首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In freesia cv. Aurora grown in the field for cutflower production, a disease occurred with symptoms of leaf-yellowing in combination with corm necrosis (LYCN). It is shown that this disease is caused by bean yellow mosaic virus (BYMV).No differences in symptoms of LYCN were observed between the freesia cultivars Aurora, Imperial and Rose Marie. Most BYMV isolates gave rise to LYCN; the isolates from crocus andIxia sp. did not. LYCN was stimulated by a high BYMV concentration in the inoculum, a temperature above 20°C, inoculation soon after emergence of the freesias, and by the absence of freesia mosaic virus. Freesias with mosaic symptoms and infected with a cross-protecting BYMV strain, did not show symptoms of leaf-yellowing and/or corm necrosis after inoculation with BYMV-Cm. The presence of the unknown agent causing leaf necrosis in freesias did not have an influence on symptom development after infection with BYMV.  相似文献   

3.
The causative virus (isolate No. 4) of gentian (Gentiana spp.) mosaic, which had been identified previously as Clover yellow vein virus (C1YVV) on the basis of host range and serological reactions, was re-identified as Bean yellow mosaic virus (BYMV) on the basis of the nucleotide sequences of the gene for the coat protein (CP) and the 3′-noncoding region, as well as the predicted amino acid sequence of CP. Received 16 April 2002/ Accepted in revised form 19 June 2002  相似文献   

4.
A new bacterial disease of Russell prairie gentian (Eustoma grandiflorum) was found in Fukuoka Prefecture, Japan, in 1997. This disease was characterized by wilting and yellowing of the foliage. A cross section of the stem of a diseased plant revealed a tan to yellow-brown discoloration of the vascular tissue. A nonfluorescent, aerobic, Gram-negative bacterium was consistently isolated from infected plants. The bacteriological characteristics of 10 isolates of the bacterium coincided with those of the reference strains of Burkholderia caryophylli that were isolated from carnations. The bacterium, as well as the reference strains, attacked Russell prairie gentian and carnation after artificial inoculation and reproduced the symptoms similar to those after natural infections. On the basis of bacteriological characteristics and pathogenicities, the bacterium was identified as B. caryophylli. This is the first report of a disease caused by B. caryophylli on Russell prairie gentian ; therefore, bacterial wilt of Russell prairie gentian is proposed as the name of the disease. Received 5 April 2000/ Accepted in revised form 11 July 2000  相似文献   

5.
6.
7.
Alstroemeria plants were surveyed for viruses in Japan from 2002 to 2004. Seventy-two Alstroemeria plants were collected from Aichi, Nagano, and Hokkaido prefectures and 54.2% were infected with some species of virus. The predominant virus was Alstroemeria mosaic virus, followed by Tomato spotted wilt virus, Youcai mosaic virus (YoMV), Cucumber mosaic virus (CMV), Alstroemeria virus X and Broad bean wilt virus-2 (BBWV-2). On the basis of nucleotide sequence of the coat protein genes, all four CMV isolates belong to subgroup IA. CMV isolates induced mosaic and/or necrosis on Alstroemeria. YoMV and BBWV-2 were newly identified by traits such as host range, particle morphology, and nucleotide sequence as viruses infecting Alstroemeria. A BBWV-2 isolate also induced mosaic symptoms on Alstroemeria seedlings.  相似文献   

8.
Brown root rot of Russell prairie gentian was observed in the Aomori Prefecture, Japan in April 2011. The fungal isolate from the diseased root was identified as Subplenodomus drobnjacensis on the basis of its morphological characteristics and nucleotide sequences. The isolate induced similar root rot symptoms when inoculated in healthy Russell prairie gentian plants. We proposed the name “brown root rot” for this disease.  相似文献   

9.
In March 1999, we found prairie gentian (Eustoma grandiflorum) infected with powdery mildew in a greenhouse in Oita Prefecture, Japan. Morphological observation revealed that the causal fungus belongs to the mitosporic genus Oidium subgenus Pseudoidium [teleomorph: Erysiphe sensu Braun and Takamatsu (2000)]. Precise taxonomic position of the fungus, however, is uncertain due to lack of the perfect stage. We determined the nucleotide sequence of the rDNA ITS region of the fungus. Comparison of the sequence with those obtained from DNA databases of this fungal group revealed that the sequence is identical to those of powdery mildews from garden four-o'clock (Mirabilis jalapa) and broad bean (Vicia faba). Inoculation of an isolate from garden four-o'clock caused mildew on prairie gentian and broad bean, suggesting that the prairie gentian mildew originates from garden four-o'clock or broad bean. Molecular phylogenetic analysis indicated a close relationship of this fungus to Erysiphe baeumleri on Vicia spp. and E. trifolii on Trifolium pratense. From these results, we propose that prairie gentian mildew diverged from a Fabaceae-parasitic ancestor. Received 14 March 2002/ Accepted in revised form 28 May 2002  相似文献   

