首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A method was developed using a Loop-mediated isothermal amplification assay (LAMP) for detecting Didymella bryoniae in cucurbit seeds. The LAMP primers were designed based on the DNA-dependent RNA polymerase II RPB140 gene (RPB2) from D. bryoniae. Calcein was used as an indicator for the endpoint visual detection of DNA amplification. The LAMP assay was conducted in isothermal (65 °C) conditions within 1 h. The detection threshold of the LAMP assay was 10 pg of genomic DNA and D. bryoniae was detected in 100 % of artificially infested seedlots with 0.05 % infestation or greater. With the LAMP assay, 16 of 60 watermelon and muskmelon seedlots collected from Xinjang province were determined to be positive for D. bryoniae. In contrast, a real-time PCR assay determined that 11 of the 60 seedlots from Xinjiang province were positive for the pathogen. These results showed that the LAMP technique was simple, rapid and well suited for detecting D. bryoniae DNA, especially in seed health testing.  相似文献   

2.
Phytophthora capsici infection of chili pepper seedlings can cause substantial losses due to damping-off and collar rot diseases. Chemical control is no longer effective due to reported resistance development, on top of the related environmental concerns and the consumer demands for reduced use of fungicides. Biological control is a sustainable option, with several agents having been reported to be effective against this pathogen. This research focused on optimizing the application of strain THSW13 of Trichoderma hamatum and a bacterial isolate BJ10–86 with the objectives of improving chili pepper seed germination, reduce damping-off disease incidence, and improve the growth of the seedlings. Bacterial isolate BJ10–86 was subjected to molecular identification and found to be Pseudomonas aeruginosa. Chili pepper seeds treated with the biocontrol agents, individually or in combination, were seeded into commercial nursery media that had been pre-inoculated with P. capsici zoospores. Over a period of 35 days the chili pepper seed treatments significantly (P = 0.008) reduced the disease incidence of seedlings damping-off. Combined application of T. hamatum and P. aeruginosa was the best biocontrol treatment with an area under disease curve of only 36.61 units compared to 92.87 units for the control treatment. Similar results were observed in vitro where T. hamatum and P. aeruginosa synergistically inhibited P. capsici growth by 73.2 %. The inhibition activity of this treatment was similar to mefenoxam treatment, which implies that it is an effective and sustainable alternative for chili pepper seed treatment. The biocontrol seed treatment had no effect on seed germination and seedling growth.  相似文献   

3.
Rhizoctonia cerealis causes sharp eyespot in cereals and the pathogen survives as mycelia or sclerotia in soil. Real-time Polymerase Chain Reaction (qPCR) assays based on TaqMan chemistry are highly suitable for use on DNA extracted from soil. We report here the first qPCR assay for R. cerealis using TaqMan primers and a probe based on a unique Sequence Characterised Amplified Region (SCAR). The assay is highly specific and did not amplify DNA from a range of other binucleate Rhizoctonia species or isolates of anastomosis groups of Rhizoctonia solani. The high sensitivity of the assay was demonstrated in soils using a bulk DNA extraction method where 200 μg sclerotia in 50 g of soil were detected. DNA of the pathogen could also be amplified from asymptomatic wheat plants. Using the assay on soil samples from fields under different crop rotations, R. cerealis was most frequently detected in soils where wheat was grown or soil under pasture. It was detected least frequently in fields where potatoes were grown. This study demonstrates that assays derived from SCAR sequences can produce specific and sensitive qPCR assays.  相似文献   

4.
Real-Time PCR assay was used to quantify the expression of marker genes of the salicylic acid, jasmonic acid and ethylene signaling pathways in seven Solanum lines after inoculation with a Ralstonia solanacearum phylotype I strain, R008. Four Solanum lycopersicum lines (CRA 66, Hawaii 7996, MST 32/1, Quatre carrées), one S. tuberosum line (Spunta), the wild Lycopersicon cerasiforme and Solanum commersonii were used for this investigation. Results revealed very little activation of the jasmonic acid pathway marker genes, lipoxygenase A (LoxA) and protease inhibitor II (Pin2), with no significant difference (p > 0.05) in fold change expression among the Solanum lines. In contrast the salicylic acid pathway marker genes, glucanase A (GluA) and PR-1a, and the ethylene pathway marker genes, osmotin-like (Osm) and PR-1b, were expressed at higher levels with a statistically significant difference (p < 0.05) in fold change expression among the Solanum lines. The resistant lines L. cerasiforme, CRA 66, Hawaii 7996 and S. commersonii showed stronger activation of the salicylic acid and ethylene marker genes than the moderately resistant cultivar (MST 32/1) and the susceptible lines (Quatre carrées and Spunta). The marker genes reached their highest expression levels earlier (4 h.p.i) in the resistant and moderately resistant lines than in the susceptible lines (48 h.p.i.). These results indicate that salicylic acid and ethylene signaling pathways have a significant role in defense against R. solanacearum. The timing and magnitude of the upregulation of gene expression may determine the plant ability to put up a defense response against the pathogen.  相似文献   

