the increase in pH and reduction of OM content. Although the application of limestone increased desorption, the rate at which this process occurred was less than the sorption rate of hexazinone in most cases. In alkaline soils, the recommended dose of hexazinone for pre-emergence application should be low to avoid leaching and reduce the contamination of groundwater resources.  相似文献   

17.
酰胺类除草剂在土壤上吸附的位置能量分布分析   总被引:10,自引:0,他引:10  
根据异丙甲草胺、乙草胺、丙草胺和丁草胺在六种土壤上的等温吸附结果 ,计算了它们在六种土壤上的位置能量分布和有机质标化的平均分配常数。结果表明 :四种除草剂在六种土壤上的吸附等温线为Freundlich型 ;低浓度范围内 ,农药在土壤上的吸附首先发生在土壤表面的高能吸附位置上 ;土壤表面位置能量分布的具体情况与被吸附农药性质有关 ;土壤上的吸附位置数或吸附容量主要与土壤有机质含量有关 ,粘土对吸附也有一定的贡献 ;疏水键合机理在四种酰胺类除草剂吸附过程中起着重要的作用  相似文献   

18.
Abstract. The phosphorus (P) sorption and desorption dynamics of eleven major agricultural grassland soil types in Ireland were examined using laboratory techniques, so that soils vulnerable to P loss might be identified. Desorption of P from soil using the iron-oxide paper strip test (Pfeo), water extractable P (Pw) and calcium chloride extractable P (Pcacl2) depended on soil P status in all soils. However, soil types with high organic matter levels (OM), namely peat soils (%OM >30), had lower Pfeo and Pw but higher Pcacl2 values compared to mineral soils at similar soil test P levels. Phosphorus sorption capacity remaining (PSCr) was measured using a single addition of P to soils and used to calculate total P sorption capacities (PSCt) and degree of P saturation (DPS). Phosphorus sorption capacities correlated negatively with % OM in soils indicating that OM may inhibit P sorption from solution to soil. High organic matter soils exhibited low P sorption capacities and poor P reserves (total P, oxalate extractable P) compared to mineral soils. Low P sorption capacities (PSCt) in peat soils were attributed to OM, which blocked or eliminated sorption sites with organic acids, therefore, P remained in the soil solution phase (Pcacl2). In this work, peat and high organic matter soils exhibited P sorption and desorption characteristics which suggest that these soils may not be suitable for heavy applications of manure or fertilizer P owing to their low capacities for P sorption and storage.  相似文献   

19.
A method for the extraction of bentazone, dichlorprop, and MCPA in three selected Norwegian soils of different textures is described. Initially three different extraction methods were tested on one soil type. All methods gave recoveries >80% for the pesticide mixture, but extraction with sodium hydroxide in combination with solid-phase preconcentration was used for further recovery tests with soils of different properties spiked at four herbicide concentration levels (0.001-10 microg/g of wet soil). The method was rapid and easy and required a minimum of organic solvents. The recoveries were in the range of 82-109, 80-123, and 45-91% for the soils containing 1.4 (Hole), 2.5 (Kroer), and 37.8% (Froland) organic carbon, respectively. Limits of quantification using GC-MS were 0.0003 microg/g of wet soil for bentazone and 0.0001 microg/g of wet soil for both dichlorprop and MCPA.  相似文献   

20.
Dicyandiamide sorption-desorption behavoir on soils and peat humus   总被引:3,自引:0,他引:3  
The sorption-desorption behavior of dicyandiamide (DCD) is an important chemical process that affects DCD fate and mobility in soils. Therefore, this study quantified DCD sorption-desorption on a phaeozem (Mollisol), a burozem (Alfisol), a soil with organic matter-removed and peat humus using the batch-equilibration procedure, and identified soil properties that influenced DCD sorption. The sorption on peat humus was higher than that on the phaeozem and the burozem, with much lower sorption observed on the soil with organic matter-removed, indicating that soil organic matter was the main carrier of DCD sorption. Due to its amphipathic property the DCD molecule sorption on the phaeozem and the burozem decreased as pH increased from about 2 to 5, but a further increase in pH led to a rise in DCD sorption.The DCD desorption hysteretic effect for peat humus was greater than that for the phaeozem and the burozem using 0.01 mol L^-1 CaCl2 as the background electrolyte, suggesting that the hydrophobic domains of organic matter may play an important role in DCD sorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号