10.
在田间的小麦丛矮病非典型病株申常常分离到北方禾谷花叶病毒(NCMV)及玉米粗缩病毒(MRDV)两种病原物。单独用前者接种,仅表现小麦丛矮症,单独用后者接种,仅表现小麦蓝矮症,即植株矮化、暗绿、分蘖减少,叶坚挺。两者混合侵染时,往往表现两者的混合症状,但以何种病毒占优势而倾向于优势病毒的症状。典型丛矮症植株中电镜检出弹状病毒粒体,40—70×270—400nm尺度与日本报导的稍异。典型丛矮病株中不存在玉米粗缩病毒的粒体。小麦丛矮病毒很可能是北方禾谷花叶病毒的一种地方性株系。  相似文献   

11.
为明确水茄Solanum torvum植株叶片邹缩、褪绿是否由菜豆金色花叶病毒属病毒侵染引起,从云南省西双版纳傣族自治州田间采集具有疑似感染症状的水茄植株叶片样品,应用菜豆金色花叶病毒属病毒简并引物和特异性引物进行PCR扩增、克隆和测序,通过生物信息软件分析比较其核苷酸序列特征,并对其进行系统发育分析。结果显示,从采集的疑似病叶中共克隆获得了5条菜豆金色花叶病毒属病毒DNA-A全序列和3条DNA-B全序列,经全序列分析发现,侵染水茄的2种菜豆金色花叶病毒属病毒分离物分别属于中国南瓜曲叶病毒(squash leaf curl China virus,SLCCNV)和野茼蒿黄脉病毒(Crassocephalum yellow vein virus,CraYVV)。SLCCNV水茄分离物的基因组具有典型的菜豆金色花叶病毒属病毒双组分结构特征,与来自泰国的SLCCNV分离物(AB330078)亲缘关系最近,相似性最高达到99.0%;CraYVV水茄分离物的基因组具有典型的菜豆金色花叶病毒属病毒单组分结构特征,与来自云南省景洪市的CraYVV分离物(EF165536)亲缘关系最近,相似性最高达到97.6%。表明水茄是这2种菜豆金色花叶病毒属病毒的新寄主,并首次发现双组分和单组分菜豆金色花叶病毒属病毒可复合侵染水茄。  相似文献   

12.
13.
豌豆病毒病病原研究   总被引:2,自引:0,他引:2  
 1986年至1990年,从豌豆田中采集了150余份病毒病样本,鉴定出蚕豆萎蔫病毒(BB-WV)、芜菁花叶病毒(TuMV)、马铃薯Y病毒组分离物、黄瓜花叶病毒(CMV)、莴苣花叶病毒(LMV)、大豆花叶病毒(SMV)、豌豆花叶病毒(PMV)、菜豆黄花叶病毒(BYMV)和苜蓿花叶病毒(AMV)等9种病毒。样本中,BBWV所占的比例最高,达59.2%,其次为CMV,占15.5%。BBWV常与CMV复合侵染豌豆,LMV发生也较普遍。田间调查表明,豌豆病毒病发病率因种植地区及品种不同而有差异,平均发病率为12.4%。  相似文献   

14.
Cannas are tropical and subtropical flowering perennial plants. The genus contains many species but most commercially grown cultivars are interspecific hybrids selected for their attractive foliage and flowers. Canna production is so lucrative that there are farmers and nurseries dedicated solely to its production. The specific issue that the canna industry faces is virus diseases. In this study, rhizomes of 24 canna cultivars were gathered and diagnostics conducted to detect Bean yellow mosaic virus (BYMV, Potyvirus), Canna yellow mottle virus (CaYMV, Badnavirus), Canna yellow streak virus (CaYSV, Potyvirus), Cucumber mosaic virus (CMV, Cucumovirus) and Tomato aspermy virus (TAV, Cucumovirus). Visual assessment of disease symptoms and diagnostic tests were carried out to identify the prevalent diseases and describe the symptoms that are associated with virus infection. BYMV, CaYMV and CaYSV caused severe mosaic and necrosis either in the leaf lamina or veins of infected leaves. Potyvirus infection suppressed red colouration in the foliage of some varieties. CaYMV and CaYSV often appeared in the same plant, suggesting they might represent a viral complex. CMV and TAV were rarely seen in these populations. Interestingly, CaYMV but not CaYSV could be mechanically inoculated to Phaseolus vulgaris plants.  相似文献   