5.
Pratylenchus zeae parasitizes various crops and damages the host roots, resulting in decreased yield and quality of the host plants. Alignments of mitochondrial DNA (mtDNA) Cytochrome Oxidase I (COΙ) sequences revealed the genetic variation among Pratylenchus species. The results indicated 0.2–2.4% intraspecific variations for mtDNA COI sequences among eight P. zeae populations, and 25.4–35.1% interspecific variations between P. zeae and other Pratylenchus species. Based on the mtDNA COΙ region, a loop-mediated isothermal amplification (LAMP) assay was developed for the rapid and specific detection of P. zeae. The optimal conditions for the LAMP assay were 64 °C for 40 min. The LAMP products were confirmed using conventional polymerase chain reaction (PCR), analysis with the restriction enzyme Bam HI and visual inspection by adding SYBR Green I to the products. The LAMP assay could detect P. zeae populations from different hosts and different geographical origins specifically. The LAMP assay was also sensitive, detecting 0.1 individual P. zeae, which was 10 times more sensitive than conventional PCR. This is the first report of the detection of Pratylenchus spp. using LAMP. In addition, the results also suggested that use of the COI gene might allow for good resolution at the Pratylenchus species level.  相似文献   

6.
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease of wheat worldwide. Understanding the survival of Pst during the winter is critical for predicting Pst epidemics in the spring. We used a real-time quantitative PCR (qPCR) method to quantify Pst CYR32 biomass in infected wheat seedlings under several fluctuating temperature regimes (three average temperatures 0, ?5 and ?10 °C, each with two daily fluctuating amplitudes 8 and 13 °C). The survival of Pst CYR32 increased with increasing average temperature but also varied greatly with the amplitude – larger amplitude led to lower survival, particularly at 0 and ?5 °C. Nevertheless the survival at both amplitudes was still significantly greater than under the corresponding constant temperatures. There were small, albeit statistically significant, differences between the two cultivars (Xiaoyan 22, low winter-hardiness; Lantian 15, high winter-hardiness) in Pst CYR32 survival. This study indicated potential errors that could result from using daily average temperatures to predict Pst survival during the winter.  相似文献   

7.
Fenugreek is an annual leguminous crop grown for hay and grains in Tunisia. It is also considered a valuable rotation crop with cereals. Sclerotinia rot was observed in production fields since 2010. The survey conducted in 2013 revealed that the incidence of diseased plants varied between 5 and 20%. The identification of isolates of Sclerotinia obtained from fenugreek plants with symptoms of stem rot was determined using morphological and molecular criteria. The size, shape and abundance of sclerotia in potato dextrose agar (PDA) cultures were used to classify isolates as S. sclerotiorum or S. trifoliorum. A comparison of colony diameter on PDA after 24, 48 and 72 h at 25 °C, showed that one isolate grew faster (36 mm/day) than the other 10 isolates (14.8 mm/day). There was a significant difference in sclerotial size between the fast and the slow growing isolates, but there was no significant difference in the number of sclerotia produced after 3 weeks on PDA. Two of the slow growing isolates exhibited ascospore dimorphism, whereas the fast growing isolate did not. PCR amplification with the primer pair ITS5/ITS4 produced a fragment of 560 base pairs from the fast growing isolate and 1000 base pairs from all of the slow growing isolates. The ITS sequences of the fast growing isolate had 100% homology with S. sclerotiorum, whereas those of the slow growing isolates had 100% homology with S. trifoliorum. Isolates of both species were pathogenic on fenugreek seedlings in the greenhouse assay and there was no significant difference in the percentage of dead plants two weeks after inoculation between the two species.  相似文献   

