首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
试验于2010~2011年连续2年以济源市4个早实核桃品种香玲、鲁光、中林1号、薄丰为试材进行了对比试验,研究了不同采样时期叶片中N、 P、 K、 Ca、 Mg、 Fe、 Cu、 Mn、 Zn 9种矿质营养元素的含量变化及其与产量的关系。结果表明,早实核桃叶片中9种元素的含量在年周期内呈规律性变化,含量高低依次为 Ca>N>Mg>P>K,Fe>Mn>Zn>Cu。不同品种各元素的含量变幅最大为127.69~169.53 mg/kg(Mn),最小为2.1~92.26 g/kg(K)。不同早实核桃品种叶片内矿质元素含量的年变化趋势表现为N、 P、 K总体上呈下降趋势,最高含量为展叶期(4月20日)分别为36.79、 5.54、 2.93 g/kg,最低在落叶前期(9月28日),分别为17.45、 2.66、 1.86 g/kg;Ca、 Mg、 Fe、 Mn 4元素含量的变化总体上表现为前期低后期高;Cu、Zn含量的变化有差异但差异不明显。总的来看, 5~7月份,即新梢速长期(5月20日)至硬核期(7月20日)是核桃树养分稳定的时期, 叶片中N、 P、 K含量之间呈极显著的正相关, N、 P与Ca、 Mg、 Mn、 Cu间呈极显著的负相关,可以认为N、 P、 K之间存在增效作用,Ca、 Mg、 Mn、 Cu 对N、 P 和 K 均存在一定的拮抗作用。元素含量与产量的相关分析表明,N、 P、 K在新梢速长期均与产量达(极)显著正相关,相关系数分别为0.819、 0.843和0.895。因此, 利用叶片进行营养诊断最佳,采样时间以新梢速长期(5月20日前后)为宜。  相似文献   

2.
Internal breakdown in mango fruit is a disorder often attributed to a nutrient deficiency, particularly of calcium (Ca), in the fruit. The relationship between internal breakdown in mango fruit and fruit mineral element concentrations and fresh weight was investigated. Fruit were collected weekly from a commercial orchard beginning 4 weeks after fruit set (WAFS) until the fruit were ripe. The concentrations of nitrogen (N), phosphorus (P), potassium (K), Ca, magnesium (Mg), zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), and boron (B) and fresh weight of ‘Tommy Atkins’ mango fruit with and without internal breakdown were compared. Disordered fruit weighed more than healthy fruit 4 WAFS. However, when fruit were ripe there were no significant differences in fruit weight between healthy and disordered fruit. Disordered fruit contained significantly higher concentrations of N, P, Ca, and B than the healthy mango fruit, 4 WAFS. When fruit were ripe, there were no differences in N, K, Ca, Mg, Zn, Mn, Fe, and B concentrations between healthy and disordered fruit. Ripe, healthy fruit had higher Cu and lower P concentrations than ripe, disordered fruit. Internal breakdown could not be specifically linked to a Ca deficiency in mango fruit at any stage of fruit ontogeny.  相似文献   

3.
李营养累积、分布及叶片养分动态研究   总被引:9,自引:0,他引:9  
李鑫  张丽娟  刘威生  杨建民  马峙英 《土壤》2007,39(6):982-986
基于保障生态和果品安全以及合理实施果园养分管理的前提,对大石早生李树体各部位营养元素积累、分布以及各营养元素的周年变化规律进行了分析.结果表明:①营养元素在各个器官的相对含量,除K、Zn在果实中含量最高外,N、P、Ca、Mg均以叶片中含量为最高,以叶片做营养诊断是适宜的.②大石早生李树体营养元素N、P、K、Ca、Mg、Fe、Zn的元素比值为10.00:1.26:6.42:12.57:2.46:1.87:0.14.⑧100 kg鲜果的养分吸收量分别为:N 772.47g,P74.25 g,K 730.33g,Ca874.16 g,Mg 169.82 g,Fe 66.05 g,Zn 7.53 g,N:P:K的比例为1.00:0.10:0.95.④N、P、K、Ca、Mg、Fe、Zn、Mn、Cu的含量随物侯期呈规律性变化.生长季初期,N、P、K、Zn、Cu的含量迅速下降,Fe、Mn、Ca、Mg呈逐渐上升的趋势;中期这9种元素总体变化幅度较小;后期Fe,Cu.N、P、K的含量呈下降趋势,Mn、Zn、Ca,Mg依然上升.本结果既丰富了国内李营养理论,同时又为制定合理的施肥措施及建立绿色优质果品科技示范基地提供了理论依据.  相似文献   

