首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fishery management frequently involves precautionary buffering for scientific uncertainty. For example, a precautionary buffer that scales with scientific uncertainty is used to calculate the acceptable biological catch downward from the overfishing limit in the US federal fishery management system. However, there is little empirical guidance to suggest how large buffers for scientific uncertainty should be. One important component of uncertainty is variation among different assessments of the same stock in estimates of management-relevant quantities. We analysed commercially exploited marine fish and invertebrate stocks around the world and developed Bayesian hierarchical models to quantify inter-assessment variation in terminal year biomass and fishing mortality estimates, reference points, relative biomass and fishing mortality estimates, and overfishing limits. There was little evidence of inter-assessment bias; stock assessment estimates in the terminal year of the assessment were not consistently higher or lower than estimates of the same quantities in future years. However, there was a tendency for extreme values from the terminal year to be pulled closer to the mean in future years. Inter-assessment variation in all estimates differed across regions, and a longer inter-assessment interval generally resulted in greater variation. Inter-assessment uncertainty was greatest for estimates of the overfishing limit, with coefficients of variation ranging from 17% in Europe (non-EU) to 107% for Pacific Ocean pelagic stocks. Because inter-assessment variation is only one component of scientific uncertainty, we suggest that these uncertainty estimates may provide a basis for determining the minimum size of precautionary buffers.  相似文献   

2.
Climate change is altering the productivity of marine fisheries and challenging the effectiveness of historical fisheries management. Harvest control rules, which describe the process for determining catch limits in fisheries, represent one pathway for promoting climate resilience. In the USA, flexibility in how regional management councils specify harvest control rules has spawned diverse approaches for reducing catch limits to precautionarily buffer against scientific and management uncertainty, some of which may be more or less resilient to climate change. Here, we synthesize the control rules used to manage all 507 US federally managed fish stocks and stock complexes. We classified these rules into seven typologies: (1) catch-based; (2) constant catch; (3) constant escapement; (4) constant F; (5) stepped F; (6) ramped F and (7) both stepped and ramped F. We also recorded whether the control rules included a biomass limit (‘cut-off’) value or were environmentally linked as well as the type and size of the buffers used to protect against scientific and/or management uncertainty. Finally, we review the advantages and disadvantages of each typology for managing fisheries under climate change and provide seven recommendations for updating harvest control rules to improve the resilience of US federally managed fisheries to climate change.  相似文献   

3.
Ecosystem‐based management of fisheries aims to allow sustainable use of fished stocks while keeping impacts upon ecosystems within safe ecological limits. Both the FAO Code of Conduct for Responsible Fisheries and the Aichi Biodiversity Targets promote these aims. We evaluate implementation of ecosystem‐based management in six case‐study fisheries in which potential indirect impacts upon bird or mammal predators of fished stocks are well publicized and well studied. In particular, we consider the components needed to enable management strategies to respond to information from predator monitoring. Although such information is available in all case‐studies, only one has a reference point defining safe ecological limits for predators and none has a method to adjust fishing activities in response to estimates of the state of the predator population. Reference points for predators have been developed outside the fisheries management context, but adoption by fisheries managers is hindered a lack of clarity about management objectives and uncertainty about how fishing affects predator dynamics. This also hinders the development of adjustment methods because these generally require information on the state of ecosystem variables relative to reference points. Nonetheless, most of the case‐studies include precautionary measures to limit impacts on predators. These measures are not used tactically and therefore risk excessive restrictions on sustainable use. Adoption of predator reference points to inform tactical adjustment of precautionary measures would be an appropriate next step towards ecosystem‐based management.  相似文献   

