首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Sorghum is cultivated on Vertisols in the Ethiopian Highlands. An experiment was conducted in the Gumara-Maksegnit watershed in 2013 and 2014 to assess the effect of rate and timing of nitrogen fertilizer application on the possibility to shorten the maturity period and to improve the productivity of sorghum. The experiment was laid out as Randomized Complete Block Design with three replications. Treatments were nitrogen doses between 0 and 87 kg N ha?1 as urea applied at planting, at knee-height stage or in split doses at both stages. Results showed that application of 23, 41, 64 and 87 kg ha?1 N gave a yield increase of 40, 53, 62 and 69% over the control (0 kg N ha?1), respectively. In addition, split application of 41 kg ha?1, 64 kg ha?1 and 87 kg ha?1 of nitrogen fertilizer, half at planting and half at knee height stage, gave 19%, 15% and 18% increase in sorghum grain yield over a single dose application, respectively. Applying 87 kg ha?1 nitrogen fertilizer with split application half at planting and half at knee height stage, along with 46 kg ha?1 of P2O5, gave the highest grain yield and income.  相似文献   

2.
Abstract

To study the response of inorganic and organic nitrogen (N) sources both alone and in conjunction and their influence on soil quality, a field experiment was conducted during kharif and rabi seasons using sunflower (MSFH‐8) as test crop. The experimental site soil was Typic Haplustalf situated at Hayatnagar Research Farm of Central Research Institute of Dryland Agriculture, Hyderabad, India, at 17° 18′ N latitude, 78° 36′ E longitude. The experiment design was a simple randomized block design with 11 treatments replicated four times. Among all the treatments, vermicompost (VC)+Fert at 25+25 kg N ha?1 recorded the highest grain yields of 1878 and 2160 kg ha?1 during both kharif and rabi seasons, respectively, which were 43.9 and 85.1% higher than their respective control plots. Apparent N recovery varied from as little as 38.30% (FYM at 50 kg N ha?1) to 62.16 (25 kg N ha?1) during kharif and 49.65 (75 kg ha?1) to 83.28% (VC+Fert at 25+25 kg N ha?1) during rabi season. Conjunctive nutrient treatments proved quite superior to other set of treatments in improving the uptake of N, phosphorus (P), potassium (K), sulfur (S), and micronutrients in sunflower and their buildup in the soil. Highest relative soil quality indexes (RSQI) were observed under VC+Fert at 25+25 kg N ha?1 (1.00) followed by VC+Gly at 25+25 kg N ha?1 (0.87). Considering the yield and relative soil quality indices (RSQI), conjunctive applications of VC with either inorganic fertilizer, FYM, or Gly at 25+25 kg N ha?1 could be a successful and sustainable soil nutrient management practice in semi‐arid tropical Alfisols. Besides this, the fertilizer N demand could be reduced up to 50%.  相似文献   

3.
We evaluate the feasibility of using foliar-applied molybdenum, (Mo) instead of side-dressed nitrogen (N) in three experiments. In soils with native rhizobia, plants received 0, 30, 60, 90 or 120 kg N ha?1 with +Mo (80 g ha?1) or -Mo. N concentration in leaves (NCL) -Mo ranged from 35.1 to 42.5 g kg?1 and NCL +Mo from 40.3 to 49.2 g kg?1; yield -Mo ranged from 1560 to 3350 kg ha?1and yield +Mo from 2829 to 3567 kg ha?1. In two experiments, NCL or yield -Mo increased linearly or quadratically with increasing N rates, but NCL or yield +Mo did not. In one experiment, NCL increased linearly with increasing N rates and 16% with +Mo relative to –Mo, but yield was not affected significantly. Our results suggest that using Mo fertilizer instead of side-dressed N can allow common bean plants to meet crop demands for N to support yields as high as 3000 kg ha?1.  相似文献   