4.
Walnut (Juglans regia L.) tree fruit showed after the endocarp lignification a fast growing stage during which fresh and dry weights increased abruptly. From the beginning of fruit ripening and during the fast sperm growing stage, fresh weight started to decrease while dry weight continued to increase with a reduced growth rate. Dry weights increased in sperm and decreased in exocarp‐mesocarp tissues during the fast sperm growing stage. The material exit from pericarp tissues was completed in the ripe fruit. By contrast, fresh weight continued to decrease in the tissue. Patterns of nutrient accumulation per fruit increased continuously during the fruit growth period. The observed reductions of nutrient accumulations for total nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in the fruit individuals during the very late fruit stage after fruit ripening, and in conjunction with the pericarp tissues senescence, are supposed to represent mineral nutrient returns from the ripe fruit. Patterns of total N, P, Mg, Fe, and Zn accumulations increased in the exocarp‐mesocarp tissue during the slow sperm growing stage and decreased during the fast sperm growing stage. Potassium accumulation in the tissue increased continuously up to the fruit ripening time. Calcium, Mn, and Cu increased continuously. Patterns of all nutrients in endocarp tissue increased during the slow sperm growing stage and decreased at the fast sperm growing stage. In the sperm tissues, total N, P, Mg, and Ca accumulations increased during the sperm development and slightly decreased in a late stage. The increasing trend of Ca accumulation was temporarily interrupted during the fast sperm growing stage. Iron, Mn, Cu, and Zn accumulations showed no reductions at all. Potassium accumulation was drastically restricted in the tissue with the approach of fruit ripening. Sperm tissues are extraordinary rich in mineral nutrients. Sperm total N, P, Mg, Mn, Zn, Cu, and Fe accumulations represented the 98.1%, 88.2%, 59.2%, 81.5%, 72.3%, 65.6%, and 52.5% of the total nutrients accumulation in the fruit, respectively. Sperm K and Ca accumulations represented only the 13% and 11.6%, respectively. Exocarp‐mesocarp K, Ca, and Mg accumulations represented the 76%, 72% and 37.1% of the total nutrients accumulation in the fruit individual, respectively. Total N and P accumulation in the tissue were detected in very low levels 1.3% and 7%, respectively. Iron, Cu, Zn, and Mn accumulations were detected in the same tissue in ratio values of 27.5%, 22%, 5.4%, and 11%, respectively. Macro‐ and micro‐nutrient accumulations of the endocarp tissues were detected in the lower levels as compared to the other fruit tissues. The estimated values of mineral nutrient returns from the mature fruit individuals were 2.8% for total N, 13% for P, 16.5% for K, 23% for Ca, 12% for Mg, 28.5% for Fe, and 21% for Zn. Manganese and Cu showed no returns at all. The estimated nutrient returns from the sperm tissues were 60% for total N, 67% for P, 22% for K, and 50% for Mg of the total returned nutrient from the fruit individual. The estimated nutrient returns from exocarp‐mesocarp were 100% for Zn, Fe, and Ca, 50% for Mg, 78% for K, 33% for P, and 40% for total N. Calcium, Fe, Mn, Cu, and Zn in the sperm and Mn and Cu accumulations in pericarp tissues showed no returns at all. A restricted nutrient diffusion from exocarp‐mesocarp and sperm tissues to the endocarp tissues is supposed to be possible. These results suggested a pericarp tissue behaviour similar to the old senescing leaves.  相似文献   

5.
Nutrient sufficiency ranges are useful for diagnosing and correcting plant nutritional status in order to optimize yield and protect the environment. This study was conducted to determine nutrient sufficiency ranges for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in mango trees grown in El-Salhiya, Egypt, through boundary-line approach (BLA) and compositional nutrient diagnosis (CND) technique. For this purpose, foliar samples from 310 mango trees were collected during two successive years from the study area and fruit yields were recorded. The nutrient sufficiency ranges generated by BLA were 0.744–1.430% for N, 0.074–0.142% for P, 0.543–1.045% for K, 1.366–2.653% for Ca, 0.155–0.305% for Mg, 389–1148 ppm for Fe, 23.1–60.5 ppm for Mn, 28.4–56.3 ppm for Zn, and 2.37–12.10 ppm for Cu. The CND-derived nutrient sufficiency ranges were 0.917–1.215% for N, 0.066–0.106% for P, 0.585–0.943% for K, 1.003–2.077% for Ca, 0.112–0.378% for Mg, 277.5–849.2 ppm for Fe, 27.9–82.4 ppm for Mn, 29.2–44.6 ppm for Zn, and 2.42–11.37 ppm for Cu. The optimum nutrient concentrations generated from BLA were in general comparable to those obtained using CND technique. Only Ca and Fe optimum concentrations showed poor match. Seven significant nutrient interactions were strongly evidenced through principal component analysis of the computed CND indexes. The positive interaction was P-K, while the negative interactions were P-Mg, K-Mg, Ca-Zn, P-Fe, K-Fe, and Zn-Cu.  相似文献   

