首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dry weight accumulation per male and female flower as well as the concentration per gram of dry weight and the accumulation of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined in walnut tree (Juglans regia L.) catkins and female flowers at the stage of flower bud and during the flower development. Catkin emergence was accompanied by a very fast hydration of the tissues. After the catkin matured, the fresh and dry weights were reduced. The female flower development period was accompanied by the dry and fresh weight increase. Total N, P, K, Fe, Mn, Cu and Zn concentrations in catkin buds were detected at lower levels, Mg in equal levels, and Ca at higher levels as compared to the nutrient concentrations in young growing leaves. The estimated values of the ratio NCmfb/NCygl were: total N = 0.54, P = 0.83, K = 0.56, Ca = 1.5, Mg = 1.0, Fe = 0.46, Mn = 0.71, Cu = 0.85, and Zn = 0.60. Nutrient concentration in female flower buds was detected in almost equal levels with the exception of total N and Fe. The estimated values of the ratio: NCffb/NCygl were: total N = 0.57, P = 1.1, K = 1.17, Ca = 1.06, Mg = 0.9, Fe = 0.47, Mn = 1.0, Cu = 0.92, and Zn = 0.85. Total N, P, Mn, Cu, and Zn accumulations in the catkin were increased during the fast growing phase and decreased after catkin maturing. Potassium, Mg, and Fe accumulation continued to increase in the mature catkin. Calcium accumulation decreased at a very late mature catkin phase. Total N, P, and K accumulation rates during the catkin fast growing phase were higher than the dry weight accumulation rate. Calcium, Mg, Fe, Mn, Cu, and Zn accumulation rates at the same period were lower or equal to dry weight accumulation rates. In mature catkins, the total N, P, Mn, Cu, and Zn depletion rates were higher than the dry weight depletion rate. The continual increase of K, Ca, Mg, and Fe accumulation in mature catkin resulted in the increase of nutrients concentration also. Total N and P showed the highest remobilization values from mature catkin of 51.4% and 45%, respectively. Calcium, K, Mg, Cu, Mn, and Zn remobilization values estimated to be 22.1%, 7.5%, 3.2%, 45.3%, 33.4%, and 31.8%, respectively. Iron showed no remobilization at all. Nutrients remobilization from catkins as compared to the leaves had almost similar values for total N, Zn, and Cu, higher for P, Ca, and Mn, and lower for Mg, Fe, and K. Accumulation of all nutrients in female flowers increased after fertilization. The dry weight accumulation rate was higher than the nutrient accumulation rates.  相似文献   

2.
The dry weight accumulation per leaf as well as the concentration per gram of dry weight and the accumulation of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined in walnut tree leaves (Juglans regia L.) during a complete life cycle. Additionally, the dynamics of plant nutrient concentration in leaf petiole sap and carbohydrate accumulation in leaves were studied in relation to the main life cycle events of the walnut tree. Total N, P, K, Cu, and Zn concentrations decreased, whereas that of Ca, Mg, and Mn increased during the season. Iron concentration fluctuated around a mean value. Total N, P, K, Mg, and Cu concentrations detected in younger mature leaves were at the sufficient level, whereas Ca, Fe, Mn, and Zn concentrations were at higher levels as compared to those previously reported. All the detected nutrient accumulations increased abruptly during leaf ontogeny and leaf maturation until a maximum level was attained in the younger mature leaves. Similarly, sucrose, glucose, and fructose accumulation were observed at the same period. The rates of total N, P, Cu, and Zn accumulation were lower than the rates of the observed dry matter accumulation and nutrient concentration dilution. Potassium and Mn accumulation rates were almost equal, whereas those for Ca and Mg were higher as compared to the dry matter accumulation rate. The fast embryo growing phase resulted in a considerable decrease in dry weight, total N, P, K, Cu, Zn, and carbohydrate accumulation, and to a lesser degree in Ca, Mg, and Mn accumulation. Nutrient accumulation reduction in leaves by the influence of the growing fruits were estimated to be: total N 52%, K 48%, P 29.5%, Mg 16.3%, Ca 15%, Fe 51.2%, Cu 55.2%, Zn 37.3%, and Mn 5.4% of the maximum nutrient value of the younger mature leaves. Old leaves preserved nutrients before leaf fall as follows: total N 25.4%, P 45%, K 31%, Ca 74.8%, Mg 76.5%, Mn 89.2%, Fe and Zn 50%, and Cu 37%. Nutrient remobilization from the senescing old leaves before leaf fall were: total N 22.6%, P 25.5%, K 21%, Ca 10.2%, Mg 7%, Fe 3.2%, Mn 5.4%, Cu 8%, and Zn 13.3% of the maximum value in the younger mature leaves. In early spring, the absorption rates of N, P, and Ca were low while those of Mg, Fe, Mn, Cu, and Zn were high. During the fast growing pollen phase, the N, P, Fe, Mn, Cu, and Zn concentrations were reduced. Calcium concentration is supposed to be more affected by the rate of transpiration rather than during the growing of embryo. Calcium and Mg concentrations in the sap were negatively correlated. The detected K concentration level in the sap was as high as 33 to 50 times that of soluble N, 12 to 21 times to that of P, 5 times to that of Ca, and 10 to 20 times to that of Mg. The first maximum of starch accumulation in mature leaves was observed during the slow growing embryo phase and a second one after fruit ripening. Old senescing leaves showed an extensive carbohydrate depletion before leaf fall.  相似文献   