4.
Fisheries are supposed to be for the benefit of society, producing food, providing livelihoods and enabling cultural continuity. Biological productivity goals for fish stocks operationalised through Harvest Control Rules (HCRs) are central to contemporary fisheries management. While fisheries policies often state socio-economic objectives, such as enhancing the livelihoods of coastal communities, those are rarely, if ever, incorporated into operationalised management procedures. The lack of articulation of social objectives and lack of monitoring of social outcomes around HCRs amounts to poor public policy. In this article, we explore the potential for social HCRs (sHCRs) with reference points and agreed predefined actions to make the social dimensions of fisheries explicit. sHCRs cannot cover all social dimensions, so should be considered as one tool within a broader framework of fisheries governance. Moreover, successful sHCRs would require sound deliberative and participatory processes to generate legitimate social objectives, and monitoring and evaluation of fisheries management performance against those objectives. We introduce two potential types of sHCRs, one based on allocation of catch within biological limit reference points, and one for when fishing exceeds biological limit reference points. The application of sHCRs, we argue, can foster accountability and help avoid non-transparent negotiations on size and distribution of the catch. Our proposal is a call to action for policy makers and fisheries managers to properly integrate social criteria into fisheries governance, and for both biophysical fisheries scientists and social scientists to do better in practical collaboration for methods and knowledge development to support this integration.  相似文献   

5.
We present a novel adaptation of the classic discrete delay-difference model, a continuous delay-differential model (cDDM), which can adequately represent population dynamics of stocks that turn over rapidly and continuously over time (e.g., small pelagic fish, small tunas, and shrimps). We used the Northern-Central Peruvian anchoveta stock (Engraulis ringens, Engraulidae) as a case study for implementing the cDDM and conducted a management strategy evaluation (MSE) through stochastic optimization in policy space (SOPS). Our results showed that cDDM integrated with SOPS efficiently searches optimum and near-optimum harvest control rules (HCR) and is an alternative to pre-setting arbitrary HCRs as in traditional MSE. The cDDM showed comparable stock biomass and recruitment estimate reconstructions to more complex stock assessment models described for anchoveta. We concluded that the anchoveta stock is sustainably managed and is an example of adaptive fisheries management under high ocean-climate variability and uncertainty. Contrary to fishery textbooks, the anchoveta's collapse was not entirely due to the 1972 El Niño (EN) but a recruitment failure preceding EN. Our reconstructions revealed that low recruitment (or recruitment failure) could still occur at high stock biomass. Anchoveta's stock biomass is larger than pre-collapse, likely due to favourable environmental conditions (a cooling trend) and management, despite more frequent and stronger EN events. SOPS quickly revealed that harvest strategies with large base biomass (>5 mmt) lead to higher interannual stock variability and would not produce substantial increases in long-term yield. Alternative HCRs with lower base biomass, while adjusting for productivity regimes, have similar long-term yields without affecting the long-term average stock.  相似文献   

6.
渔业管理中生物学参考点的理论及其应用   总被引:6,自引:3,他引:3  
生物学参考点常被表示为与渔业管理相关联的捕捞死亡率和生物量,是单从生物学角度来衡量渔业资源及其开发状况的指标。通常可分为目标参考点、限制参考点和阈值参考点。目标参考点是为了持续获得某一目标渔获量所需的最小生物量和相应捕捞死亡率,包括目标生物量(Bmsy)、目标产卵亲体量(Smsy、SSB35%、SSB40%)、目标捕捞死亡率(Fmsy、Fmax、F0.1、Fmed、F40%、F40%)等参数。限制参考点用于保证捕捞死亡率不会高到危害鱼类种群的可持续利用和其生物量不会低到危害其生存,主要包括Fmsy、Fmax、F0.1、Fcrash、F20%、Bloss等参数。阈值参考点介于目标参考点和限制参考点之间,包括预防性捕捞死亡率Fpa、预防性生物量Bpa,主要对渔业资源的开发和管理进行预警,防止生物量小于BL。生物学参考点主要应用动态综合模型、产量模型和亲体量补充量关系模型来估算,估算过程中需要考虑到补充、生长、死亡等生命史过程中的不确定性。本文对生物学参考点的发展和应用进行了综述,并以金枪鱼渔业为例阐述它在渔业管理上的应用。近几十年来,我国近海渔业资源出现衰退,亟需利用生物学参考点的原理和方法对重要渔业资源种类进行...  相似文献   