6.
Abstract

The Diagnosis and Recommendation Integrated System (DRIS) was used to identify nutrient status of mango fruit trees in Punjab, India. Standard norms established from the nutrient survey of mango fruit trees were 1.144, 0.126, 0.327, 2.587, 0.263, 0.141% for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S), and 15, 3.5, 145, 155, and 30 mg kg?1, respectively, for zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and boron (B) in dry matter. On the basis of DRIS indices, 16, 15, 12, 17, and 16% of total samples collected during nutrients survey of mango trees were low in N, P, K, Ca, and Mg, respectively. For micronutrients, 19, 18, 12, 20, and 6% samples were inadequate in Zn, Cu, Fe, Mn, and B, respectively. DRIS‐derived sufficiency ranges from nutrient indexing survey were 0.92–1.37, 0.08–0.16, 0.21–0.44, 1.71–3.47, 0.15–0.37, and 0.09–0.19% for N, P, K, Ca, Mg, and S and 11–19, 1–6, 63–227, 87–223, and 16–44 mg kg?1 for Zn, Cu, Fe, Mn, and B, respectively.  相似文献   

7.
The dry weight accumulation per male and female flower as well as the concentration per gram of dry weight and the accumulation of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined in walnut tree (Juglans regia L.) catkins and female flowers at the stage of flower bud and during the flower development. Catkin emergence was accompanied by a very fast hydration of the tissues. After the catkin matured, the fresh and dry weights were reduced. The female flower development period was accompanied by the dry and fresh weight increase. Total N, P, K, Fe, Mn, Cu and Zn concentrations in catkin buds were detected at lower levels, Mg in equal levels, and Ca at higher levels as compared to the nutrient concentrations in young growing leaves. The estimated values of the ratio NCmfb/NCygl were: total N = 0.54, P = 0.83, K = 0.56, Ca = 1.5, Mg = 1.0, Fe = 0.46, Mn = 0.71, Cu = 0.85, and Zn = 0.60. Nutrient concentration in female flower buds was detected in almost equal levels with the exception of total N and Fe. The estimated values of the ratio: NCffb/NCygl were: total N = 0.57, P = 1.1, K = 1.17, Ca = 1.06, Mg = 0.9, Fe = 0.47, Mn = 1.0, Cu = 0.92, and Zn = 0.85. Total N, P, Mn, Cu, and Zn accumulations in the catkin were increased during the fast growing phase and decreased after catkin maturing. Potassium, Mg, and Fe accumulation continued to increase in the mature catkin. Calcium accumulation decreased at a very late mature catkin phase. Total N, P, and K accumulation rates during the catkin fast growing phase were higher than the dry weight accumulation rate. Calcium, Mg, Fe, Mn, Cu, and Zn accumulation rates at the same period were lower or equal to dry weight accumulation rates. In mature catkins, the total N, P, Mn, Cu, and Zn depletion rates were higher than the dry weight depletion rate. The continual increase of K, Ca, Mg, and Fe accumulation in mature catkin resulted in the increase of nutrients concentration also. Total N and P showed the highest remobilization values from mature catkin of 51.4% and 45%, respectively. Calcium, K, Mg, Cu, Mn, and Zn remobilization values estimated to be 22.1%, 7.5%, 3.2%, 45.3%, 33.4%, and 31.8%, respectively. Iron showed no remobilization at all. Nutrients remobilization from catkins as compared to the leaves had almost similar values for total N, Zn, and Cu, higher for P, Ca, and Mn, and lower for Mg, Fe, and K. Accumulation of all nutrients in female flowers increased after fertilization. The dry weight accumulation rate was higher than the nutrient accumulation rates.  相似文献   