3.
The temporal changes of nutrient concentration in leaves and their accumulation in fruit are good indicators of plant nutrient demand for each developmental stage. Seasonality of nutrients in leaves and fruits of pomegranate and their relation with fruit quality was evaluated in commercial orchards using cv. “Bhagwa.” The concentration of nitrogen (N), phosphorus (P), potassium (K), sulfur (S), iron (Fe), zinc (Zn) and boron (B) in leaves decreased while calcium (Ca), magnesium (Mg), manganese (Mn) and copper (Cu) concentration increased during fruit growth and development. Total nutrient accumulation increased gradually in fruit and translated into growth of arils, and increase in juice content and total soluble solids, however as the biomass accumulation in fruit was much faster than nutrient accumulation, concentration of majority nutrients except Mg decreased rapidly, followed by slow and continuous decrease till maturity. During fruit enlargement, demand for N, P, K, Fe, Cu and Zn was high while requirement for Ca, Mg and S was high during fruit development.  相似文献   

4.
李营养累积、分布及叶片养分动态研究   总被引:9,自引:0,他引:9  
李鑫  张丽娟  刘威生  杨建民  马峙英 《土壤》2007,39(6):982-986
基于保障生态和果品安全以及合理实施果园养分管理的前提,对大石早生李树体各部位营养元素积累、分布以及各营养元素的周年变化规律进行了分析.结果表明:①营养元素在各个器官的相对含量,除K、Zn在果实中含量最高外,N、P、Ca、Mg均以叶片中含量为最高,以叶片做营养诊断是适宜的.②大石早生李树体营养元素N、P、K、Ca、Mg、Fe、Zn的元素比值为10.00:1.26:6.42:12.57:2.46:1.87:0.14.⑧100 kg鲜果的养分吸收量分别为:N 772.47g,P74.25 g,K 730.33g,Ca874.16 g,Mg 169.82 g,Fe 66.05 g,Zn 7.53 g,N:P:K的比例为1.00:0.10:0.95.④N、P、K、Ca、Mg、Fe、Zn、Mn、Cu的含量随物侯期呈规律性变化.生长季初期,N、P、K、Zn、Cu的含量迅速下降,Fe、Mn、Ca、Mg呈逐渐上升的趋势;中期这9种元素总体变化幅度较小;后期Fe,Cu.N、P、K的含量呈下降趋势,Mn、Zn、Ca,Mg依然上升.本结果既丰富了国内李营养理论,同时又为制定合理的施肥措施及建立绿色优质果品科技示范基地提供了理论依据.  相似文献   