8.
Stripe rust is considered as the current major rust disease affecting winter cereal production across the world. A quick, reliable PCR-based marker was developed here to detect, identify and rapidly monitor Puccinia striiformis f. sp. tritici (Pst) in wheat-growing areas. Three respective sets of primers, designed from β-tubulin, squalene monooxygenase and ketopantoate reductase genes selected from the full genome of Puccinia striiformis f. sp. tritici, amplified sequences of 239, 358 and 1518 bp, respectively, in Pst pathotypes. A fragment of 1518 bp unique to Pst pathotypes was amplified using primer set PstKeto F1_30/Pst KetoR1_1547 and distinguished the pathogen clearly from different Puccinia spp. and other fungal pathogens. The detection limit of the marker (KetoPstRA1500, accession no. KU240073) by conventional PCR assay was 10 pg. This marker could detect the pathogen in the host before symptom expression. The sensitivity and utility of the marker were further enhanced in a qPCR-based assay that was developed with a newly designed primer set PstKeto F1_1246/Pst KetoR1_1547, which amplified a product of 302 bp and detected as little as 10 fg of DNA. This PCR/qPCR based marker is suitable for studying cultivar resistance, which requires accurate quantification of the pathogen in diseased host tissue.  相似文献   

9.
This is the first report of Alternaria leaf spot disease on coriander (Coriandrum sativum L.) in South Africa. Using the agar plate method, Alternaria alternata was isolated from coriander seed lots together with four other fungal genera, which included Aspergillus, Fusarium, Penicillium and Rhizopus. Standard seed germination tests of coriander seed lots infected with seed-borne mycoflora showed a positive correlation with the number of diseased seedlings (r?=?0.239, p?<?0.01). Pathogenicity tests demonstrated that this seed-borne A. alternata was pathogenic on coriander and symptoms on leaves first appeared as small, dark brown to black, circular lesions (<5 mm diam.) that enlarged and coalesced to form dark brown blotches as time progressed. Leaf spot disease was most severe (64%) on wounded leaves inoculated with A. alternata. Re-isolation of A. alternata from diseased coriander plants satisfied the Koch’s postulates, thus confirming it as the causal agent of Alternaria leaf spot disease. Parsimony analysis based on rpb2 (GenBank Accession No. KT895947), gapdh (KT895949) and tef-1α (KT895945) sequences confirmed identity of the Alternaria isolate, which grouped within the A. alternata clade. Alternaria alternata was shown to be transmitted from infected coriander seed to the developing plants.  相似文献   

10.
Zonate leaf spot (Gloeocercospora sorghi) is a common disease in Sorghum bicolor producing areas of the U.S., but little is known about its biology, virulence and severity on S. bicolor, Zea mays, and related crop grassweeds. Greenhouse studies were conducted to determine and compare the virulence and severity of G. sorghi on 10 commercially available sorghum hybrids, four Z. mays hybrids and selected grassweed species including Sorghum bicolor (grain sorghum and shattercane biotypes) and Sorghum halepense (Johnsongrass), two of the most problematic arable weeds. Plants from the respective species were inoculated with a local G. sorghi isolate and maintained in a dew-chamber at 24 °C for 24 h and then incubated under greenhouse conditions for 4 weeks. Plants were observed for lesion expression and rated using a modified Horsfall-Barrett scale (0–10). The first symptoms of infection were visible within 24 h following inoculation on shattercane and S. bicolor hybrids. Symptoms consisted of small, non-diagnostic purple lesions on the leaves. Results showed that S. bicolor, S. halepense and shattercane were susceptible to G. sorghi. All other species tested in this study were not infected. More particularly, disease severity, increased from a rating of 3 to 10 on sorghum and from 2 to 7 on S. halepense between 2 and 23 days after inoculation, respectively. However, disease severity on shattercane increased rapidly from 3.5 to 10 between 2 and 8 days after inoculation, respectively. Among the sorghum hybrids tested, FFR-322 appeared to be the most resistant to G. sorghi while Pioneer 83G66 appeared to be the most susceptible. Z. mays hybrids were not infected by the fungus used in this study. G. sorghi could be used effectively to manage shattercane and S. halepense infestations occurring in Z. mays and S. bicolor fields consisting of specific G. sorghi-resistant hybrids.  相似文献   