8.
Citrus performance is strongly related with rootstock. This study was conducted to investigate leaf nutrient contents of ‘Okitsu’, ‘Clausellina’ and ‘Silverhill’ mandarin cultivars budded onto sour orange, ‘Carrizo’ and ‘Troyer’ citrange rootstocks in Dörtyol, Turkey in 2004 and 2005. The maximum nitrogen (N), potassium (K), and copper (Cu) contents were determined for ‘Clausellina’; phosphorus (P) for ‘Okitsu’; and sodium (Na) for ‘Silverhill’. Calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), and zinc (Zn) uptake were similar for the mandarin cultivars. ‘Carrizo’ citrange at N, K, Mg, Mn, and Cu uptake; ‘Troyer’ citrange at N, P, K, and Fe uptake; and common sour orange at Ca, Zn, and Na uptake was superior on the other rootstocks. It was observed that ‘Carrizo’ and ‘Troyer’ citrange rootstocks had advantages over sour orange in nutrient uptake. Thus, growth performance, yield, and quality parameters considered, ‘Carrizo’ and/or ‘Troyer’ citranges could be suggested as rootstocks for the studied mandarin cultivars under similar ecological conditions.  相似文献   

9.
To investigate the effects of embryo abortion on fruit size and weight, stone weight, and fruit quality, including total soluble solids (TSS), acidity, TSS/acid ratio, sugars, and concentrations of macro and micronutrients in skin and pulp, nubbins (seedless fruit) and seeded fruit of mango (Mangifera indica L.) cultivars ‘Glenn,’ ‘Irwin,’ ‘Haden,’ ‘Kent,’ and ‘Kensington Pride’ were compared at the ripe stage. Nubbins had significantly smaller fruit size and lower fruit weight than in seeded fruit in all the cultivars. Mean stone weight was also significantly lower in nubbins (9.04 g) than in seeded fruit (30.27 g) and the trend was similar in all the cultivars. Percent dry pulp weight was significantly higher in nubbins than in seeded fruit in all five cultivars. Nubbins exhibited significantly lower acidity and higher TSS and TSS/acid ratio than did seeded fruit in all of the cultivars. The concentrations of nitrogen (N), potassium (K), magnesium (Mg), iron (Fe), and copper (Cu) in the skin and N, phosphorus (P), K, calcium (Ca), Mg, sulfur (S), Fe, zinc (Zn), and Cu in the pulp of nubbins did not differ significantly from those in the skin and pulp of seeded fruit in all of the cultivars. However, mean concentrations of P, Ca, and S were significantly higher in the skin of nubbins than in the skin of seeded fruit. Mean concentrations of manganese (Mn) and boron (B) in both skin and pulp of nubbins were significantly higher than in the skin and pulp of seeded fruit. The experimental results suggest that embryo abortion at early stages of fruit development, although it reduces fruit size and weight, does not affect the concentrations of these elements in the pulp and skin of mature fruit. In conclusion, embryo abortion in mango fruit substantially reduced fruit size, weight, and stone weight and improved TSS, TSS/acid ratio, total sugars, and non-reducing sugars compared with seeded fruit in all the cultivars and led to minor changes in the concentrations of most of macro and micronutrients in skin and pulp of the fruit.  相似文献   

10.
  【目的】  比较河北省主栽山药品种的矿质养分累积特性及营养品质的差异,以期为山药生产提质增效制定科学的养分管理措施。  【方法】  田间试验在河北省蠡县进行,供试山药(Dioscorea oppositifolia L.)品种包括棒药、大和白玉、紫药和小白嘴,山药4个品种的施肥量和施肥方法均一致。在成熟期,取样测定了山药地上部、根茎生物量,以及9种矿质元素(氮、磷、钾、钙、镁、铁、锰、铜和锌)含量和累积量。  【结果】  4个主栽山药品种根茎的鲜生物量表现为大和白玉>棒药>紫药>小白嘴,而干生物量表现为紫药>大和白玉>小白嘴>棒药。大和白玉根茎的氮、钙、镁、锰、铜、锌累积量最高,且钾、钙、镁、锰、铜、锌分配系数最高,紫药根茎的磷、钾累积量最高,且氮分配系数较高,磷分配系数最高,棒药根茎的铁累积量及分配系数均为最高。4个山药品种形成1000 kg产量对大量营养元素的需求量均表现为钾>氮>磷,对中量营养元素的需求量均表现为镁>钙,对微量营养元素的需求量均表现为铁>锌>锰>铜。以《中国食物成分表》(标准版)中山药的9种矿质营养品质指标作为参比,对4个供试山药品种的9个矿质营养品质指标进行主成分分析,提取出特征值大于1的主成分3个,累计贡献率为96.77%。其中,第1主成分贡献率为56.45%,主要受钾、锌的影响;第2主成分的贡献率为29.09%,主要受镁、锰的影响;第3主成分的贡献率仅为11.22%,主要受铁的影响。矿质营养品质综合评价结果为大和白玉最优,其次是棒药,小白嘴和紫药分列第3和第4位,但4个品种矿质营养品质均优于《中国食物成分表》(标准版)中的山药品质。  【结论】  大和白玉为矿质营养品质最优品种,且为高锌品种,棒药为高钙、铁品种,土壤中钾、镁、铁、锰和锌含量是影响山药根茎矿质营养品质差异的主要元素。山药生产中,矿质肥料的施用要考虑土壤中矿质元素含量与不同品种的矿质元素需求,进行科学的养分管理,以进一步提升山药矿质营养品质。  相似文献   