4.
The field experiment was conducted on black soil (Vertic Ustropept) at Zonal Agricultural Research Station farm, Solapur, for successive 30 years from 1987–1988 to 2016–2017 under dryland condition in a randomized block design with 10 treatments and 3 replications. The pooled results of seven years (2010–2011 to 2016–2017) revealed that the application of 25 kg N ha?1 through crop residue (CR, byre waste) along with 25 kg N ha-1 through Leucaena lopping (Leucaena leucocephala) to rabi sorghum gave significantly higher grain and stover yield and Sustainable Yield Index (14.61 and 36.11 q ha?1 and 0.47, respectively) which was on par with T7, where 25 kg N ha?1 through farmyard manure (FYM) + 25 kg N ha?1 through urea was applied for grain and stover yield (13.95 and 34.46 q ha?1 and 0.44, respectively). The gross and net monetary returns and benefit–cost ratio were also influenced significantly due to integrated nitrogen management (Rs. 59,796, Rs. 47,353 ha?1, and 3.13, respectively). This was also reflected in residual soil fertility status of soil after harvest of rabi sorghum. The organic carbon content and available nitrogen content of soil, as well as nitrogen uptake and moisture use efficiency for grain, were also increased. The total microbial count of bacteria, fungi, and actinomycetes was more where FYM or CR addition was done. The count of N fixers and P solubilizers was more under Leucaena application either alone or with CR or urea. Application of CR at 4.8 t ha?1 (25 kg N ha?1) along with Leucaena lopping at 3.5 t ha?1 (25 kg N ha?1) as green leaf manure is the best alternative organic source for fertilizer urea (50 kg N ha?1) to increase the production of dryland rabi sorghum.  相似文献   

5.
A field study was conducted in the sub-humid tropical region of India to examine the effect of different nitrogen (N) management strategies on nitrate leaching, nitrous oxide (N2O) emission and N use efficiency in aerobic rice. Treatments were: control (no N), 120 kg N ha?1 applied as prilled urea (PU) in conventional method, 120 kg N ha?1 applied as neem coated urea (NCU) in conventional method, N applied as PU on the basis of leaf colour chart (LCC) reading, N applied as NCU on the basis of LCC reading, and 120 kg N ha?1 applied as PU and farm yard manure (FYM) in 1:1 ratio. Results showed that 3.4–16.1 kg NO3-N ha?1 was leached below 45 cm depth and 0.61–1.12 kg N2O-N ha?1 was emitted from aerobic rice during the growing season. NCU when applied conventionally reduced nitrate-nitrogen (NO3-N) leaching and N2O emission by 18.6% and 21.4%, respectively However when applied on the basis of LCC reading NCU reduced NO3-N leaching by 39.8% as compared to PU applied in conventional method. NCU when applied on the basis of LCC reading synchronized N supply with demand and reduced N loss, which resulted in higher yield and N use efficiency.  相似文献   

6.
Two experiments were conducted to evaluate the effects of dose and timing of silicon (Si) application on rice under limited water supply. The treatments for the first study included five Si doses (0, 75, 150, 300 and 600 kg Si ha–1) under three soil moisture conditions (100%, 75% and 50% field capacity). For the second study, the treatments were four Si application timings [100% basal, 50% basal + 50% panicle initiation (PI), 25% basal + 75% PI and 25% basal + 50% PI + 25% heading] at the dose of 300 kg ha–1 under the same moisture conditions. The highest number of panicle plant–1 (14.6) and grain yield (13.6 g plant–1) were obtained with the dose of 300 kg Si ha–1. Similarly, an increase of 34–45% in grain yield was observed for different Si application timings compared with the control. Shoot dry matter and grain yield had positive linear relationship with shoot Si content. Grain yield and number of spikelet panicle–1 were higher at the 300 kg Si ha–1 dose applied as 100% basal, and hence could be a feasible option for RD57 Thai rice variety under water-deficit conditions.  相似文献   