11.
Watermelon (Citrullus lanatus) is an important crop of the Cucurbitaceae family in fruit production worldwide. During its production, bacterial fruit blotch (BFB) caused by Acidovorax citrulli (Acidovorax avenae subsp. citrulli) is an important limiting factor on the volume and value of crops. This pathogen is known as a seed-borne pathogen, and the infested seeds can be a primary source of inoculum. Hence, a rapid and sensitive method for detecting A. citrulli on seeds would be an important tool in the management of BFB. In this study, we sought to develop a method to detect A. citrulli bacterial cells based on a TaqMan probe-based insulated isothermal PCR (TiiPCR) assay. Firstly, the specific primers and probe were designed based on a specific DNA fragment from the genome of A. citrulli. Then, PCR amplification was performed with the plasmid DNA to adjust the components of the PCR reagents, such as the concentrations of primers, magnesium chloride, and Taq DNA polymerase. Results revealed that 10 copies of plasmid DNA were detectable within the modified reagents by TiiPCR. Moreover, 10 bacterial cells in each reaction tube were detectable at a 100 % detection rate in this condition with a fluorescent signal intensification over 1.8. Based on these results, we concluded that a specific, rapid, and sensitive method based on TiiPCR had been successfully developed to detect bacterial cells of A. citrulli.  相似文献   

12.
Bradyrhizobium sp., a slow-growing nitrogen-fixing symbiotic bacterium of legumes and common root endophyte of other plants, is closely related to Candidatus Liberibacter asiaticus (Las), the uncultured putative pathogen associated with citrus huanglongbing (HLB). In attempts to isolate Las on a low-nutrient medium that had been used for the isolation of several uncultured bacteria of the alpha subclass of proteobacteria, slow-growing Bradyrhizobium spp. were isolated and identified by sequencing of 16S rDNA. The individual isolates tested weakly positive (Ct = 31.2–36.0) with the USDA primers commonly used in qPCR assays for Las in foliar tissues. Direct DNA extracts from roots of HLB symptomatic trees that contained sequences of Bradyrhizobium sp. had Ct values ranging from 31.2 to 36.5; sequences of Las were not present in those samples. Potential cross-reaction between DNA of members of the Rhizobiales and sequences amplified by the Las primers were tested in silico with the Primer-BLAST tool in NCBI. Similar to Las, Bradyrhizobium generated predicted 16S rDNA amplicon sizes of 78–79 bp with the qPCR primers and of 1167-1172 bp with the conventional PCR primers. Bradyrhizobium sequences of 16S rDNA had 1–7 mismatches and only 1 mismatch at the 3′ end of qPCR and conventional PCR primers confirming potential cross-reactivity. As Bradyrhizobium is usually not found in foliage, the USDA qPCR primers can be safely used to check leaves for the presence of Las, but a threshold value of 31.0 is recommended for Las detection in roots. Other primers should be tested for potential cross-reaction with members of the Rhizobiales.  相似文献   

13.
The vector competence of Frankliniella occidentalis for Chrysanthemum stem necrosis virus (CSNV) was evaluated. Three vector strains with distinct competences for Tomato spotted wilt virus (TSWV) transmission were investigated, including an artificially selected strain (TsH) that has a particularly high competence (>90 %). Newly hatched larvae of F. occidentalis were given an acquisition access period of 5 days on CSNV-infected D. stramonium leaves, and reared to maturity. Their transmission efficiencies were examined using a leaf disk assay using Petunia x hybrida leaves. Following the leaf disk assay, the virus accumulation in the vectors was examined via a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) of their bodies. The results showed that the CSNV acquisition and transmission efficiency of the TsH strain did not differ from those of the others, indicating that the competence of F. occidentalis as a vector for CSNV is not related to that for TSWV. The CSNV transmission and acquisition efficiencies of two F. intonsa strains (Hiroshima and Fukuoka) were also evaluated. In Hiroshima strain, 35 % of adults were viruliferous, but only two transmitters (3 %) were observed. In Fukuoka strain, 6 % were viruliferous, and no transmitters were observed. These results indicate that F. intonsa cannot be a major vector for CSNV. The accumulation of CSNV in the adults of F. occidentalis and F. intonsa evaluated using DAS-ELISA showed a significant difference in ELISA values among transmitter, viruliferous non-transmitter, and non-viruliferous individuals. These results clearly demonstrated that only transmitters that accumulated a threshold quantity of virus can transmit CSNV to plants.  相似文献   