11.
Critical concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and manganese (Mn) with respect to dry matter yield end antagonistic and synergistic relationships among these nutrients were studied in which tomato (Lycopersicon esculentum L.) was grown in recirculating nutrient solution (NFT). Increments of nutrient elements in the nutrient solution increased the proportional rate of the corresponding nutrient elements. Increasing levels of N negatively correlated with plant P and positively correlated with Ca, Fe, and Zn. Iron and Mn contents of the plants were increased and N, K, Ca, and Mg were decreased as a function of P applied. Increases in K in the nutrient solution caused increases in the concentrations of K, N, P, and Zn, and decreases in the concentration of Ca and Fe. Applied Ca increased the concentrations of Ca and N, and decreased the concentrations of P, Mg, Fe, Zn, and Mn. Potassium, Ca, and Fe contents of the plants were decreased and Zn increased, while N, P, and Mn were not affected by the increasing levels of external Mg. Iron suppressed the plant Mg, Zn, and Mn contents. Synergism between Zn and Fe was seen, while P, K, Ca, Mg, and Mn contents were not affected by Zn levels. Potassium, Ca, Mg, and Fe were not responsive to applied Mn, however, N and P contents of the plants were decreased at the highest levels of Mn.  相似文献   

12.
The dry weight accumulation per leaf as well as the concentration per gram of dry weight and the accumulation of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined in walnut tree leaves (Juglans regia L.) during a complete life cycle. Additionally, the dynamics of plant nutrient concentration in leaf petiole sap and carbohydrate accumulation in leaves were studied in relation to the main life cycle events of the walnut tree. Total N, P, K, Cu, and Zn concentrations decreased, whereas that of Ca, Mg, and Mn increased during the season. Iron concentration fluctuated around a mean value. Total N, P, K, Mg, and Cu concentrations detected in younger mature leaves were at the sufficient level, whereas Ca, Fe, Mn, and Zn concentrations were at higher levels as compared to those previously reported. All the detected nutrient accumulations increased abruptly during leaf ontogeny and leaf maturation until a maximum level was attained in the younger mature leaves. Similarly, sucrose, glucose, and fructose accumulation were observed at the same period. The rates of total N, P, Cu, and Zn accumulation were lower than the rates of the observed dry matter accumulation and nutrient concentration dilution. Potassium and Mn accumulation rates were almost equal, whereas those for Ca and Mg were higher as compared to the dry matter accumulation rate. The fast embryo growing phase resulted in a considerable decrease in dry weight, total N, P, K, Cu, Zn, and carbohydrate accumulation, and to a lesser degree in Ca, Mg, and Mn accumulation. Nutrient accumulation reduction in leaves by the influence of the growing fruits were estimated to be: total N 52%, K 48%, P 29.5%, Mg 16.3%, Ca 15%, Fe 51.2%, Cu 55.2%, Zn 37.3%, and Mn 5.4% of the maximum nutrient value of the younger mature leaves. Old leaves preserved nutrients before leaf fall as follows: total N 25.4%, P 45%, K 31%, Ca 74.8%, Mg 76.5%, Mn 89.2%, Fe and Zn 50%, and Cu 37%. Nutrient remobilization from the senescing old leaves before leaf fall were: total N 22.6%, P 25.5%, K 21%, Ca 10.2%, Mg 7%, Fe 3.2%, Mn 5.4%, Cu 8%, and Zn 13.3% of the maximum value in the younger mature leaves. In early spring, the absorption rates of N, P, and Ca were low while those of Mg, Fe, Mn, Cu, and Zn were high. During the fast growing pollen phase, the N, P, Fe, Mn, Cu, and Zn concentrations were reduced. Calcium concentration is supposed to be more affected by the rate of transpiration rather than during the growing of embryo. Calcium and Mg concentrations in the sap were negatively correlated. The detected K concentration level in the sap was as high as 33 to 50 times that of soluble N, 12 to 21 times to that of P, 5 times to that of Ca, and 10 to 20 times to that of Mg. The first maximum of starch accumulation in mature leaves was observed during the slow growing embryo phase and a second one after fruit ripening. Old senescing leaves showed an extensive carbohydrate depletion before leaf fall.  相似文献   