5.
【目的】旨在明确不同树龄骏枣树形成单位产量所需的各器官营养元素年吸收量的异同点,以期为骏枣生产中的科学均衡施肥提供理论依据。【方法】以新疆阿克苏地区4、 7和10年生骏枣树作为试材,从枣树地上部分各器官分别采样,测定N、 P、 K、 Ca、 Mg、 Mn、 Fe、 Zn和Cu含量。【结果】骏枣树形成地上部各器官单位生物量所需要的养分含量,不同树龄间相比差异均不显著,但其生物量在总生物量中所占的百分率有差异,4、 7、 10年生骏枣树果实占地上部年总生物量的百分率依次为72.9%、 73.7%、 75.7%,叶片依次为5.4%、 5.2%、 5.1%,花依次为1.3%、 1.5%、 1.4%,茎枝依次为20.4%、 19.5%、 17.6%,三个树龄骏枣树各器官生物量的大少顺序均为果实>茎枝>叶片>花。每形成1000 kg果实的总生物量随着树龄的增大而逐渐减少,茎枝保留和剪掉部分生物量均降低。采前落果率随树龄增加上升,叶片生物量减少,受精花生物量上升,而其掉落部分生物量表现先上升后下降。三个树龄骏枣地上部分生物量年增加量所需要的各营养元素量顺序均为K>N>Ca>Mg>P>Fe>Zn>Mn>Cu,每形成1000 kg果实所需要吸收的养分量非常接近,4年生骏枣树为N 22.8 kg、 P 1.7 kg、 K 34.0 kg、 Ca 7.4 kg、 Mg 5.0 kg、 Mn 54.5 g、 Fe 916.9 g、 Zn 202.8 g、 Cu 42.5 g; 7年生骏枣树为N 22.7 kg、 P 1.7 kg、 K 33.9 kg、 Ca 7.3 kg、 Mg 4.9 kg、 Mn 53.9 g、 Fe 907.2 g、 Zn 204.5 g、 Cu 42.0 g; 10年生骏枣树N 22.1 kg、 P 1.7 kg、 K 33.4 kg、 Ca 6.8 kg、 Mg 4.7 kg、 Mn 51.8 g、 Fe 871.3 g、 Zn 204.8 g、 Cu 40.4 g。【结论】3种树龄骏枣树地上部年总生物量中果实生物量与其余生物量的比例约为3∶1,且形成1000 kg果实所需的养分量也基本一致。由于总生物量和果实产量随树龄的增加而增加,因此,对养分的总需求量增加。但是由于果实生物量所占比例有所增加,测算单位产量所需要的各营养元素年吸收量时,也应考虑果实以外器官的年生物量所需要的养分吸收量,才能得到较准确的肥料施入量和各营养元素的比例。  相似文献   

6.
Abstract

Periods of maximum hard red spring (HRS) wheat (Jriticum aestivum L.) nutrient demand need to be determined in order to develop best nutrient management practices, and to provide data for nutrient uptake modeling. Aerial (aboveground biomass) whole plant samples of irrigated HRS wheat were collected from the field at 16 growth stages and separated into leaves, stems, heads, and grain for dry matter determinations and analyzed for N, P, K, Ca, Mg, S, Cl, Zn, Mn, Fe, and Cu concentrations. Accumulation curves were computed for each plant part for the growing season from compound cubic polynomial models based on accumulated growing degree units (GDUs). Total aerial accumulations of dry matter, N, P, K, Ca, Mg, S, Cl, Zn, Mn, Fe, and Cu were 14400, 116, 30.8, 103, 9.2, 9.3, 15.2, 32.3, 0.18, 0.58, 2.05, and 0.045 kg/ha, respectively. Grain at maturity accumulated greater than 78% of the total aerial N, P, and Zn, while it contained less than 20% of the aerial accumulated K, Ca, Cl, and Fe. Nitrogen and Fe were rapidly accumulated near 200 GDU, while P, K, Ca, Mg, S, Cl, Zn, Mn, and Cu were most rapidly accumulated near 600 GDU. Accumulation rates were 183, 2.9, 0.90, 0.72, 0.008, 1.41, 0.29, and 0.12 kg/ha/d for dry matter, N, P, K, Ca, Mg, S, and Cl, respectively, and 136, 1.7, 0.48, 0.13, 0.004, 0.78, 0.20, and 0.02 g/ha/d, respectively, during grainfill. This plant information suggests the timing of in‐season nutrient applications, and when integrated with other agronomic practices could improve overall nutrient management for HRS wheat in the northern Great Plains.  相似文献   