15.
 A potyvirus, for which the name Japanese hornwort mosaic virus (JHMV) is proposed, was isolated from Japanese hornwort plants (Cryptotaenia japonica) with mosaic disease symptoms. The virus was used to inoculate mechanically 34 plants belonging to 33 species of 10 families. Of these species seven from two families were infected. Faint chlorotic spots appeared on the inoculated leaves of Chenopodium quinoa and C. amaranticolor, but no systemic infection occurred in these plants. JHMV systemically infected only Umbelliferae plants; they did not infect 26 other species in eight families. JHMV was transmitted in a nonpersistent manner by aphids (Myzus persicae). The virus was a flexuous rod-shaped particle about 750 nm in length. Sequencing the nucleotides in the 3′ terminal region of JHMV revealed that the coat protein contains 280 amino acids with a molecular mass of 32.2 kDa. The nucleotide sequence of the coat protein of JHMV had the highest similarity with that of Zantedeschia mosaic virus (83.3%) compared to those of other potyviruses (57.0%–64.9%). An antiserum against JHMV reacted strongly with JHMV and weakly with Potato virus Y. These results indicate that JHMV is a new potyvirus. Received: September 9, 2002 / Accepted: November 7, 2002 RID="*" ID="*" The nucleotide sequence determined in this work appears in the DDBJ/EMBL/GenBank nucleotide sequence databases with the accession number AB081518  相似文献   

16.
A novel potyvirus, tentatively named Ornithogalum virus 2 (OV-2) because only its nucleotide sequence of the coat protein gene has been revealed, was isolated for the first time from Ornithogalum thyrsoides. OV-2 had a flexuous particle (700–740 nm in length) and was sap and aphid transmissible. The virus had a narrow host range; of 36 test plants in 12 families, only O. thyrsoides and O. dubium were infected. Because the virus caused characteristic stripe mosaic on O. thyrsoides, we propose Ornithogalum stripe mosaic virus (OrSMV), instead of OV-2 for the proper name of the virus. The nucleotide sequence data reported is available in the DDBJ/EMBL/GenBank databases under accession number AB271783.  相似文献   

17.
18.
Severe mosaic with leaf malformation and green vein banding was observed on yam bean in West and Central Java, Indonesia. Virions of the causal virus were flexuous filaments, about 700 nm in length, with a coat protein of 30 kDa. The virus was transmitted by mechanical inoculation and by aphids in a nonpersistent manner. The nucleotide sequence of the coat protein gene had the highest identity with that of Bean common mosaic virus (BCMV, genus Potyvirus) isolate VN/BB2-5. Based on demarcation criteria, including the genome sequence and host range, we tentatively designate this isolate as BCMV-IYbn (Indonesian yam bean). The nucleotide sequence reported is available in the DDBJ/EMBL/GenBank databases under accession number AB289438.  相似文献   

19.
A viral disease was found in Nagano Prefecture, Japan, on statice (Limonium sinuatum) with chlorotic leaf spot, necrotic stunt, and dwarfing. Spherical virus particles 30 nm in diameter were isolated from infected plants and statice seedlings and caused identical symptoms 4 weeks after mechanical inoculation. Nucleotide and deduced amino acid sequences of the coat protein showed 98% and 98.7% identities with those of Grapevine Algerian latent virus (GALV) nipplefruit strain. This is the first report in Japan of a viral disease on statice caused by GALV. The nucleotide sequence data reported here are available in the DDBJ/EMBL/GenBank databases under accession AB461854.  相似文献   

20.
There still is confusion concerning the relationships between clover yellow vein virus (ClYVV), pea necrosis virus (PNV) and bean yellow mosaic virus (BYMV). Therefore, three Swedish isolates of ClYVV and its type strain have now been compared with three isolates of PNV. A bean mosaic isolate and three pea necrosis isolates of BYMV have been used for reference. Based on host range tests, serology, and light microscope studies of inclusion bodies, ClYVV and PNV isolates are now considered to be strains of one virus, with the first name having priority. ClYVV (including the original PNV) especially differs from BYMV in its ability to infect white clover, to produce local lesions on cucumber cotyledons (at least two cultivars), to go systemic inChenopodium quinoa (the two local selections used at Wageningen and at Uppsala), to be rather virulent onNicotiana clevelandii, and to provoke extensive nucleolar enlargements in its host cells. Serologically the two viruses are more or less distinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号