首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Micro and macroporosity, pore shape and size distribution, aggregate stability, saturated hydraulic conductivity and crop yield were analysed in alluvial silty loam (Fluventic Eutrochrept) and clay soils (Vertic Eutrochrept) following long-term minimum and conventional tillage. The soil structure attributes were evaluated by characterizing porosity by means of image analysis of soil thin sections prepared from undisturbed soil samples.

The interaggregate microporosity, measured by mercury intrusion porosimetry, increased in the minimally tilled soils, with a particular increase in the storage pores (0.5–50 μm). The amount of elongated transmission pores (50–500 μm) also increased in the minimally tilled soils. The resulting soil structure was more open and more homogeneous, thus allowing better water movement, as confirmed by the greater hydraulic conductivity of the minimally tilled soils. The aggregate stability was less in the conventionally tilled soils and this resulted in a greater tendency to form surface crusts and compacted structure, compared with the minimally tilled soils. The latter tillage practice seemed to maintain, in the long-term, better soil structure conditions and, therefore, maintain favourable conditions for plant growth. In the silt loam, the crop yield did not differ significantly between the two tillage systems, while in the clay soil it decreased in the minimum tilled soil because of problems of seed bed preparation at the higher surface layer water content.  相似文献   


2.
Relative gas diffusivity, air permeability and hydraulic conductivity were measured in undisturbed soil cores from tillage and traffic experiments. Continuity indices were taken as the quotient of relative diffusivity and air-filled porosity, and of air permeability and air-filled porosity (and the square of air-filled porosity). These were applied to individual measurements or to treatment means. More general continuity indices were derived from the changes in flow or diffusion with porosity, where the variations in porosity were due to both field variability and applied changes of water potential. These indices were the exponent in the relationship between relative diffusivity and air-filled porosity and the slope of log–log plots of air permeability and air-filled porosity or hydraulic conductivity and degree of saturation. Some physical significance was attached to the exponents by comparison with models of soil porosity. Positive intercepts of the relative diffusivity or air permeability plots on the air-filled porosity axes were taken as porosities blocked to gas movement.
Continuity indices and flow measurements showed differences between tillage and traffic treatments which did not necessarily reflect differences in bulk density. Intrinsic permeability was better estimated from air permeability than from unsaturated hydraulic conductivity.  相似文献   

3.
Soil structure and the effect of management practices   总被引:7,自引:0,他引:7  
To evaluate the impact of management practices on the soil environment, it is necessary to quantify the modifications to the soil structure. Soil structure conditions were evaluated by characterizing porosity using a combination of mercury intrusion porosimetry, image analysis and micromorphological observations. Saturated hydraulic conductivity and aggregate stability were also analysed.

In soils tilled by alternative tillage systems, like ripper subsoiling, the macroporosity was generally higher and homogeneously distributed through the profile while the conventional tillage systems, like the mouldboard ploughing, showed a significant reduction of porosity both in the surface layer (0–100 mm) and at the lower cultivation depth (400–500 mm). The higher macroporosity in soils under alternative tillage systems was due to a larger number of elongated transmission pores. Also, the microporosity within the aggregates, measured by mercury intrusion porosimetry, increased in the soil tilled by ripper subsoiling and disc harrow (minimum tillage). The resulting soil structure was more open and more homogeneous, thus allowing better water movement, as confirmed by the higher hydraulic conductivity in the soil tilled by ripper subsoiling. Aggregates were less stable in ploughed soils and this resulted in a more pronounced tendency to form surface crust compared with soils under minimum tillage and ripper subsoiling.

The application of compost and manure improved the soil porosity and the soil aggregation. A better aggregation indicated that the addition of organic materials plays an important role in preventing soil crust formation.