7.
芦笋矿质元素吸收特性研究   总被引:2,自引:0,他引:2  
研究了芦笋不同生长时期干物质积累和矿质元素吸收特性。结果表明,芦笋在采笋期干物质积累占全年总积累量的26.2%。嫩茎为该时期的干物质积累中心,积累量占采笋期积累量的69.7%。母茎生长期干物质积累占全年总积累量的73.8%,母茎为该时期的干物质积累中心,积累量占这一时期积累量的70.9%。在各种矿质元素中,芦笋植株吸收钾最多,其次为氮。对氮、磷、钾、钙、镁的吸收比例为3.33︰1︰4.77︰0.52︰0.23。钾在采笋期和母茎生长期的积累量基本相同;氮、铜、锌主要在采笋期积累;磷、钙、镁、铁、锰则主要在母茎生长期积累。根据芦笋矿质元素吸收特性提出了芦笋不同生育阶段的施肥建议。  相似文献   

8.
Abstract

Periods of maximum hard red spring (HRS) wheat (Triticum aestivum L.) nutrient demand need to be determined in order to develop best nutrient management practices, and to provide data for nutrient uptake modeling. Aerial (aboveground biomass) whole plant samples of irrigated HRS wheat were collected from the field at 16 growth stages and separated into leaves, stems, heads, and grain for dry matter determinations and analyzed for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), chloride (Cl), zinc (Zn), manganese (Mn), iron (Fe), and copper (Cu) concentrations. Accumulation curves were computed for each plant part for the growing season from compound cubic polynomial models based on accumulated growing degree units (GDUs). Total aerial accumulations of dry matter, N, P, K, Ca, Mg, S, Cl, Zn, Mn, Fe, and Cu were 14400, 116, 30.8, 103, 9.2, 9.3, 15.2, 32.3, 0.18, 0.58, 2.05, and 0.045 kg/ha, respectively. Grain at maturity accumulated greater than 78% of the total aerial N, P, and Zn, while it contained less than 20% of the aerial accumulated K, Ca, Cl, and Fe. Nitrogen and Fe were rapidly accumulated near 200 GDU, while P, K, Ca, Mg, S, Cl, Zn, Mn, and Cu were most rapidly accumulated near 600 GDU. Accumulation rates were 183, 2.9, 0.90, 0.72, 0.008, 1.41, 0.29, and 0.12 kg/ha/d for dry matter, N, P, K, Ca, Mg, S, and Cl, respectively, and 136, 1.7, 0.48, 0.13, 0.004, 0.78, 0.20, and 0.02 g/ha/d, respectively, during grainfill. This plant information suggests the timing of in‐season nutrient applications and, when integrated with other agronomic practices, could improve overall nutrient management for HRS wheat in the northern Great Plains.  相似文献   

9.
核桃果皮的组织解剖学研究   总被引:2,自引:0,他引:2  
研究表明核桃果皮(果壳)结构可分为外、中、内果皮3层,其发育阶段可分为前后2个时期。外果皮由数层细胞组成,前期表皮细胞密布腺毛,后期发育出角质层和气孔构造。不同品种及果实不同部位间果点亦有差异。中果皮为果肉的大部分,细胞大,中间散生有多束维管束。前期3层果皮界限不明显,进入后期后维管束数目增加,类型增多且出现分叉。前期内果皮细胞小而透明,与中果皮界限不明显,后期则迅速木质化而形成硬壳,逐渐转化为坚硬的木质化石细胞层,其外的维管束组织高度发达呈网络状。  相似文献   