14.
The role of phenolics in plant tolerance to pathogen infection is well documented. The objective of the present preliminary investigation was to study phenolic metabolites involved in the tolerance or susceptibility of cowpea (Vigna unguiculata Walp.) cultivars to Sclerotium rolfsii Sacc. and to use their presence as a possible screening tool. Total, free acid, ester-bound and cell wall-bound phenolics of 10 cowpea cultivars were quantified. In healthy seedlings, the tolerant cultivars displayed the higher phenol content than the susceptible cultivars. In S. rolfsii infected seedlings, the highest increase was found from 48 h after inoculation. The net effect of inoculation was a 630% increase in total phenolics (soluble and insoluble) in the stem of tolerant cultivars while the total phenolic content increased only by 212% in the stems of susceptible cultivars. Although, no significant difference (P = 0.05) was detected among cultivars, in terms of free acid phenolics, the amount of ester-bound and cell wall-bound phenolics significantly increased, therefore demonstrating a similar trend to the one observed for the total phenolic content. These preliminary results showed that the presence of phenolics before and after S. rolfsii infection may be used as a rapid screening method for detection of tolerance to S. rolfsii damping-off and stem rot of cowpea.  相似文献   

15.
Ability to detect Pseudocercospora macadamiae infection in macadamia husk at least four months before symptoms become visible will aid the development of disease control measures. This study examined the distinctness of P. macadamiae within the phylogenetic lineages of the genus Pseudocercospora. In addition, we developed two quantitative PCR (qPCR) assays, as rapid diagnostic tools, for early detection and quantification of P. macadamiae in planta. Phylogenetic analysis of concatenated sequences of four gene loci (large subunits, internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF-1α) and actin of 47 P. macadamiae isolates showed that P. macadamiae is a distinct species in the genus Pseudocercospora. P. macadamiae isolates were partitioned into subunits in the cluster but the grouping of the isolates was regardless of location. Nucleotide diversity (0.02) and the coefficient of genetic differentiation (0.07) were low in the P. macadamiae population. Two qPCR primer sets, based on ITS (PMI) and TEF-1α (PME) were designed that consistently amplified P. macadamiae in fungal cultures (Ct = 16.93 ± 0.11 and Ct = 21.20 ± 0.11, respectively) and in planta (Ct = 32.36 ± 0.28 and Ct = 38.07 ± 1.20, respectively). The PMI primers also detected species in the genus Pseudocercospora, while PME was more specific and robust for quantification of P. macadamiae. Both primer sets detected P. macadamiae in asymptomatic tissue samples and strongly differentiated various stages of disease progression, which revealed approximately 10-fold increase in fungal biomass between each consecutive stage of symptom development.  相似文献   

16.
Plant response to one type of stress can be affected by simultaneous exposure to a second stress, for example when abiotic and biotic stresses occur together. Ten rice genotypes comprising those with bacterial blight (BB) resistance (R) genes, drought quantitative trait loci (QTLs) plus a BB R gene, and BB susceptible genotypes, were subjected to mild and moderate drought stress and plants were inoculated with two Xoo strains (PXO99 and PXO145) to simulate the challenges rice crops face under simultaneous stress of drought and BB. Plant height and dry shoot biomass were significantly reduced by drought stress treatments. The BB disease lesion lengths varied according to rice genotypes and PXO99 Xoo multiplication and spread in planta was higher compared to that of PXO145, which generally decreased under mild drought stress. Rice genotype IRBB7 (Xa7) showed less Xoo spread and a reduced Xoo multiplication under drought stress compared to the well-watered control with PXO145. In contrast, in genotypes with a different BB R gene and/or drought QTLs [IRBB4 (Xa4), IR87705–6-9-B (Xa4 + qDYT 2.2 ), IR87707–445-B-B-B (Xa4 + qDYT 2.2  + qDYT 4.1 ) and IR87707–446-B-B-B (Xa4 + qDYT 2.2  + qDYT 4.1 )], Xoo multiplication and spread in planta was higher with drought stress. This study has shown that drought stress affected rice response to the BB pathogen and the response varied according to the rice genotype. It is concluded that evaluating rice varieties under combined abiotic and biotic stresses will be the best strategy to determine biotic stress resistance durability under climate change.  相似文献   