7.
Biomass limit reference points are widely used in fisheries management and define the biomass threshold (BT) below which stock productivity (i.e. recruitment) is likely to be impaired. Scientifically sound and transparent methods for estimating BTs are therefore needed together with ways of quantifying uncertainties. The main focus of the study was placed on two methods currently applied to several small‐bodied pelagic species in the Northeast Atlantic. These methods have not formerly been described in the scientific literature and are in the present study being compared with some already described methods, of which one is broadly applied outside the Northeast Atlantic. Using a combination of data simulations and data from 51 small‐bodied pelagic fish stocks, we analysed the sensitivity of estimated BTs to (a) the choice of method, (b) time‐series length and (c) stock development (e.g. rebuilding or declining). It was demonstrated that estimated BTs are associated with considerable uncertainty not previously quantified. Furthermore, the level of the estimated threshold and the amount of uncertainty depended on choice of method, time‐series length and stock development trends. Hence, this study contributes to improving the quality of future biomass limit reference points by providing guidance regarding choice of method and how to demonstrate stock‐specific uncertainties.  相似文献   

8.
The majority of the world's fisheries, by number, are data‐poor/limited, and there is a growing body of literature pertaining to approaches to estimate data‐limited stock status. There are at least two drivers for assessing the status of data‐limited fisheries. The first is to try to understand and report on the global or regional status of fisheries across many stocks. The second is to attempt to assess individual data‐limited stocks, for status reporting and/or guiding management decisions. These drivers have led to attempts to find simple, generic, low‐cost solutions, including the broad application of generically parameterised models, and the blanket application of a single, or limited number of possible, analytical approach(es). It is unclear that generic methods function as intended, especially when taken out of their original design context or used without care. If the intention is to resolve individual stock status for the purposes of management, there is concern with the indiscriminate application of a single method to a suite of stocks irrespective of the particular circumstances of each. We examine why caution needs to be exercised, and provide guidance on the appropriate application of data‐limited assessment methods (DLMs). We recommend: (a) obtaining better data, (b) using care in acknowledging and interpreting uncertainties in the results of DLMs, (c) embedding DLMs in harvest strategies that are robust to the higher levels of uncertainty in the output of DLMs by including precautionary management measures or buffers and (d) selecting and applying DLMs appropriate to specific species’ and fisheries’ data and context.  相似文献   

9.
Fisheries management needs to ensure that resources are exploited sustainably, and the risk of depletion is at an acceptable level. However, often uncertainty about resource dynamics exists, and data availability may differ substantially between fish stocks. This situation can be addressed through tiered systems, where tiers represent different data limitations, and tier-specific stock assessment methods are defined, aiming for risk equivalence across tiers. As case studies, we selected stocks of European plaice, Atlantic cod and Atlantic herring, where advice is provided by the International Council for the Exploration of the Sea (ICES). We conducted a closed-loop simulation to compare risk equivalence between the data-rich ICES MSY rule, based on a quantitative stock assessment, and the revised data-limited empirical management procedures of the ICES advice framework. The simulations indicated that the data-limited approaches were precautionary and did not lead to a higher risk of depletion than the data-rich approach. Although the catch based on generic data-limited approaches was lower, stock-specific optimisation improved management performance with catch levels comparable with the data-rich approach. Furthermore, the simulation indicated the ICES MSY rule can fail to meet management objectives due to increased depletion risk when management reference points are set suboptimally. We conclude that the recent revisions of the ICES system explicitly account for risk equivalence for data-limited fisheries management and are a major step forward. Finally, we advocate further consideration of simple empirical management procedures irrespective of data limitations due to their ability to meet fisheries management objectives with greater simplicity.  相似文献   