10.
Abstract

This study was to determine the concentration, accumulation, redistribution, and export of nutrients by Rubi grape. Ten branches with leaves and fruit were collected; the vegetable matter (stem, leaf, and fruit) was washed, dried, weighed, and analyzed so as to determine the concentration of nutrients in the plant. The nutrients most absorbed were nitrogen (N), potassium (K), and calcium (Ca), and the best absorption time started after the berry ripening. Phosphorus (P), magnesium (Mg), and sulfur (S) were less demanded by the grape although they had the same behavior in relation to the period of greater absorption. The best absorbed nutrient was manganese (Mn), and its absorption increased gradually and steadily, according to the plant growing phases. The absorption of copper (Cu), zinc (Zn), and boron (B) was minimal up to the ripening of berries, but increased from then on. The greatest absorption and accumulation of nutrients occurred during the ripening of the fruits. The leaves had greater absorption of Ca, Mg, S, Mn, and Cu, whereas the fruit absorbed more K (61%), P (56%), N (38%), and B (56%). The stem presented similarly in the proportion of all macronutrients, and it accumulated more Zn.  相似文献   

11.
钙、 硼对常山胡柚叶片养分、 果实产量及品质的影响   总被引:2,自引:0,他引:2  
【目的】研究叶片矿质营养元素含量的季节性变化,对探明植物体中营养元素的丰缺状况、 调控养分代谢、 提高果实产量和改善品质具有重要意义。本研究结合常山胡柚园土壤养分状况,通过连续4年施用钙肥和硼肥,研究钙、 硼对常山胡柚叶片矿质营养元素含量的季节变化、 果实产量及品质的影响。【方法】采用田间定位试验,以13年生枳砧常山胡柚为试验材料,设4个处理,1)CK(对照); 2)Ca(每株0.5 kg生石灰粉); 3)B(每株25 g 硼砂); 4)Ca+B(每株0.5 kg生石灰粉+ 25 g 硼砂)。于试验的第4年采集常山胡柚不同生长期当年生春梢叶片及成熟期果实样品,并对常山胡柚叶片矿质营养元素含量的季节变化、 果实品质进行分析。【结果】常山胡柚叶片各矿质养分在果实逐渐成熟过程中总体呈现先增后降的变化规律,其中叶片氮(N)、 钾(K)、 镁(Mg)和锌(Zn)在果实坐果期达到最大值,磷(P)在果实膨大前中期(8月份)到达最大值,钙(Ca)、 硼(B)、 铁(Fe)、 锰(Mn)和铜(Cu)在果实膨大后期(9月份)出现最高值。钙、 硼肥施用均可提高常山胡柚果实各发育时期叶片Ca、 B、 N、 K、 Fe、 Mn和Cu含量,但明显抑制叶片Zn的吸收,其中钙、 硼配施对成熟叶片(8~9月份)Ca含量存在显著正交互效应,但对提高叶片B含量无显著交互作用。施钙、 硼肥可不同程度提高常山胡柚2年平均产量,增产率达到1.8%~21.4%,其中各处理增产率顺序为Ca+B>B≥Ca,且单施硼可显著提高2年累积产量,钙硼配施对单年产量、 2年平均产量均存在显著正交互效应。钙、 硼肥单施对果实品质无显著性影响,但钙硼配施可显著降低可滴定酸含量,显著提高固酸比。【结论】常山胡柚坐果期(4月份)为叶片N、 P、 K、 Mg和Zn吸收的关键时期,果实膨大期(8~9月份)为叶片Ca、 B、 Fe、 Mn和Cu吸收的重要时期。钙、 硼配施既可明显提高常山胡柚叶片中矿质营养元素含量(P和Zn除外),又能显著提高果实产量和品质。  相似文献   