These results confirm that it is possible to adopt alternative tillage systems to prevent soil physical degradation and that the application of organic materials is essential to improve the soil structure quality.  相似文献   


4.
黄河三角洲滨海盐渍土饱和导水率的研究   总被引:3,自引:1,他引:3  
白冰  陈效民  秦淑平 《土壤通报》2005,36(3):321-323
通过对黄河三角洲滨海盐渍土饱和导水率的研究, 结果表明: 原状土的饱和导水率随着土壤剖面深度的增加呈现出表土层高、中间土层低、底土层又升高的趋势; 扰动土与原状土的饱和导水率差异较大, 土壤饱和导水率与土壤容重呈负相关、而与孔隙度、结构系数、团聚度等均呈正相关。原状土的饱和导水率能反映田间水分运动以及孔隙状况, 对研究土壤水量平衡和水土保持有重要的意义。扰动土的饱和导水率对于土壤理化性质的理论研究有一定参考价值。  相似文献   

5.
This study assessed the impact of compost on the hydraulic properties of three soils (sandy loam, clay loam and diesel‐contaminated sandy loam) with relatively poor physical quality typical of brownfield sites. Soils were amended with two composts at 750 t/ha. Samples were also collected from a clay‐capped brownfield site, previously amended with 250, 500 or 750 t/ha of compost. Water‐release characteristics and saturated hydraulic conductivity were determined for all soils and physical quality indicators derived. Unsaturated flow in field profiles after compost application with two depths of incorporation and two indigenous subsoils was simulated using Hydrus‐1D. Compost generally increased water retention. Hydraulic conductivity tended to decrease following compost application in sandy loam but increased in clay and clay loam, where compost addition resulted in a larger dominant pore size. Although compost improved physical quality indicators, they remained suboptimum in clay and clay loam soil, which exhibited poor aeration, and in the contaminated sandy loam, where available water capacity was limited, possibly due to changes in wettability. Increasing application rates in the field enhanced water retention at low potentials and hydraulic conductivity near saturation but did not alter physical quality indicators. Numerical simulation indicated that the 500 t/ha application resulted in the best soil moisture regime. Increasing the depth of incorporation in the clay cap improved drainage and reduced waterlogging, but incorporation in more permeable subsoil resulted in prolonged dry conditions to greater depths.  相似文献   

6.
Abstract Application of organic residues to soil is generally assumed to improve soil tilth. Only few studies have reported the long‐term effects on the more subtle aspects of soil porosity, and no reports have considered the potential effects of organic amendments on the pore system in the subsoil. We sampled undisturbed soil cores (100 cm3 and 6280 cm3) using metal cylinders in differently fertilized plots in the long‐term field experiment at Askov Experimental Station, Denmark. We selected the 0–60 cm soil layer of plots dressed for a century with either mineral fertilizers (labelled NPK) or animal manure (labelled AM) and unfertilized plots (UNF) as a reference. Both fertilization treatments were studied at two levels of nutrient application: ‘normal’ (labelled ‘1’) and 1.5 times ‘normal’ (labelled ‘1½’). Water retention, air permeability and air diffusivity were measured on the small cores, and we used the large cores for measuring near‐saturated and saturated hydraulic conductivity. In the plough layer, the AM and NPK soils displayed identical pore volumes in size fractions that were larger as well as smaller than 30 μm, while the UNF soil had a significantly smaller volume of pores < 30 μm. No clear trends were found in treatment effects on pore organization as calculated from air diffusivity and air permeability measurements. No significant differences in hydraulic conductivity were found in the plough layer. For the subsoil below ploughing depth, significantly larger macropore volumes and near‐saturated hydraulic conductivities were found for soil of plots receiving the larger (‘1½’) amount of nutrients compared with the ‘normally’ dressed soil. This effect was independent of fertilization system (AM or NPK). We attribute the larger volume of macropores to the improved root growth conditions in the soil with the higher nutrient level. We conclude that addition of animal manure at rates realistic in agriculture has only a modest effect on soil pore characteristics of the plough layer soil compared with the use of mineral fertilizers. For the subsoil below ploughing depth, a high level of nutrient application may increase soil macroporosity and near‐saturated hydraulic conductivity, but the origin of nutrients is of no significance.  相似文献   