10.
以有限数据评估方法为基础的海州湾渔业管理策略评估   总被引:1,自引:0,他引:1  
孙铭  张崇良  李韵洲  徐宾铎  薛莹  任一平 《水产学报》2018,42(10):1661-1669
实验以计算机模拟的管理策略评价方法为基础,以海州湾海域的银鲳、小黄鱼、大泷六线鱼和长蛇鲻为例,对基于数据有限方法的管理策略进行了分析评价。模拟结果显示,基于体长的管理策略能够在产量和避免过度捕捞间取得较好的权衡,其管理效果优于基于捕捞努力量的管理策略。模拟结果显示,银鲳和大泷六线鱼处于过渡捕捞状态;小黄鱼种群规模具有较大波动和不确定性;长蛇鲻种群未遭受过度捕捞。研究表明,基于有限数据评估方法的管理策略可以有效避免潜在的过度捕捞,提升遭受过度捕捞群体的产卵群体生物量规模,具有较好的可持续性,并能维持可观的产量,在我国具有广泛的运用前景。  相似文献   

11.
In European fisheries, most stocks are overfished and many are below safe biological limits, resulting in a call from the European Commission for new long‐term fisheries management plans. Here, we propose a set of intuitive harvest control rules that are economically sound, compliant with international fishery agreements, based on relevant international experiences, supportive of ecosystem‐based fisheries management and compatible with the biology of the fish stocks. The rules are based on the concept of maximum sustainable yield (MSY), with a precautionary target biomass that is 30% larger than that which produces MSY and with annual catches of 91%MSY. Allowable catches decline steeply when stocks fall below MSY levels and are set to zero when stocks fall below half of MSY levels. We show that the proposed rules could have prevented the collapse of the North Sea herring in the 1970s and that they can deal with strong cyclic variations in recruitment such as known for blue whiting. Compared to the current system, these rules would lead to higher long‐term catches from larger stocks at lower cost and with less adverse environmental impact.  相似文献   

12.
Surplus production modelling has a long history as a method for managing data‐limited fish stocks. Recent advancements have cast surplus production models as state‐space models that separate random variability of stock dynamics from error in observed indices of biomass. We present a stochastic surplus production model in continuous time (SPiCT), which in addition to stock dynamics also models the dynamics of the fisheries. This enables error in the catch process to be reflected in the uncertainty of estimated model parameters and management quantities. Benefits of the continuous‐time state‐space model formulation include the ability to provide estimates of exploitable biomass and fishing mortality at any point in time from data sampled at arbitrary and possibly irregular intervals. We show in a simulation that the ability to analyse subannual data can increase the effective sample size and improve estimation of reference points relative to discrete‐time analysis of aggregated annual data. Finally, subannual data from five North Sea stocks are analysed with particular focus on using residual analysis to diagnose model insufficiencies and identify necessary model extensions such as robust estimation and incorporation of seasonality. We argue that including all known sources of uncertainty, propagation of that uncertainty to reference points and checking of model assumptions using residuals are critical prerequisites to rigorous fish stock management based on surplus production models.  相似文献   

13.
The European eel, Anguilla anguilla (L.), has a complex life history and many aspects of the biology and population dynamics of this species remain unknown or, at best, poorly understood. Relatively little is also known about the status of the stocks and fisheries, but available data suggest that recruitment of glass eels has been falling for the last 20 years and is at historically low levels. Yellow and silver eel catches have also been falling in many parts of the species range over a similar time‐scale. Re‐examination of the principles applied to fisheries management over recent years has resulted in the adoption of a ‘precautionary approach’ to the conservation, management and exploitation of fish stocks, and in an explicit need to take account of uncertainties in management to reduce risks to stocks and their environment. Such an approach is highly relevant to the management of the European eel and requires that urgent consideration is given to harvest strategies and decision structures for the national and international management of stocks and fisheries. Provisional biological reference levels should be established to provide an equable assessment of the status of stocks in all parts of Europe and to evaluate the need for management measures in all fisheries. These will need to be reviewed as further information comes available. Monitoring and research on eel stocks should therefore be enhanced and co‐ordinated to improve our understanding of the status of stocks throughout Europe and the biology of the species.  相似文献   