13.
Abstract

Periods of maximum hard red spring (HRS) wheat (Jriticum aestivum L.) nutrient demand need to be determined in order to develop best nutrient management practices, and to provide data for nutrient uptake modeling. Aerial (aboveground biomass) whole plant samples of irrigated HRS wheat were collected from the field at 16 growth stages and separated into leaves, stems, heads, and grain for dry matter determinations and analyzed for N, P, K, Ca, Mg, S, Cl, Zn, Mn, Fe, and Cu concentrations. Accumulation curves were computed for each plant part for the growing season from compound cubic polynomial models based on accumulated growing degree units (GDUs). Total aerial accumulations of dry matter, N, P, K, Ca, Mg, S, Cl, Zn, Mn, Fe, and Cu were 14400, 116, 30.8, 103, 9.2, 9.3, 15.2, 32.3, 0.18, 0.58, 2.05, and 0.045 kg/ha, respectively. Grain at maturity accumulated greater than 78% of the total aerial N, P, and Zn, while it contained less than 20% of the aerial accumulated K, Ca, Cl, and Fe. Nitrogen and Fe were rapidly accumulated near 200 GDU, while P, K, Ca, Mg, S, Cl, Zn, Mn, and Cu were most rapidly accumulated near 600 GDU. Accumulation rates were 183, 2.9, 0.90, 0.72, 0.008, 1.41, 0.29, and 0.12 kg/ha/d for dry matter, N, P, K, Ca, Mg, S, and Cl, respectively, and 136, 1.7, 0.48, 0.13, 0.004, 0.78, 0.20, and 0.02 g/ha/d, respectively, during grainfill. This plant information suggests the timing of in‐season nutrient applications, and when integrated with other agronomic practices could improve overall nutrient management for HRS wheat in the northern Great Plains.  相似文献   

14.
The Diagnosis and Recommendation Integrated System (DRIS) has been proposed to determine nutrient balance in plants at different stages of growth. The DRIS index for each nutrient allows ranking of nutrients in order of their deficiency. Preliminary DRIS norms for potato (Solanwn tuberosum L.) were developed during the 1991 growing season in Damavand area located 70 km. northeast of Tehran. The soil and leaf samples at flowering stage (early tuber development stage) were collected from 50 different farms. Average concentrations of nutrients in both high‐ and low‐yielding populations were calculated. The following average foliar nutrient concentration were obtained from the high‐yielding populations: N = 5.22, P = 0.38, K = 4.20, Ca = 1.50, and Mg = 0.65 percent; and Fe = 150, Mn = 50, Zn = 40, Cu = 11, and B = 38 ppm. The average nutrient concentrations for the low‐yielding population were close to those in high‐yielding ones except for K which was 3.23 in contrast to 4.20‐percent. There was no significant relationship between different soil nutrient availability indices and yield except for K. The DRIS indices ranked K as the most limiting nutrient in the low yielding farms with only one exception. It seems high rates of N and P fertilization have created a lack of balance between these nutrients and K.