7.
莱芜市红石公园土壤结构特征及其与饱和导水率的关系   总被引:1,自引:0,他引:1  
[目的]分析土壤水分运移过程,探究莱芜市红石公园土壤结构特征及其对饱和导水率的影响,为促进该区生态恢复和建设提供理论参考。[方法]采用环刀分层取样对研究区6块样地进行土壤物理结构特征测定,进行水分穿透试验,测量土壤饱和导水率。[结果]试验区土壤密度及石砾含量大小均表现为:纯草本灌木—草本乔木—草本;土壤R0.25(0.25mm水稳性团聚体含量)、含水率、总孔隙度及饱和导水率大小均表现为:乔木—草本灌木—草本纯草本;表层土壤具有更优的土壤结构及更大的饱和导水率;土壤饱和导水率与土壤密度、石砾含量呈现显著负相关关系,与土壤总孔隙度及R0.25呈现显著正相关关系。[结论]土壤总孔隙度是土壤饱和导水率的最主要影响因子,土壤R0.25含量、土壤密度及石砾含量次之。  相似文献   

8.
Soil physical properties of afforested and arable land   总被引:2,自引:0,他引:2  
Abstract. The effects of tree crops on the soil physical properties of former agricultural land were compared with those of ley in a rotation with cereals on adjacent sites. Five sites in southern Sweden were investigated focussing on soil water retention characteristics, dry bulk density, macroporosity and saturated hydraulic conductivity. Three of the sites were on light textured soils and two on clay soils. The tree crops were 30 to 35-year-old hybrid aspen, Populus deltoides , and silver birch, Betula pendula , and the ley crops were one to five years old.
The light-textured soils under tree crops showed bimodal pore size distributions in the macropore region, whereas under ley crops they showed unimodal distributions. Dry bulk densities were generally smaller and the macroporosities larger under tree crops compared with leyicereal crops. Saturated hydraulic conductivities tended to be larger under tree crops. Slopes of the linear regression lines between saturated hydraulic conductivity and each of the parameters dry bulk density, porosity and macroporosity were steeper in the soil under agricultural crops than under tree crops.
Observed differences in physical properties were considered to be an effect of land use, which had brought about changes in aggregate stability, pore size distribution and pore continuity.  相似文献   

9.
This work evaluates the mid-term impact of the addition of large amounts of an organic amendment on the recovery of the physical, chemical and, particularly, the microbiological properties of a marginal semiarid degraded soil and on increasing the soil organic C pool. In order to perform this study, a semiarid degraded soil was treated with composted urban waste at doses equivalent to the addition of 1% (S + CCD1) and 3% (S + CCD2) of organic C (Corg). Changes in soil characteristics in the amended soils were evaluated with respect to a control soil without organic amendment for a period of 5 years after the organic amendment was applied. A spontaneous vegetal cover developed on both amended and unamended soils 3–4 months after the organic amendments were added, yet the level of vegetal biodiversity was lower in the amended plots. Compost-amended soils showed higher concentrations of Corg, water-soluble C and water-soluble carbohydrates than the control soil throughout the experimental period. Furthermore, all of these C fractions were significantly higher (p ≤ 0.05) in S + CCD2 than in S + CCD1 and the control soil. However, compost addition also increased soil electrical conductivity and nitrate content, particularly at the higher dose. Likewise, compost addition produced a 4- to 10-fold increase in soil heavy metal concentrations, although the levels of heavy metal were under the limits allowed in soils. Five years after the organic amendment was added, the soil water holding capacity, stable aggregate percentage, porosity and nutrient and humic substance and humic acid content were greater in amended soils than in control soil, and the higher dose produced greater increases than the lower dose. Soils receiving the highest dose of compost also showed the highest values of basal respiration, dehydrogenase activity and β-glucosidase and phosphatase activity, as well as a greater abundance of total PLFAs, bacterial and fungal PLFAs, and saturated and monounsaturated fatty acids. A greater level of functional diversity was also observed in amended soils, particularly in the soil receiving the higher dose of compost. It can be concluded that the addition of high doses of compost can be a suitable strategy for restoring semiarid degraded soils and for fixing C in these soils, provided that the organic material is of high quality and has a low concentration of heavy metals.  相似文献   