12.
Internal breakdown in mango fruit is a disorder often attributed to a nutrient deficiency, particularly of calcium (Ca), in the fruit. The relationship between internal breakdown in mango fruit and fruit mineral element concentrations and fresh weight was investigated. Fruit were collected weekly from a commercial orchard beginning 4 weeks after fruit set (WAFS) until the fruit were ripe. The concentrations of nitrogen (N), phosphorus (P), potassium (K), Ca, magnesium (Mg), zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), and boron (B) and fresh weight of ‘Tommy Atkins’ mango fruit with and without internal breakdown were compared. Disordered fruit weighed more than healthy fruit 4 WAFS. However, when fruit were ripe there were no significant differences in fruit weight between healthy and disordered fruit. Disordered fruit contained significantly higher concentrations of N, P, Ca, and B than the healthy mango fruit, 4 WAFS. When fruit were ripe, there were no differences in N, K, Ca, Mg, Zn, Mn, Fe, and B concentrations between healthy and disordered fruit. Ripe, healthy fruit had higher Cu and lower P concentrations than ripe, disordered fruit. Internal breakdown could not be specifically linked to a Ca deficiency in mango fruit at any stage of fruit ontogeny.  相似文献   

13.
Abstract

The Diagnosis and Recommendation Integrated System (DRIS) was used to identify nutrient status of mango fruit trees in Punjab, India. Standard norms established from the nutrient survey of mango fruit trees were 1.144, 0.126, 0.327, 2.587, 0.263, 0.141% for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S), and 15, 3.5, 145, 155, and 30 mg kg?1, respectively, for zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and boron (B) in dry matter. On the basis of DRIS indices, 16, 15, 12, 17, and 16% of total samples collected during nutrients survey of mango trees were low in N, P, K, Ca, and Mg, respectively. For micronutrients, 19, 18, 12, 20, and 6% samples were inadequate in Zn, Cu, Fe, Mn, and B, respectively. DRIS‐derived sufficiency ranges from nutrient indexing survey were 0.92–1.37, 0.08–0.16, 0.21–0.44, 1.71–3.47, 0.15–0.37, and 0.09–0.19% for N, P, K, Ca, Mg, and S and 11–19, 1–6, 63–227, 87–223, and 16–44 mg kg?1 for Zn, Cu, Fe, Mn, and B, respectively.  相似文献   

14.
试验于2010~2011年连续2年以济源市4个早实核桃品种香玲、鲁光、中林1号、薄丰为试材进行了对比试验,研究了不同采样时期叶片中N、 P、 K、 Ca、 Mg、 Fe、 Cu、 Mn、 Zn 9种矿质营养元素的含量变化及其与产量的关系。结果表明,早实核桃叶片中9种元素的含量在年周期内呈规律性变化,含量高低依次为 Ca>N>Mg>P>K,Fe>Mn>Zn>Cu。不同品种各元素的含量变幅最大为127.69~169.53 mg/kg(Mn),最小为2.1~92.26 g/kg(K)。不同早实核桃品种叶片内矿质元素含量的年变化趋势表现为N、 P、 K总体上呈下降趋势,最高含量为展叶期(4月20日)分别为36.79、 5.54、 2.93 g/kg,最低在落叶前期(9月28日),分别为17.45、 2.66、 1.86 g/kg;Ca、 Mg、 Fe、 Mn 4元素含量的变化总体上表现为前期低后期高;Cu、Zn含量的变化有差异但差异不明显。总的来看, 5~7月份,即新梢速长期(5月20日)至硬核期(7月20日)是核桃树养分稳定的时期, 叶片中N、 P、 K含量之间呈极显著的正相关, N、 P与Ca、 Mg、 Mn、 Cu间呈极显著的负相关,可以认为N、 P、 K之间存在增效作用,Ca、 Mg、 Mn、 Cu 对N、 P 和 K 均存在一定的拮抗作用。元素含量与产量的相关分析表明,N、 P、 K在新梢速长期均与产量达(极)显著正相关,相关系数分别为0.819、 0.843和0.895。因此, 利用叶片进行营养诊断最佳,采样时间以新梢速长期(5月20日前后)为宜。  相似文献   