7.
Long-term fertilizer experiments were conducted on cotton (Gossypium hirsutum) for 21 years with eight fertilizer treatments in a fixed site during 1987–2007 to identify an efficient treatment to ensure maximum yield, greater sustainability, monetary returns, rainwater-use efficiency, and soil fertility over years. The results indicated that the yield was significantly influenced by fertilizer treatments in all years except 1987 1988, and 1994. The mean cotton yield ranged from 492 kg ha?1 under the control to 805 kg ha?1 under 25 kg nitrogen (N) [farmyard manure (FYM)] + 25 kg N (urea) + 25 kg phosphorus (P) ha?1. Among the nutrients, soil N buildup was observed with all treatments, whereas application of 25 kg N + 12.5 kg P ha?1 exhibited increase in P status. Interestingly, depletion of potassium (K) was recorded under all the fertilizer treatments as there was no K application in any of the treatments. An increase in soil N and P increased the plant N and P uptake respectively. Using relationships of different variables, principal component (PC) analysis technique was used for assessing the efficiency of treatments. In all the treatments, five PCs were found significant that explained the variability in the data of variables. The PC model of 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1 explained maximum variability of 79.6% compared to other treatments. The treatment-wise PC scores were determined and used in developing yield prediction models and measurement of sustainability yield index (SYI). The SYI ranged from 44.4% in control to 72.7% in 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1, which attained a mean cotton yield of 805 kg ha?1 over years. Application of 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1 was significantly superior in recording maximum rainwater-use efficiency (1.13 kg ha?1 mm?1) and SYI (30.5%). This treatment also gave maximum gross returns of Rs. 30272 ha?1 with benefit–cost ratio of 1.60 and maintained maximum organic carbon and available N, P, and K in soil over years. These findings are extendable to cotton grown under similar soil and agroclimatic conditions in any part of the world.  相似文献   

8.
Crop residues are beneficial substances affecting crop production and soil properties. A field experiment was carried out to evaluate the effects of wheat (Triticum aestivum L.) residue rates (0, 25, 50 and 75%) combined with N levels (0, 34.5, 69, 103.5 kg ha?1) on yield and yield components of two red common bean (Phaseolus vulgaris L.) cultivars and to monitor chemical soil parameters. The experiment was conducted at Research Center, College of Agriculture, Shiraz University, Shiraz, Iran for two years (2008–2009). The experiment was conducted as a split–split plot arranged in a randomized complete blocks design with three replications. The highest seed yield was obtained when 25–50% of residues were incorporated. The highest seed yield, seed weight per plant, 100-seed weight and seed number per pod were obtained with 103.5 kg N ha?1 with no significant difference to 69 kg N ha?1. Residue incorporation significantly increased soil organic carbon (SOC) as well as available K and P content. It is possible to sow red common bean as a double cropping by soil incorporation of 25–50% wheat residues with application of 69 kg N ha?1.  相似文献   

9.
Soil, crop, and fertilizer management practices may affect quality of organic carbon (C) and nitrogen (N) in soil. A long-term field experiment (growing barley, wheat, or canola)was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 years (1980 to 1998) of tillage [zero tillage (ZT) and conventional tillage (CT)], straw management [straw removed (SRem) and straw retained (SRet)], and N fertilizer rate (0, 50, and 100 kg N ha?1 in SRet and 0 kg N ha?1 in SRem plots) on macro-organic matter C (MOM-C) and N (MOM-N), microbial biomass C (MB-C), and mineralizable C (Cmin) and N (Nmin) in the 0- to 7.5-cm and 7.5- to 15-cm soil layers. Treatments with N fertilizer and SRet generally had a greater mass of MOM-C (by 201 kg C ha?1 with 100 kg N ha?1 rate and by 254 kg C ha?1 with SRet), MOM-N (by 12.4 kg N ha?1 with 100 kg N ha?1 rate and by 8.0 kg N ha?1 with SRet), Cmin(by 146 kg C ha?1 with 100 kg N ha?1 rate and by 44 kg C ha?1 with SRet), and Nmin(by 7.9 kg N ha?1 with 100 kg N ha?1 rate and by 9.0 kg N ha?1 with SRet)in soil than the corresponding zero-N and SRem treatments. Tillage, straw, and N fertilizer had no consistent effect on MB-C in soil. Correlations between these dynamic soil organic C or N fractions were strong and significant in most cases, except for MB-C, which had no significant correlation with MOM-C and MOM-N. Linear regressions between crop residue C input and mass of MOM-C, MOM-N, Cmin, and Nmin in soil were significant, but it was not significant for MB-C. The effects of management practices on dynamic soil organic C and N fractions were more pronounced in the 0- to 7.5-cm surface soil layer than in the 7.5- to 15-cm subsoil layer. In conclusion, the findings suggest that application of N fertilizer and retention of straw would improve soil quality by increasing macro-organic matter and N-supplying power of soil.  相似文献   