10.
Vegetated buffer zones (BZs) between arable fields and bodies of water are commonly established to reduce erosion and run‐off of particle‐bound nutrients. Functioning of a BZ depends on soil structure, as it is important for water infiltration. Therefore, it is vital to understand how varying management practices affect soils of BZs. We studied the structural and hydraulic properties of three differently managed BZs established in a boreal Vertic Stagnic Cambisol (clay, 51%). The three management practices for vegetation were as follows: natural with no treatment, harvested yearly and grazed by cattle. We used bulk density and macroporosity, together with a pore geometry index (air permeability per unit air‐filled porosity), to describe the soil structural properties. Hydraulic properties were measured at different length scales by means of an aggregate sorptivity test, saturated hydraulic conductivity of the core samples and field‐saturated hydraulic conductivity. Vegetation management markedly affected the physical properties in the top 5 cm of the soil. Properties were least favourable for infiltration at the grazed site, with the greatest bulk density, least macroporosity and hydraulic conductivity or greatest pore tortuosity. In general, spatial variation in zones with restricted and good hydraulic conductivity together with reduced aggregate sorptivity in the deeper horizons made the soil prone to preferential flow when initially dry. Prolonged wetness, on the other hand, reduced saturated hydraulic conductivity significantly, resulting in surface run‐off. Harvesting was considered the best management practice due to its inherent capacity for reducing the soil nutrient content and because it has minor implications for soil physical properties.  相似文献   

11.
喀斯特浅层裂隙土壤垂向渗透性及影响因素   总被引:2,自引:1,他引:1  
为探究喀斯特浅层裂隙所赋存土壤各土层渗透性特征及影响因素,测定了喀斯特典型的浅层裂隙中赋存土壤0—10,10—20,20—30,30—50,50—70,70—100 cm土层的饱和导水率、机械组成、容重、非毛管孔隙度、毛管孔隙度、总孔隙度和有机碳含量等土壤属性。结果表明:(1)喀斯特浅层裂隙中各土壤属性均随着土层深度变化呈现出递增或递减的趋势,其中容重、黏粒含量、毛管孔隙度均随着土层深度而增长,饱和导水率、有机碳、非毛管孔隙度等土壤属性随土层深度的变化规律相反,呈递减趋势。(2)喀斯特浅层裂隙中土壤饱和导水率变异系数高于非喀斯特地区,且随土层深度变化呈波动增长趋势;其随土层深度变深而减小的趋势可用对数函数进行模拟(R^2=0.9462)。(3)通过Pearson相关性分析,裂隙中所赋存土壤的饱和导水率除了与机械组成中黏粒含量、粉粒含量为显著性相关(P<0.05),与砂粒含量相关性不显著以外(P>0.05),与其余各土壤属性均呈极显著性相关(P<0.01),且非毛管孔隙度相关性最高(P=0.898)。浅层裂隙土壤非毛管孔隙是影响其渗透性的主要因子,而裂隙中深层土壤拥有较多善于贮存植物所需水分的毛管孔隙。因此,对于土地资源匮乏的喀斯特地区,充分合理利用裂隙中深层土壤的水分成为今后研究的重点。研究结果可为喀斯特地区水分运移、石漠化治理及植被恢复提供科学依据。  相似文献   

12.
Abstract

The effect of organic amendment on the resistance and resilience of the organic matter decomposing activity was compared between soils amended with compost and with chemical fertilizers. The impact of metam sodium disinfection on cellulose-decomposing activity and on the number of nematodes in three types of soils was periodically measured. In an andosol, cellulose-decomposing activity was significantly suppressed by soil disinfection only in the chemically fertilized soil (CF-soil) and not in the soils to which cow manure compost and okara (the residue in tofu production)/coffee compost was added. In a brown lowland soil, cellulose-decomposing activity was significantly suppressed by soil disinfection in the CF-soil, but not in the soils to which higher amounts of cow manure compost and pig manure compost had been added. In a red-yellow soil, cellulose-decomposing activity was significantly suppressed by soil disinfection in all soils, but its resilience was higher in the soils to which cow manure compost or coffee compost was added compared with the CF-soil. Total numbers of nematodes were markedly decreased by soil disinfection in all soils. These results may suggest that the resistance and resilience of cellulose-decomposing activity against soil disinfection were enhanced by organic amendments, while disinfection had fatal effects on soil nematodes. In most of the organically amended soils, the mean weight diameters of aggregates were larger compared with the CF-soils, suggesting that highly structured soil pore networks may provide shelters for the soil microbes responsible for cellulose decomposition against disinfection. This hypothesis was supported by the result that the resistance of cellulose-decomposing activity against soil disinfection decreased when the soil structure was destroyed by grinding in a mortal and pestle.  相似文献   