As a result of this study, the following appropriate norms for potato leaves are suggested for the calcareous soils of Iran: N = 4.5, P = 0.30, K= 5.00, Ca = 1.50, and Mg = 0.65 percent; and Fe = 150, Mn = 50, Zn = 40, Cu = 11, and B = 38 ppm. These results will be verified by field fertilizer experiments for N, P, K, Zn, and Fe which are some times deficient in potato soils.  相似文献   

15.
Abstract

Periods of maximum hard red spring (HRS) wheat (Triticum aestivum L.) nutrient demand need to be determined in order to develop best nutrient management practices, and to provide data for nutrient uptake modeling. Aerial (aboveground biomass) whole plant samples of irrigated HRS wheat were collected from the field at 16 growth stages and separated into leaves, stems, heads, and grain for dry matter determinations and analyzed for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), chloride (Cl), zinc (Zn), manganese (Mn), iron (Fe), and copper (Cu) concentrations. Accumulation curves were computed for each plant part for the growing season from compound cubic polynomial models based on accumulated growing degree units (GDUs). Total aerial accumulations of dry matter, N, P, K, Ca, Mg, S, Cl, Zn, Mn, Fe, and Cu were 14400, 116, 30.8, 103, 9.2, 9.3, 15.2, 32.3, 0.18, 0.58, 2.05, and 0.045 kg/ha, respectively. Grain at maturity accumulated greater than 78% of the total aerial N, P, and Zn, while it contained less than 20% of the aerial accumulated K, Ca, Cl, and Fe. Nitrogen and Fe were rapidly accumulated near 200 GDU, while P, K, Ca, Mg, S, Cl, Zn, Mn, and Cu were most rapidly accumulated near 600 GDU. Accumulation rates were 183, 2.9, 0.90, 0.72, 0.008, 1.41, 0.29, and 0.12 kg/ha/d for dry matter, N, P, K, Ca, Mg, S, and Cl, respectively, and 136, 1.7, 0.48, 0.13, 0.004, 0.78, 0.20, and 0.02 g/ha/d, respectively, during grainfill. This plant information suggests the timing of in‐season nutrient applications and, when integrated with other agronomic practices, could improve overall nutrient management for HRS wheat in the northern Great Plains.  相似文献   

16.
The temporal changes of nutrient concentration in leaves and their accumulation in fruit are good indicators of plant nutrient demand for each developmental stage. Seasonality of nutrients in leaves and fruits of pomegranate and their relation with fruit quality was evaluated in commercial orchards using cv. “Bhagwa.” The concentration of nitrogen (N), phosphorus (P), potassium (K), sulfur (S), iron (Fe), zinc (Zn) and boron (B) in leaves decreased while calcium (Ca), magnesium (Mg), manganese (Mn) and copper (Cu) concentration increased during fruit growth and development. Total nutrient accumulation increased gradually in fruit and translated into growth of arils, and increase in juice content and total soluble solids, however as the biomass accumulation in fruit was much faster than nutrient accumulation, concentration of majority nutrients except Mg decreased rapidly, followed by slow and continuous decrease till maturity. During fruit enlargement, demand for N, P, K, Fe, Cu and Zn was high while requirement for Ca, Mg and S was high during fruit development.  相似文献   

17.
The experiment was conducted to evaluate the nutrient utilization ability of sweet orange (Citrus sinensis L. Osbeck) budded on five rootstocks (viz., Sathgudi, Rangpur lime, Cleopatra mandarin, Troyer citrange, and Trifoliate orange) in Alfisols at the experimental farm of the Citrus Improvement Project, S. V. Agricultural College Farm, Tirupati, Andhra Pradesh, India. Results of the study revealed that all the five rootstocks showed differential behaviors in terms of nutrient absorption from the soil. Rootstocks exhibited significant variation in the leaf content of potassium (K), copper (Cu), manganese (Mn), and boron (B) at all the three stages of sampling. Concentrations of the following key nutrient elements significantly varied: phosphorus (P), calcium (Ca), magnesium (Mg), zinc (Zn), and Cu at stage 1; K, Ca, Mg, Zn, iron (Fe), and Mn at stage 2; and nitrogen (N), P, Zn, Fe, and B at stage 3. The performances of rootstocks in terms of relative nutrient accumulation indices (RNAIs) were in the order of Sathgudi (1.00) > Rangpur lime (0.98) > Cleopatra mandarin (0.96) > Trifoliate orange (0.76) > Troyer citrange (0.69). The present study clearly demonstrated that citrus rootstocks employed had differential nutritional behavior and different abilities to utilize plant nutrient elements. Thus, the findings of the present study and the methodology adopted can help the horticultural breeders and nutritionists choose the best rootstock/scion combination having the desirable traits of nutrient utilization ability and also to plan effective fertilizer schedule programs for achieving greater yields.  相似文献   