10.
A study was conducted to assess fertilizer effect on pearl millet–wheat yield and plant-soil nutrients with the following treatments: T1, control; T2, 100% nitrogen (N); T3, 100% nitrogen and phosphorus (NP); T4, 100% nitrogen, phosphorus and potassium (NPK); T5, 100% NPK + zinc sulfate (ZnSO4) at 25 kg ha?1; T6, 100% NPK + farmyard manure (FYM) at 10 t ha?1; T7, 100% NPK+ verimcompost (VC) at 2.5 tha?1; T8, 100% NPK + sulfur (S) at 25 kg ha?1; T9, FYM at 10 t ha?1; T10, VC at 2.5 t ha?1; T11, 100% NPK + FYM at 10 t ha?1 + 25 kg S ha?1 + ZnSO4 at 25 kg ha?1; and T12, 150% NPK treatments. Treatments differed significantly in influencing soil-plant nutrients and grain and straw yields of both crops. Grain yield had significant correlation with soil-plant N, P, K, S, and zinc (Zn) nutrients. The study indicated superiority of T11 for attaining maximum pearl millet grain yield (2885 kg ha?1) and straw yield (7185 kg ha?1); amounts of N (48.9 kg ha?1), P (8.8 kg ha?1), K (26.3 kg ha?1), S (20.6 kg ha?1), and Zn (0.09 kg ha?1) taken up; and amounts of soil N (187.7 kg ha?1), P (13.7 kg ha?1), K (242.5 kg ha?1), S (10.1 kg ha?1), and Zn (0.70 kg ha?1). It was superior for wheat with grain yield (5215 kg ha?1) and straw yield (7220 kg ha?1); amounts of N (120.7 kg ha?1), P (13.8 kg ha?1), K (30 kg ha?1), S (14.6 kg ha?1), and Zn (0.18 kg ha?1) taken up; and maintaining soil N (185.7 kg ha?1), P (14.5 kg ha?1), K (250.5 kg ha?1), S (10.6 kg ha?1), and Zn (0.73 kg ha?1). Based on the study, 100% NPK + FYM at 10 tha?1 + Zn at 25 kg ha?1 + S at 25 kg ha?1 could be recommended for attaining maximum returns of pearl millet–wheat under semi-arid Inceptisols.  相似文献   

11.
From 2002 to date, a long-term field experiment has been conducted at Lake Carl Blackwell, Oklahoma, with different rates and times of nitrogen (N) fertilizer application to determine their effect on grain yield, protein and N uptake of winter wheat. Trend analysis for N rates (0, 50, 100, 150 and 200 kg N ha?1) and orthogonal contrasts for different application times (pre-plant, top-dressed in February and March) were performed. With increasing fertilizer N, wheat grain yield and protein content increased from 2110 kg ha?1 to 6783 kg ha?1 and from 8.96 to 17.19%, respectively. For grain yield, protein, and N use efficiency, split applications of N fertilizer were much more efficient than applying all N pre-plant. Large differences in grain yields were noted for different years at the same N rate (range exceeded 5.0 Mg ha?1) and that illustrated the need for making within-year-specific N rate recommendations.  相似文献   