15.
为探明粉蕉矿质营养元素的累积分配特征,以主栽品种广粉1号为试材,采用彻底刨根、分解取样的方法,研究了干物质的构成特点、各器官矿质元素含量和累积分配特性。结果表明:粉蕉植株总干质量为17.6 kg/plant,其中叶片占16.4%,假茎占32.8%,球茎占9.6%,果实占37.3%,果轴占1.1%,根占2.8%。平均每株累积吸收N 167.0g、P 19.3g、K 521.7g、Ca 118.3g、Mg 54.7g、S 16.6g、Fe 6650.5mg、Mn 16142.9mg、Cu 152.3mg、Zn 607.7mg、B 212.2mg、Mo 4.2mg,养分比例N:P:K:Ca:Mg:S为1:0.12:3.12:0.71:0.33:0.10。其中N、P、Ca和S主要向叶片、假茎和果实分配,K和Mg主要向假茎分配,Fe主要向叶片、根和球茎分配,Cu主要向假茎和果实分配,Zn和Mo主要向叶片、假茎和球茎分配,B和Mn主要向假茎和叶片分配。为获得60t/hm2的高产,粉蕉需要吸收N 385.6kg、P 44.6kg、K 1205.1kg、Ca 273.3kg、Mg 126.6kg、S 38.3kg、Fe 15.4kg、Mn 37.3kg、Cu 352.0g、Zn 1403.8g、B 490.1g、Mo 9.6g。  相似文献   

16.
Nutrient sufficiency ranges are useful for diagnosing and correcting plant nutritional status in order to optimize yield and protect the environment. This study was conducted to determine nutrient sufficiency ranges for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in mango trees grown in El-Salhiya, Egypt, through boundary-line approach (BLA) and compositional nutrient diagnosis (CND) technique. For this purpose, foliar samples from 310 mango trees were collected during two successive years from the study area and fruit yields were recorded. The nutrient sufficiency ranges generated by BLA were 0.744–1.430% for N, 0.074–0.142% for P, 0.543–1.045% for K, 1.366–2.653% for Ca, 0.155–0.305% for Mg, 389–1148 ppm for Fe, 23.1–60.5 ppm for Mn, 28.4–56.3 ppm for Zn, and 2.37–12.10 ppm for Cu. The CND-derived nutrient sufficiency ranges were 0.917–1.215% for N, 0.066–0.106% for P, 0.585–0.943% for K, 1.003–2.077% for Ca, 0.112–0.378% for Mg, 277.5–849.2 ppm for Fe, 27.9–82.4 ppm for Mn, 29.2–44.6 ppm for Zn, and 2.42–11.37 ppm for Cu. The optimum nutrient concentrations generated from BLA were in general comparable to those obtained using CND technique. Only Ca and Fe optimum concentrations showed poor match. Seven significant nutrient interactions were strongly evidenced through principal component analysis of the computed CND indexes. The positive interaction was P-K, while the negative interactions were P-Mg, K-Mg, Ca-Zn, P-Fe, K-Fe, and Zn-Cu.  相似文献   

17.
Information about the nutritional status of a plant is a basic prerequisite for its adequate nutrition and is crucial to achieve high-yield productivity. Assessing the annual amount of nutrient that a tree needs to absorb in order to successfully complete a vegetative and reproductive growth is a fundamental step for developing rational fertilization in orchards. We are unaware of any report describing macro- and micronutrient dynamics in fruit at different growth stages of mango. Seven cultivars of mango (Dashehari, Langra, Mahmood Bahar, Menka, Sabri, Sundar Langra and Zardalu) were selected for the study. Different macronutrients such as nitrogen, phosphorus, potassium, calcium and magnesium (N,P, K, Ca, and Mg) and micronutrients such as iron, manganese, zinc and copper (Fe, Mn, Zn, and Cu) were analyzed at four growth stages, namelymarble stage, prestone formation stage, stone hardening stage and harvest stage. There was a significant variation in nutrient content of fruits throughout the developmental stages irrespective of cultivars. There was no definite trend of nutrient variation among cultivars but in general, most of the nutrients like N, P, K, Mg, Mn, Zn, and Cu were the highest at the marble stage, and Ca and Fe at the stone hardening stage.  相似文献   