13.
The effect of organic amendment on the resistance and resilience of the organic matter decomposing activity was compared between soils amended with compost and with chemical fertilizers. The impact of metam sodium disinfection on cellulose-decomposing activity and on the number of nematodes in three types of soils was periodically measured. In an andosol, cellulose-decomposing activity was significantly suppressed by soil disinfection only in the chemically fertilized soil (CF-soil) and not in the soils to which cow manure compost and okara (the residue in tofu production)/coffee compost was added. In a brown lowland soil, cellulose-decomposing activity was significantly suppressed by soil disinfection in the CF-soil, but not in the soils to which higher amounts of cow manure compost and pig manure compost had been added. In a red-yellow soil, cellulose-decomposing activity was significantly suppressed by soil disinfection in all soils, but its resilience was higher in the soils to which cow manure compost or coffee compost was added compared with the CF-soil. Total numbers of nematodes were markedly decreased by soil disinfection in all soils. These results may suggest that the resistance and resilience of cellulose-decomposing activity against soil disinfection were enhanced by organic amendments, while disinfection had fatal effects on soil nematodes. In most of the organically amended soils, the mean weight diameters of aggregates were larger compared with the CF-soils, suggesting that highly structured soil pore networks may provide shelters for the soil microbes responsible for cellulose decomposition against disinfection. This hypothesis was supported by the result that the resistance of cellulose-decomposing activity against soil disinfection decreased when the soil structure was destroyed by grinding in a mortal and pestle.  相似文献   

14.
Despite the current global attention on biochar (BC) as a soil amendment, knowledge is limited on how BC impacts the physical properties of coarse-textured soils (sand > 95%), particularly in tropical regions. A two-season field-study was conducted to investigate the effect of rice straw BC (3% w/w) on water retention, gas transport and structure of a sand-textured tropical soil. We sampled 3 months and 15 months after BC application and measured wet- and dry-region soil water retention, air permeability and gas diffusivity at selected matric potentials. At all measured potentials and for both sampling times, soil water retention was significantly higher (20–150%) for the BC treatment due to increased fraction of smaller pores (< 30 µm) at the expense of macropores (< 100 µm). Although there was no consistent effect of BC on air-filled porosity, BC significantly reduced air permeability and gas diffusivity (~20%) at ?30 kPa matric potential. After 15-months, air permeability decreased by ~15% after BC amendment, but analyses of the pore structure revealed a more tortuous and complex soil structure. Thus, application of rice straw BC to similar coarse-textured soils will improve soil-water relations and over time provide better structure for agricultural purposes.  相似文献   

15.
Sun  Wen-Jing  Li  Ming-Yu  Zhang  Wen-Jie  Tan  Yun-Zhi 《Journal of Soils and Sediments》2020,20(11):3875-3883
Purpose

Biochar has the characteristics of loose porosity, high specific surface area, and strong adsorption properties. Recently, the compacted biochar amended clay has been proposed as a sustainable alternative material for the final cover of landfills. However, the effect of biochar on saturated hydraulic conductivity (ksat) is not yet conclusive. The objective of this study was to determine the influence of biochar content on the permeability of biochar-clay mixed soils.

Materials and methods

The clay used in the study belongs to the low liquid limit clay. The biochar is produced by heating the rice straw under an oxygen-deficient condition at a temperature of 500 °C. To study the effect of biochar content on the permeability of biochar-clay mixed soils, the biochar-clay mixed soils with the mass percentage of biochar being 0%, 5%, 10%, 15%, and 20% were used. The saturated hydraulic conductivity of the biochar-clay mixed soils was measured by the head pressure control permeameter. Meanwhile, the micro-pore structure of the saturated biochar-clay mixed soils was obtained by the nuclear magnetic resonance (NMR) technique.