14.
Reference points based on fishing mortality (F) and spawning stock biomass (SSB) are a requirement of many fisheries management frameworks. SSB is assumed to be a proxy for stock reproductive potential (SRP). Limit reference points based on SSB are used to indicate the level of biomass below which productivity is affected. SSB fails to account for changes in fecundity, egg viability and sex ratio, and it has been argued that total egg production (TEP) provides a better reflection of SRP. We explore how accounting for TEP impacts limit reference points and evidence for a relationship between stock and recruit. Time series of SSB and TEP are compared for three North Sea stocks: cod (Gadus morhua), herring (Clupea harengus) and plaice (Pleuronectes platessa). Dynamics based on TEP are different from those based on SSB for cod and plaice, but the stock–recruit relationships were not ‘improved’ using TEP. Shifts in productivity (spawner per recruit) occur in all three time series and SSB underestimated uncertainty. Yet again, it was shown that assumptions of stationarity about fish population productivity are incorrect. We argue that the use of TEP does improve the realism in our understanding of stock dynamics, and demographically, more complex management strategy evaluation is required to develop management procedures that are robust to uncertainty and integrate F and the demographic health of a stock. Empirical feedback control systems based on fisheries independent indices including surveys of eggs, larvae, recruits, juveniles or spawning adults should be evaluated and compared to traditional approaches.  相似文献   

15.
In this study we show how substantial gains towards the goals of ecosystem-based fisheries management (EBFM) can be achieved by different single-species management. We show that fishing has much less impact on stocks if fish are caught after they have reached the size (Lopt) where growth rate and cohort biomass are maximum. To demonstrate our point we compare the impact of three fishing scenarios on 9 stocks from the North Sea and the Baltic. Scenario (1) is the current fishing regime, scenario (2) is a new management regime proposed by the European Commission, aiming for maximum sustainable yield obtained from all stocks, and scenario (3) is set so that it achieves the same yield as scenario (2), albeit with fishing on sizes beyond Lopt. Results show that scenarios (2) and (3) are significant improvements compared to current fishing practice. However, scenario (3) consistently shows least impact on the stocks, with seven-fold higher biomass of demersal fishes and an age structure similar to an unfished stock. This allows juveniles and adults to better fulfil their ecological roles, a major step towards the goals of ecosystem-based fisheries management. We give examples where scenario (3) is practiced in successful fisheries. We present a new interpretation of the relative yield per recruit isopleth diagram with indication of a new target area for fisheries operating within the context of EBFM. We present a new expression of the relative biomass per recruit isopleth diagram, which supports our analysis. We conclude that size matters for precautionary and ecosystem-based fisheries management and present a list of additional advantages associated with fishing at Lopt.  相似文献   

16.
Commercial tunas and billfishes (swordfish, marlins and sailfish) provide considerable catches and income in both developed and developing countries. These stocks vary in status from lightly exploited to rebuilding to severely depleted. Previous studies suggested that this variability could result from differences in life‐history characteristics and economic incentives, but differences in exploitation histories and management measures also have a strong effect on current stock status. Although the status (biomass and fishing mortality rate) of major tuna and billfish stocks is well documented, the effect of these diverse factors on current stock status and the effect of management measures in rebuilding stocks have not been analysed at the global level. Here, we show that, particularly for tunas, stocks were more depleted if they had high commercial value, were long‐lived species, had small pre‐fishing biomass and were subject to intense fishing pressure for a long time. In addition, implementing and enforcing total allowable catches (TACs) had the strongest positive influence on rebuilding overfished tuna and billfish stocks. Other control rules such as minimum size regulations or seasonal closures were also important in reducing fishing pressure, but stocks under TAC implementations showed the fastest increase of biomass. Lessons learned from this study can be applied in managing large industrial fisheries around the world. In particular, tuna regional fisheries management organizations should consider the relative effectiveness of management measures observed in this study for rebuilding depleted large pelagic stocks.  相似文献   