12.
Abstract

The experiment was conducted at Kulumsa, South East Ethiopia, using four levels of nitrogen (N) (0, 50,100 and 150?kg N ha?1) and four levels of phosphorus (P) (0, 35, 70 and 105?kg P2O5 ha?1) fertilizers arranged in 4?×?4 factorial arrangements in randomized complete block design with three replications. The available P was increased after harvest due to the application of N and P fertilizer at the rates of 100 or 150?kg N ha?1 and 70 or 105?kg P2O5 ha?1. More specifically, nutrients concentration and nutrient uptake were significantly (p?<?.01) varied among treatment combinations and nutrient use efficiency was declined by increasing N and P after optimum rates. The higher physiological efficiency of N (53.47?kg kg?1) and P (580.41?kg kg?1) and the highest apparent recovery of N (19.62%) and P (2.47%) was recorded from application of 50?kg N ha?1 and P at 70?kg P2O5 ha?1 and the highest agronomic efficiency of N (10.78?kg kg?1) and P (15.25?kg kg?1) was recorded from N at the rate of 50?kg N ha?1 and P at 35?kg P2O5 ha?1, respectively. The combination of N at 100?kg N ha?1 and P at 70?kg P2O5 ha?1 was promising combination that generated highest net benefit 488,878.5 ETB (Ethiopian birr) ha?1 with the highest marginal rate of return (36638%) and gave the highest seed yield (1858.82?kg ha?1) with yield increment of about 57.72% over the control.  相似文献   

13.
High transportation cost is a barrier which prevents land application of compost far away from where the compost is produced. As a result, use of compost in lawns is becoming a popular alternative in municipalities where compost is produced from municipal solid/biosolid waste. A four-year (2002 to 2005) field experiment was conducted on turfgrass [20% Kentucky Blue (Poa pratensis L.) + 80% Creeping Red Fescues (Festuca rubra L.)] grown on a Black Chernozem soil near Edmonton, Alberta, Canada, to determine the effect of rate and frequency of spring application of compost (prepared from soild/biosolid waste of city of Edmonton) on biomass, sward color, concentration and uptake of nutrients of sward, and soil chemical properties. There were three compost treatments: 50 Mg ha?1 annual; 100 Mg ha?1 (1st year) + 50 Mg ha?1 (2nd year) split, and 150 Mg ha?1 once in three years (2002, 2003 and 2004) applications. In addition, there were check (no fertilizers or compost) and annual nitrogen-phosphorus-potassium-sulfur (NPKS) fertilizer application (100 kg N + 20 kg P + 42 kg K + 20 kg S ha?1 annual) treatments. In the fourth year (2005), residual effect of applied compost on turfgrass growth was determined. Annual application of compost at 50 Mg ha?1 had more green color of leaf, and higher sward N concentration and biomass production of turfgrass for prolonged periods than the check treatment. In comparison with annual application, high initial compost and split applications generated greater turfgrass growth only in the first two years, but produced higher cumulative biomass over the three- or four-year period. Both annual and cumulative biomass yields were highest in treatments receiving NPKS fertilizers. After four growing seasons, there was no residual mineral N in soil from both compost and NPKS fertilizer, and no residual sulfate-S in soil from NPKS fertilizer treatments. The amounts of extractable P and exchangeable K in soil were greater in compost treatments than in the NPKS fertilizer treatment. There was downward movement of extractable P into the 15–30 cm soil depth in one-time initial and split compost and NPKS fertilizer treatments, and of sulfate-S in all compost treatments. In conclusion, annual application of compost in spring at 50 Mg ha?1 is recommended for sustainable color and growth of turfgrass.  相似文献   

14.
ABSTRACT

Integrated management of soil organic matter and nutritional status of crop plants is essential to sustain the production of organic farming systems. Thus, a 2–year field experiment was conducted to examine the effects of soil additions (192 kg N ha–1, humic+192 kg N ha–1, humic+144 kg N ha–1 and humic+96 kg N ha–1) and foliar applications (amino acids, Azotobacter+yeast, and amino acids plus Azotobacter+yeast) as various fertilizer resources on growth and yield of wheat. Results showed that humic+192 kg N ha–1 × amino acids plus Azotobacter+yeast were the effective combination for producing the highest values of flag leaf area, total dry weight, tiller number m–2, spike weight m–2, and grain yield ha–1. Under foliar application of amino acids plus Azotobacter+yeast, reducing N supply from recommended rate (192 kg N ha–1) to 144 kg N ha–1+ humic achieved higher values of all yield traits, with a saving of 25% of applied mineral nitrogen as well as enhancing nitrogen use efficiency.  相似文献   