17.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

18.
The Rhizoctonia solani species consists of multinucleate isolates that belong to anastomosis groups AG1–AG3 and differ in virulence and host affinity. R. cerealis is a binucleate species of anastomosis group AG-D which causes sharp eyespot, a common plant disease in Poland. Rhizoctonia spp. is a ubiquitous soil pathogen that poses a significant threat for global crop production due to the absence of effective crop protection products. The aim of this study was to determine the virulence of R. solani and R. cerealis isolates towards Beta vulgaris, Zea mays, Triticum spelta and T. aestivum seedlings, to confirm the presence of endopolygalacturonase genes pg1 and pg5 in the genomes of the tested isolates and to evaluate the tested isolates’ sensitivity to triazole, strobilurin, imidazole and carboxamide fungicides. All tested isolates infected B. vulgaris seedlings. but none of them were virulent against Z. mays plants. R. solani isolates AG4 PL and AG2-2IIIB PL were characterized by the highest virulence (average infestation score of 2.37 and 2.53 points on a scale of 0–3 points) against sugar beet seedlings. The prevalence of infections caused by most of the analysed isolates (in particular R. solani AG4 J—11.8, and R. cerealis RC2—0.78) was higher in spelt than in bread wheat. The virulence of the analysed isolates was not correlated with the presence of pg1 and pg5 genes. The efficacy of the tested fungicides in controlling Rhizoctonia spp. infections was estimated at 100% (propiconazole + cyproconazole), 98.8% (penthiopyrad), 95.4% (tebuconazole) and 78.3% (azoxystrobin).  相似文献   

19.
Cyst nematodes obtained from commercial carrot fields in Ontario (Canada) and northern and southern Italy were subjected to morphological and molecular examination. Morphology of cyst cone tops, males and second-stage juveniles (J2) indicated the nematode species was the Carrot Cyst Nematode (CaCN), Heterodera carotae. The sequence of the Internal Transcribed Spacer (ITS), D2-D3 region of the 28S gene of ribosomal RNA, cytochrome oxidase I of mitochondrial DNA (coxI), and a heat shock protein gene (hsp90), from single cysts were also examined. Sequences of ITS and D2-D3 placed all the nematodes with Heterodera carotae and other Heterodera spp. belonging to the Goettingiana group in the same clade. The novel nine coxI sequences obtained also clustered in a well-supported phylogenetic clade for H. carotae. Similarly, the six new hsp90 sequences of H. carotae generated in this study were placed in a well-supported clade (PP = 1.00) together with other two sequences of H. carotae from Greece. Restriction Fragment Length Polymorphism (RFLP) of ITS-PCR products gave a restriction pattern for RsaI different than H. carotae but the other 6 restriction patterns were similar as described in former research. A diagnostic conventional PCR method was developed based on a primer set to be specific for H. carotae using coxI sequence. These primers were also used in real time PCR to generate a melt curve specific to H. carotae. Limit of detection for CaCN in conventional PCR reaction was a single J2.  相似文献   

20.
Sixty two rhizospheric and endophytic bacterial strains were evaluated for their biocontrol effect on two aggressive Fusarium culmorum isolates (Fc2 and Fc3). We observed that 35 % and 23 % of the tested strains inhibited the in vitro growth of Fc2 and Fc3 respectively. The observed antagonism was due to inhibition by contact (13–19 % of the strains) or at distance (10–16 % of the strains) for both fungal isolates. Some of the antagonistic bacteria showed the ability to produce diffuse and/or volatile compounds that inhibit the growth, the sporulation and macroconidia germination of F. culmorum. None of the tested antagonistic bacteria showed chitinase activity on synthetic medium. The sequencing of the 16S rDNA genes of some antagonistic bacteria showed that they belong to the genera Bacillus, Pseudomonas and Microbacterium. The double inoculation of durum wheat seeds by the antagonistic bacterial strains (B13, B18, BSE1, BSE3 and B16E) and the two F. culmorum isolates showed that germination and seedling vigor were generally improved in vitro. The percentage of infected seeds was also reduced. In greenhouse trials, the biocontrol effectiveness of F. culmorum was dependant from the virulence of the fungal strain and the specificity of the antagonistic interaction between bacterial and fungal strains. The bacterial strains B18 and B16E reduced F. culmorum infection on durum wheat plants probably due to their antagonistic and plant growth promoting activities and they may be used in a mixture as seed biopriming inoculum for plant growth bio-promoting and Fusarium wheat diseases biocontrol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号