18.
The Diagnostic Recommendation and Integrated System (DRIS) was employed to interpret nutrient analyses of leaf tissues from ber fruit tree orchards grown in semi-arid and arid areas of Punjab in northwest India. The DRIS norms were established for various nutrient ratios obtained from the high-yield population and were used to compute DRIS indices, which assessed nutrient balance and their orders of limitation to yield. Nutrient sufficiency ranges derived from DRIS norms were 0.688–1.648%, 0.184–0.339%, 1.178–1.855%, 1.064–1.768%, 0.234–0.391%, and 0.124–0.180% for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) and were 55–205, 26–80, 17–33, and 5–11 mg kg?1 for iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu), respectively. According to these DRIS-derived sufficiency ranges, 79%, 76%, 76%, 75%, 84%, and 72% of samples were sufficient, whereas 13%, 15%, 21%, 14%, 7%, and 18% of total samples were low in N, P, K, Ca, Mg, and S, respectively. For micronutrients, 84%, 85%, 77%, and 86% of samples were sufficient, whereas 6%, 3%, 8%, and 2% of samples were low in Fe, Mn, Zn, and Cu, respectively.  相似文献   

19.
Abstract

Among micronutrient deficiencies, Fe deficiency is the most difficult nutritional disorder to prevent in the fruits of trees growing on calcareous soils. In this study, a pot experiment was carried out to evaluate the potential of co-situs application of controlled release fertilizers (CRF) in alleviating Fe deficiency and improving the growth of fruit trees growing on calcareous soil (pH 9.3). Guava (Psidium guajava L.) seedlings were used as test plants because of their sensitivity to Fe deficiency. Treatments consisted of the following: (1) broadcast application of readily soluble Fe, Zn, Cu, B and Mn fertilizers (Control) or (2) co-situs application of CRF containing N, P, K, Mg, Fe, Zn, B, Cu and Mn (Co-situs). For the Control treatment, CRF containing only N, P and K was used. Both treatments received the same amount of all nutrients. Plants were more chlorotic in young leaves under the Control treatment and the Fe content of young leaves was significantly (least significant difference [LSD0.05]) higher under the Co-situs treatment. Dry matter production of shoots under the Co-situs treatment was 5.2-fold higher than under the Control treatment, and the total accumulations of macro and micronutrients were much higher under the Co-situs treatment than the Control treatment. Total accumulations of N, P, K, Ca and Mg were 5.0, 4.1, 9.6, 3.2 and 2.2-fold higher, respectively, under the Co-situs treatment compared with the Control treatment, and Fe, Zn, Cu and Mn accumulations were 3.2, 4.1, 6.0 and 3.7-fold higher, respectively. Iron deficiency in guava seedlings was successfully alleviated by the co-situs application of controlled fertilizer, proving the high potential of this method in alleviating Fe deficiency in fruit trees growing on calcareous soils.  相似文献   

20.
赣南脐橙叶片营养状况对果实品质的影响   总被引:4,自引:1,他引:3  
为了探讨赣南产区纽荷尔脐橙果园叶片营养状况与果实品质的相互关系,测定了9个县(市、区)58个脐橙园叶片的矿质营养元素、果实可溶性固形物(TSS)、可滴定性酸(TA)含量和单果重(SFW)。结果表明,大部分果园叶片氮含量高于适宜范围,而所有果园叶片磷、钾含量均处于适宜范围或以上;分别有87.9%、55.2%、5.2%的果园叶片镁、钙、硫含量低于适宜范围;所有果园叶片的钼含量均处于适宜范围,铁含量处于适宜范围或以上,少量果园的叶片硼、锰含量低于适宜范围,接近1/3果园的叶片铜含量低于适宜范围,96.6%果园的叶片锌含量低于适宜范围;随着果园果实品质的提高,TSS与TA显著增加,SFW显著下降。相关性分析表明,果实TSS与叶片钾含量呈显著负相关,与镁、锌含量呈极显著正相关;SFW与叶片12个营养元素均无显著相关;TA与叶片氮含量呈显著正相关,与锰含量呈极显著正相关。因而,生产上需要重视补充镁、锌肥,适量补充钙、铜肥,合理控制氮、磷和钾肥的施用量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号