Results and discussion

It can be observed that the saturated hydraulic conductivity ksat of biochar-clay mixed soils increases linearly as the biochar content increases. The NMR results show that the T2 distribution curve of pure clay is a unimodal pattern, while the T2 distribution curve of biochar-clay mixed soils presents the bimodal pattern, where T2 is the transverse relaxation time, reflecting the pore size of the soil specimens. With the increase of biochar content, the T2 spectrum of the mixed soils moves slightly to the right, and T2 at main peak increases gradually, correspondingly the most probable pore size of biochar-clay mixed soils increases.

Conclusions

The pore size distribution of the soil was changed by the addition of biochar and subsequently affects the permeability of biochar-clay mixed soils. This study provides some useful suggestions for optimizing the pore structure of the biochar amended clay anti-seepage layer in the final cover of landfills.

  相似文献   

16.
土壤垂向分层和均匀处理下水分差异的数值探讨   总被引:2,自引:0,他引:2  
在现有众多的陆面过程模型中,对土壤水分的定量描述一般是假设垂向分布均匀,取表层土壤质地来表示整个垂向土壤质地。垂向分层和均匀处理下的土壤水分是存在差异的,这种差异有多大目前少有研究。设置3组不同饱和导水率组合的层状土壤代表不同区域的非均匀土壤,取3组层状土壤的上层土壤代表整个均匀土壤,通过建立一维土壤水分运动模型分析这种差异,同时分析饱和导水率、饱和含水量、残余含水率、孔隙大小分布参数和形状参数对层状土壤和均匀土壤的渗透量和储水量差异的敏感性,探讨垂向层状和均匀处理下土壤水分运动的差异。研究结果表明:1)建立的一维土壤水分运动模型模拟的土壤水分剖面与Yeh解析解和室内五水转化试验的土壤水分剖面一致,表明模型无论是考虑还是不考虑根系吸水都具有可靠性。2)采用垂向均匀方式处理,上下层饱和导水率相差越大的层状土壤,各水文变量的差异越大。当层状土壤上下层饱和导水率相差1.5倍时,层状土壤和均匀土壤的水分分布差别小于0.05 cm~3×cm~(-3);而当层状土壤上下层饱和导水率相差达3.3倍时,层状土壤和均匀土壤的水分分布差别达0.15 cm~3×cm~(-3),渗漏量相差20 cm以上,储水量相差5 cm左右。3)相对于层状土壤下层,均匀土壤下层的持水能力更差,水流速度更快,导致下层水分分布减小,渗漏量增加,储水量减小。4)形状参数n对渗透量的敏感性最强,土壤孔隙大小分布参数对储水量的敏感性最强,形状参数n其次。在实际应用中,如果一个区域的土壤上下层饱和导水率相差较大,那么垂向均匀处理可能会导致很大的误差,和实际土壤的水分分布相差很大,这会严重影响土壤水分的准确估计,在实际处理中需要认真考虑。  相似文献   

17.
秸秆深还(Corn stover deep incorporation,CSDI)指将作物秸秆深埋于土壤亚表层20~40 cm深处,用以解决秸秆焚烧和土壤肥力退化的可持续利用模式。本文以吉林农业大学玉米连作耕地试验田未施用秸秆和秸秆深还不同年限的土壤为研究对象,设置CK、CSDI(2014)、CSDI(2013)和CSDI(2012)共4种处理,分别代表未施入秸秆、2014年秸秆深还(深还第1年)、2013年秸秆深还(深还第2年)、2012年秸秆深还(深还第3年),研究秸秆深还不同年限对黑土腐殖质组成和胡敏酸结构特征的影响。通过腐殖质组成修改法提取富里酸(Fulvic acid,FA)、胡敏酸(Humic acid,HA)和胡敏素(Humin,HM),国际腐殖质协会(International Humic Substances Society,IHSS)推荐的方法提取HA样品,通过元素组成、红外光谱和差热分析测定HA结构。结果表明:与CK相比,秸秆深还1年后显著提高了土壤和腐殖质各组分有机碳含量,亚表层累积效果更明显,其土壤有机碳(SOC)、HA、FA和HM有机碳含量分别增加了23.7%、30.5%、27.3%和46.1%,但PQ值(HA在可提取腐殖物质的比例)没有显著变化;HA氧化度和缩合度降低明显,表层和亚表层(O+S)/C比值分别降低14.31%和14.68%,H/C比值分别增加27.74%和28.86%,脂族链烃和芳香碳含量增加,热稳定性降低,HA结构趋于简单化。随着年限增加,深还3年后SOC、FA和HM有机碳含量呈下降趋势,HA有机碳含量呈上升趋势,PQ值变化显著,HA缩合度、氧化度呈上升趋势,脂族性减弱,芳香性增强,HA结构趋于复杂化。说明随着年限增加,秸秆不断矿化分解,秸秆深还对土壤腐殖质组成和结构特征的影响效果减弱。  相似文献   