15.
A wide gap exists between production and consumption of vegetable oils in Pakistan. Thereby, a significant proportion (2.28 million tons) of vegetable oils is being imported at the cost of 2257 million US$. Therefore, the present study was conducted to quantify the comparative performance of various sunflower hybrids as influenced by various levels of nitrogen (N) fertilizer under different agro-environments. The experimental treatments consisted of three sunflower hybrids (Hysun33, Hysun38, and Pioneer-64A93) and five levels of N fertilizer (0, 60, 120, 180, 240 kg N ha?1), arranged in a randomized complete block design in a split plot with four replications. The field trials were conducted for two consecutive crop seasons under three different agro-ecologies (arid, semi-arid, and sub-humid) in the province of Punjab, Pakistan. The results of the study demonstrated that the productivity of sunflower hybrids varied greatly in response to N fertilization and different ecologies. Maximum achene yield of 3177 kg ha?1 was harvested under sub-humid environment, followed by the semi-arid one. Among the hybrids, Hysun38 excelled the other two hybrids with a production of 3083 kg ha?1 and 41% oil contents. Generally, the productivity of hybrids increased with the increasing doses of N fertilizer. Maximum achene yield was obtained by addition of 180 kg N ha?1. The findings of the study revealed that yield potential of Hysun-38 could be exploited by addition of N fertilizer at the rate of 180 kg N ha?1 under sub-humid environment.  相似文献   

16.
Field experiments evaluated the effects of integrated nutrient management on symbiotic parameters, growth, nutrient accumulation, productivity and profitability of lentil (Lens culinaris Medikus). Application of recommended dose of nutrients (RDN, 12.5 kg N ha?1 + 40 kg P2O5 ha?1) + 25 kg ZnSO4 ha?1 + seed inoculation with biofertilizers [Rhizobium + phosphate solubilizing bacteria (PSB) + plant growth promoting rhizobacteria (PGPR)] + 1.0 g ammonium molybdate kg?1 seed recorded the highest number & dry weight of nodules, leghaemoglobin content, root & shoot dry weight, plant height, number of pods plant?1 and 100-seed weight. The next best treatment was RDN + seed inoculation with biofertilizers + 1.0 g ammonium molybdate kg?1 seed. On the basis of mean of three-year data, the treatment of RDN + 25 kg ZnSO4 ha?1 + seed inoculation with biofertilizers 1.0 g ammonium molybdate kg?1 seed proved the best in realizing the highest grain yield (34.0%), gross returns (34.0%) and net returns (54.8% higher over control). Nitrogen, phosphorus and potassium in the grains and straw were significantly improved where RDN was applied in combination with seed inoculation, basal application of ZnSO4 and seed treatment with 1 g ammonium molybdate than their single applications.  相似文献   

17.
Dry direct-seeded aerobic rice (DSR) is an emerging attractive alternative to traditional puddled transplanted rice (PTR) production system for reducing labour and irrigation water requirements in the Indo-Gangetic plains (IGP) of India. The fertilizer N requirement of DSR grown with alternate wetting and drying water management may differ from that of PTR grown under continuous flooding due to differences in N dynamics in the soil/water system and crop growth patterns. Limited studies have been conducted on optimizing N management and application schedule for enhanced N use efficiency in DSR. Therefore, field experiments were conducted over 3 years in NW India to evaluate the effects of N rate and timing of its application on crop performance and N use efficiency. Interaction effects of four N rates (0, 120, 150, and 180 kg ha?1) as urea and four schedules of N application on yield and N use efficiency were evaluated in DSR. The N schedules included N application in three equal split doses (0, 35 and 63, and 14, 35 and 63 days after sowing, DAS) and four equal split doses (0, 28, 49 and 70; 14, 28, 49 and 70 DAS). There was no significant interaction between N rate and schedules on grain yield. Significant response to fertilizer N was observed at 120 kg N ha?1 and economic optimum dose for three equal split doses and skipping N at sowing was 130 kg N ha?1. Highest mean grain yield of 6.60 t ha?1 was obtained when N was applied in three equal split doses at 14, 35 and 63 DAS which was about 8.5% higher compared with N applied in four equal split doses at 14, 28, 49 and 70 DAS. Under the best N application schedule, agronomic N use efficiency (26 kg grain kg?1), recovery efficiency (49%) and physiological efficiency (53 kg kg?1) were comparable to the values reported in Asia for PTR. Results from our study will help to achieve high yields and N use efficiency in DSR to replace resource intensive PTR.  相似文献   