18.
Abstract

Plant species, as well as cultivars within species, have been shown to vary in response to soil nutrient levels due to variation in tissue requirements and variation in ability to absorb nutrients from the soil. In order to study this latter aspect in sunflowers (Helianthus annuus L.), two field trials were conducted in which nutrient concentrations in the topmost nature leaf were determined. At two growth stages, 16 cultivars differed significantly in leaf nutrient levels of N, K, Ca, Mg, Mn, Cu, Zn, and B. Seed yields were highly significantly correlated with leaf nutrient levels, variation in nutrient concentrations accounting for 43% of the observed variation in seed yield. On this soil which was low in B, variation in B concentration alone accounted for 28% of the variation in seed yield in spite of 2 kg B/ha having been applied. Marked differences were observed in the leaf nutrient concentrations of 40 inbred lines tested.  相似文献   

19.
ABSTRACT

The fertilizer absorption characteristics of strawberries are not clear, although appropriate fertilization is definitely necessary to ensure produce quality and quantity. This study aimed to determine the amounts of macro- and micronutrients absorbed during cultivation of strawberries and their biodistribution and utilization in the plant body. We cultivated Japanese strawberries ‘Benihoppe’ and ‘Kirapika’ in small hydroponic equipment containing a nutrient solution and determined the amounts of N, P, K, Ca, Mg, Fe, Mn, B, Zn, Cu, and Mo absorbed during and at the end of cultivation. The results revealed the adsorption levels of these elements during the cultivation period. The nutrient concentrations varied greatly among plant organs. In particular, P and B accumulated at high levels in the leaves and stem, K, Ca, Mg, Mn, Zn, and Cu accumulated in the crown, and N, Fe, and Mo accumulated in the roots. In addition, the uptake levels of N, P, K, Mg, Mn, Zn, and Cu differed between Benihoppe and Kirapika. Our results provide useful information for determining fertilizer application rates in strawberry cultivation.  相似文献   

20.
钙、 硼对常山胡柚叶片养分、 果实产量及品质的影响   总被引:2,自引:0,他引:2  
【目的】研究叶片矿质营养元素含量的季节性变化,对探明植物体中营养元素的丰缺状况、 调控养分代谢、 提高果实产量和改善品质具有重要意义。本研究结合常山胡柚园土壤养分状况,通过连续4年施用钙肥和硼肥,研究钙、 硼对常山胡柚叶片矿质营养元素含量的季节变化、 果实产量及品质的影响。【方法】采用田间定位试验,以13年生枳砧常山胡柚为试验材料,设4个处理,1)CK(对照); 2)Ca(每株0.5 kg生石灰粉); 3)B(每株25 g 硼砂); 4)Ca+B(每株0.5 kg生石灰粉+ 25 g 硼砂)。于试验的第4年采集常山胡柚不同生长期当年生春梢叶片及成熟期果实样品,并对常山胡柚叶片矿质营养元素含量的季节变化、 果实品质进行分析。【结果】常山胡柚叶片各矿质养分在果实逐渐成熟过程中总体呈现先增后降的变化规律,其中叶片氮(N)、 钾(K)、 镁(Mg)和锌(Zn)在果实坐果期达到最大值,磷(P)在果实膨大前中期(8月份)到达最大值,钙(Ca)、 硼(B)、 铁(Fe)、 锰(Mn)和铜(Cu)在果实膨大后期(9月份)出现最高值。钙、 硼肥施用均可提高常山胡柚果实各发育时期叶片Ca、 B、 N、 K、 Fe、 Mn和Cu含量,但明显抑制叶片Zn的吸收,其中钙、 硼配施对成熟叶片(8~9月份)Ca含量存在显著正交互效应,但对提高叶片B含量无显著交互作用。施钙、 硼肥可不同程度提高常山胡柚2年平均产量,增产率达到1.8%~21.4%,其中各处理增产率顺序为Ca+B>B≥Ca,且单施硼可显著提高2年累积产量,钙硼配施对单年产量、 2年平均产量均存在显著正交互效应。钙、 硼肥单施对果实品质无显著性影响,但钙硼配施可显著降低可滴定酸含量,显著提高固酸比。【结论】常山胡柚坐果期(4月份)为叶片N、 P、 K、 Mg和Zn吸收的关键时期,果实膨大期(8~9月份)为叶片Ca、 B、 Fe、 Mn和Cu吸收的重要时期。钙、 硼配施既可明显提高常山胡柚叶片中矿质营养元素含量(P和Zn除外),又能显著提高果实产量和品质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号