18.
The high input of mechanical energy in common agricultural practice can negatively affect soil structure. The impact of compaction (P) and rotovation (R) on soil pore characteristics was compared with those in soil from untreated reference (U) plots of a loamy sand soil receiving for 14 yr, either only mineral fertilizer (MF) or, in addition, animal manure (OF). Undisturbed soil cores were taken from two separate fields in consecutive years at an identical stage in the crop rotation. We measured soil organic carbon (OC), soil microbial biomass carbon (BC), and hot‐water extractable carbon (Chot). Water retention, air permeability and gas diffusivity were determined at ?100 hPa in both years and for a range of water potentials in one of the years. The continued addition of animal manure had increased OC, BC, and Chot compared with the soil receiving only mineral fertilizer. Soil under treatment OF had larger porosity than that from treatment MF. Treatment P eliminated this difference and significantly reduced the volume of macropores. This interaction between soil organic matter content and mechanical impact was also reflected in the gas diffusion data. Specific air permeability was mainly influenced by mechanical treatment. Modelling the diffusion data normalized to the inter‐aggregate pore space showed no significant treatment effects on pore‐connectivity, although there was a tendency of more water blockage in soil under treatment MF. More studies are needed to confirm this interpretation. Our studies indicate that organic manure increases soil porosity, but compaction reduces the related gas exchange effects to the level of compacted soils receiving mineral fertilizer.  相似文献   

19.
亚热带土壤导水特征对钠盐溶液浓度的响应   总被引:1,自引:1,他引:0  
再生水中高浓度钠盐溶液入渗对土壤水力特性的影响是长期低质水灌溉引起土壤生态环境退化的关键问题之一。该文采用定水头渗透法、一维水平土柱吸渗法测定不同浓度钠盐溶液条件下亚热带地区黏性潮土、沙性潮土、红壤、水稻土、紫色土共5种土壤的水动力学参数,分析了土壤理化性质和钠盐溶液浓度对土壤导水特征的影响及其作用机制。结果表明:土壤粉粒、交换性钙及交换性镁含量具有促进土壤水分运动的作用,而土壤黏粒、交换性铁及交换性铝含量则表现出抑制作用。与蒸馏水处理相比较,钠盐加快了土壤水分黏性潮土、沙性潮土及水稻土中的土壤水分运动速率,分别可最高提升其土壤水分扩散率为22.0%、37.3%、39.7%;钠盐减缓了红壤和紫色土的水分扩散速率,溶液钠盐浓度越高,其抑制作用越明显。土壤饱和导水率随溶液盐浓度升高呈先降后升的趋势,1~10 g/L钠盐浓度范围内土壤饱和导水率与钠盐浓度具有良好的抛物线关系(R^2>0.807),各土壤导水率最小极值点的钠盐浓度在5 g/L左右。因此,再生水灌溉利用时其盐浓度适度控制低于其极值点浓度。  相似文献   

20.
Two acoustic techniques for determining the air-filled porosity and air permeability of soil surfaces, and the near-surface variation of these properties with depth, have been applied to several soils in situ. The techniques depend upon an inversion process using data on sound propagation near to the soil surface and through the soil surface. The measured difference in acoustic spectra received by two vertically separated microphones above the ground surface and by probe microphones beneath the surface were matched theoretically to deduce the porosity of air-filled connected pores and an effective air permeability which depends on pore shape and size distribution. This modified permeability parameter and the acoustically deduced porosity varied realistically with surface sealing and compaction. The acoustically deduced porosities were within 10% of those obtained conventionally. Changes in acoustically deduced parameters occurred with changes in moisture content both in soil bin and field experiments. The acoustic techniques were successful in monitoring surface sealing and near-surface layering on a fine scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号