18.
A long-term field experiment was conducted for 8 years on a Vertisol in central India to assess quantitatively the direct and residual N effects of soybean inoculation with Bradyrhizobium and wheat inoculation with Azotobacter in a soybean–wheat rotation. After cultivation of soybean each year, its aerial residues were removed before growing wheat in the same plots using four N levels (120, 90, 60 and 30 kg ha?1) and Azotobacter inoculation. Inoculation of soybean increased grain yield by 10.1% (180 kg ha?1), but the increase in wheat yields with inoculation was only marginal (5.6%; 278 kg ha?1). There was always a positive balance of soil N after soybean harvest; an average of +28 kg N ha?1 yr?1 in control (nodulated by native rhizobia) plots compared with +41 kg N ha?1 yr?1 in Rhizobium-inoculated plots. Residual and direct effects of Rhizobium and Azotobacter inoculants caused a fertilizer N credit of 30 kg ha?1 in wheat. Application of fertilizers or microbial inoculation favoured the proliferation of rhizobia in crop rhizosphere due to better plant growth. Additional N uptake by inoculation was 14.9 kg N ha?1 by soybean and 20.9 kg N ha?1 by wheat crop, and a gain of +38.0 kg N ha?1 yr?1 to the 0–15 cm soil layer was measured after harvest of wheat. So, total N contribution to crops and soil due to the inoculants was 73.8 kg N ha?1 yr?1 after one soybean–wheat rotation. There was a total N benefit of 13.8 kg N ha?1 yr?1 to the soil due to regular long-term use of microbial inoculants in soybean–wheat rotation.  相似文献   

19.
Though mineral N application impaired nodulation initiation and function, it improves the productivity of common bean. The effect of inorganic application on common bean productivity, however, is dependent on the availability of plant nutrients including nitrogen (N) in the soils. Therefore, multilocation field experiments were conducted at Babillae, Fedis, Haramaya, and Hirna to evaluate the effect of inherent soil fertility status on responsiveness of common bean to different rates of N fertilizer application and its effect on nodulation, yield, and yield components of common bean. The treatments were six levels of N fertilizer (0, 20, 40, 60, 80, and 100 kg N ha?1) laid out in randomized completed block design with three replications. The result revealed that 20 kg N ha?1 application significantly improved the nodule number (NN) and nodule dry weight (NDW) except Hirna site, in which reduction of NN and NDW was observed. Although the remaining investigated yield and yield components were significantly improved due to N fertilizer in all study sites, 40 kg N ha?1 application resulted in significantly increased GY of common bean at Fedis, Haramaya, and Hirna site, while 60 kg N ha?1 at Babillae site. The highest total biomass yield (7011.6 kg ha?1) and GY (2475.28 kg ha?1) of common bean were recorded at Hirna and Haramaya sites, respectively, indicating the importance of better fertile soil for good common bean production. Hence, it can be concluded that the effect of inorganic N on common bean was irrespective of soil fertility rather the total amount of N in soil would affect the need of different rate of inorganic N.  相似文献   

20.
Nitrate (NO3) accumulation by spinach was studied under increasing nitrogen (N) levels (60, 120 and 240 kg N ha?1) along with sulfur (45 kg S ha?1) and phosphorus (P; 90 kg P2O5 ha?1) application. Plants were harvested at 50 and 65 days after sowing. Plant samples were analyzed for NO3-N and total N, P, S, potassium (K), calcium (Ca), and magnesium (Mg). Radio assay of 35S was done to estimate percent sulfur derived from fertilizer and percent fertilizer sulfur utilization. Spinach maintained a very high level of NO3-N in its tissue throughout the growing period. NO3-N was increased with increasing nitrogen level and was reduced with phosphorus and sulfur application and also with advancement in growth. Total N, P, S, K, Ca and Mg uptake were increased with increasing nitrogen levels as well as with application of sulfur and phosphorus. Sulfur application caused increase in percent sulfur derived from fertilizer and percent utilization of fertilizer sulfur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号