17.
The social and economic importance of small‐scale fisheries is frequently under‐valued, and they are rarely effectively managed. There is now growing consensus on how these fisheries could be managed for sustainability and to minimize the risks of crossing undesirable thresholds. Using a concept developed in health care, these approaches have been referred to as primary fisheries management. By encouraging the use of best‐available information in a precautionary way, the approaches will facilitate sustainable use and should therefore be encouraged, but they accept high scientific and implementation uncertainties as unavoidable because of limited management and enforcement resources and capacity. It is important to recognize that this limitation will result in social costs, because application of a precautionary approach in the face of high uncertainties will require forgoing potential sustainable benefits. Acceptance of primary fisheries management as a final and sufficient goal could therefore add a further constraint on the possibility of fishing communities escaping the poverty trap. Primary fisheries management should be seen as a first and minimum target for fisheries where there is currently no or inadequate management, but the longer‐term goal should still be well informed and adaptive management that strives for optimal benefits, referred to here as tertiary management.  相似文献   

18.
Individual transferable quota (ITQ) programmes have been incorporated into many marine fisheries management strategies for 30 years, but their implementation and utility remains controversial. This study provides an overview of the global status of ITQ programmes, the reasons they have been adopted and the changes in stock biomass after their implementation. Eighteen countries currently use ITQs to manage several hundred stocks of at least 249 species. ITQs were adopted in these countries for many reasons: overcapitalization, economic gains, safety concerns for fishers and political change. The implementation of ITQs does not translate into consistent changes in stock biomass. Improvements in 12 of 20 stocks after ITQs were introduced suggest that ITQs can be an effective component of fisheries management strategies, but eight of the stocks continued to decline after ITQs were introduced. This suggests that alternative or complementary measures are needed to sustain those fisheries, such as combining ITQs with more effective total allowable catches, better enforcement and monitoring, and implementing aspects of ecosystem-based fisheries management.  相似文献   

19.
Model uncertainty in the ecosystem approach to fisheries   总被引:2,自引:0,他引:2  
Fisheries scientists habitually consider uncertainty in parameter values, but often neglect uncertainty about model structure, an issue of increasing importance as ecosystem models are devised to support the move to an ecosystem approach to fisheries (EAF). This paper sets out pragmatic approaches with which to account for uncertainties in model structure and we review current ways of dealing with this issue in fisheries and other disciplines. All involve considering a set of alternative models representing different structural assumptions, but differ in how those models are used. The models can be asked to identify bounds on possible outcomes, find management actions that will perform adequately irrespective of the true model, find management actions that best achieve one or more objectives given weights assigned to each model, or formalize hypotheses for evaluation through experimentation. Data availability is likely to limit the use of approaches that involve weighting alternative models in an ecosystem setting, and the cost of experimentation is likely to limit its use. Practical implementation of an EAF should therefore be based on management approaches that acknowledge the uncertainty inherent in model predictions and are robust to it. Model results must be presented in ways that represent the risks and trade‐offs associated with alternative actions and the degree of uncertainty in predictions. This presentation should not disguise the fact that, in many cases, estimates of model uncertainty may be based on subjective criteria. The problem of model uncertainty is far from unique to fisheries, and a dialogue among fisheries modellers and modellers from other scientific communities will therefore be helpful.  相似文献   

20.
Abstract

Designing intelligent management strategies for shrimp aquaculture systems require recognising the uncertainty and risks associated with different processes of aquaculture production. To account for natural variability and other sources of uncertainty, estimates of appropriate aquaculture bio‐economic indicators are needed to re‐evaluate periodically the production system and establish new reference points and corresponding management strategies. This paper concentrates on this aspect of the management process and presents a simple classification of indicators and reference points for aquaculture production systems. The uncertainty causing variability in the estimated values of bio‐economic parameters is incorporated through the use of Monte Carlo analysis to estimate the probability of exceeding limit reference points. To illustrate this process, the risks (i.e. probabilities of exceeding bioeconomic limit reference points) associated to alternative timing of harvesting decisions were estimated by randomly generating uncertain prices and natural mortalities with the appropriate probability density functions and corresponding variance. Alternative approaches to deal with risk and uncertainty in data limited management contexts are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号