首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Fusarium head blight (FHB) is one of the most important fungal diseases affecting wheat worldwide and it is caused mainly by species within the Fusarium graminearum species complex (FGSC). This study evaluated the presence of FGSC in durum wheat from the main growing area in Argentina and analyzed the trichothecene genotype and chemotype of the strains isolated. Also, the genetic variability of the strains was assayed using ISSR markers. Molecular analysis revealed that among the strains isolated and identified morphologically as F. graminearum, there were 14 strains identified as F. cerealis. Also, it revealed that durum wheat grains were mostly contaminated by F. graminearum, being this the only species reported so far, within the FGSC, affecting durum wheat in Argentina. Analysis of molecular variance (AMOVA) indicated a high genetic variability within rather than between F. graminearum populations. All F. graminearum strains presented 15ADON genotype and were able to produce DON while all F. cerealis strains presented the NIV genotype and most of them were able to produce this toxin. The finding of F. cerealis in durum wheat grains indicates the need for investigating if this fungus is the responsible for the NIV contamination found in wheat in Argentina.  相似文献   

2.
An extensive survey was carried out to collect Fusarium species colonizing the lower stems (crowns) of bread wheat (Triticum aestivum L.) and durum wheat (T. durum Desf.) from different wheat growing regions of Turkey in summer 2013. Samples were collected from 200 fields representing the major wheat cultivation areas in Turkey, and fungi were isolated from symptomatic crowns. The isolates were identified to species level by sequencing the translation elongation factor 1-alpha (TEF1-α) gene region using primers ef1 and ef2. A total of 339 isolates representing 17 Fusarium species were isolated. The isolates were identified as F. culmorum, F. pseudograminearum, F. graminearum, F. equiseti, F. acuminatum, F. brachygibbosum, F. hostae, F. redolens, F. avenaceum, F. oxysporum, F. torulosum, F. proliferatum, F. flocciferum, F. solani, F. incarnatum, F. tricinctum and F. reticulatum. Fusarium equiseti was the most commonly isolated species, accounting for 36% of the total Fusarium species isolated. Among the damaging species, F. culmorum was the predominant species being isolated from 13.6% of sites surveyed while F. pseudograminearum and F. graminearum were isolated only from 1% and 0.5% of surveyed sites, respectively. Six out of the 17 Fusarium species tested for pathogenicity caused crown rot with different levels of severity. Fusarium culmorum, F. pseudograminearum and F. graminearum caused severe crown rot disease on durum wheat. Fusarium avenaceum and F. hostae were weakly to moderately virulent. Fusarium redolens was weakly virulent. However, F. oxysporum, F. equiseti, F. solani, F. incarnatum, F. reticulatum, F. flocciferum, F. tricinctum, F. brachygibbosum, F. torulosum, F. acuminatum and F. proliferatum were non-pathogenic. The result of this study reveal the existence of a wide range of Fusarium species associated with crown rot of wheat in Turkey.  相似文献   

3.
4.
In the present study, 129 rhizospheric bacteria isolated from Curcuma longa were screened for their antagonistic potential against six fungal phytopathogens. Among them, 32 isolates that showed significant antagonistic potential were screened for their in vitro plant growth promoting (PGP) traits. The identification of potential isolates was confirmed by 16S rRNA gene sequencing and results revealed Bacillus as the dominant genus followed by Staphylococcus, Pseudomonas, Sphingomonas and Achromobacter. Based on the antagonistic activity and PGP traits; two strains (BPSRB4 and BPSRB14), identified as Bacillus amyloliquefaciens, were further tested for their in vivo PGP and disease suppression potential on Capsicum annuum seedlings under greenhouse conditions. The results demonstrated that BPSRB4 and BPSR14 strains suppress fungal pathogen infection and promote plant growth. Further, the BPSRB4 strain was positive for the production of the phytohormone indole acetic acid (IAA) detected by thin layer chromatography (TLC). In addition, nitrogen fixation and plant growth promotion activity were also confirmed by amplification and sequencing of nitrogen fixation gene (nifH) and ACC (1-aminocyclopropane-1-carboxylate) deaminase (acdS) gene from strains BPSRB4 and BPSRB14. The present study demonstrated that the B. amyloliquefaciens strains BPSRB4 and BPSR14 possess antagonistic activity and PGP potential which could be explored for the development of biofertilizers and biocontrol agents for the growth of chilli seedlings.  相似文献   

5.
Mustard clubroot, caused by Plasmodiophora brassicae, is a serious disease that affects Brassica juncea var. tumida Tsen, a mustard plant that is the raw material for a traditional fermented food manufactured in the Chongqing Municipality, People’s Republic of China. To find antagonistic bacteria for P. brassicae, 124 bacteria were obtained from the rhizosphere soil of B. juncea var. tumida grown in Fuling, Chongqing. Isolates were preliminarily chosen by evaluating the inhibition rate of the P. brassicae resting spore germination. The biocontrol effects of three antagonistic bacteria against clubroot on B. juncea var. tumida were evaluated in a greenhouse experiment. B18 showed the highest control efficiency, at 63.4% in the greenhouse test. In a field trial, B18 was also effective in controlling clubroot, but only at a 49.7% efficiency rate. According to 16S rDNA sequence analysis, strain B18 had a 100% sequence similarity with type strain Zhihengliuella aestuarii DY66T (EU939716). Based on morphological, cultural, physiological and biochemical characteristics, the DNA G + C content, polar lipids, fatty acids, cell wall analysis, as well as DNA–DNA hybridization, strain B18 was identified as Z. aestuarii B18. Thus, the isolate B18 might have a potential biocontrol application for clubroot. We report for the first time that Z. aestuarii B18 can control clubroot.  相似文献   

6.
We investigated incidences of Fusarium head blight (FHB) and concentrations of six mycotoxins (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, T-2 toxin, HT-2 toxin and zearalenone) in wheat from 2010 to 2013. Field trials were conducted at the Experimental Station of Cultivar Testing in Chrz?stowo, Poland (53o11’N, 17o35’E). We examined the effects of four agronomic factors, including pre-crop type (corn, sugar beets and wheat), date of sowing (late autumn: November 8–December 9 or spring: March 29–April 19), fungicidal application (untreated or treated with two applications) and cultivar (Monsun, Cytra), on FHB index (FHBi) and mycotoxin levels in order to minimize the risk of wheat grain contamination by mycotoxins via integrated pest management methods. The dominant Fusarium species observed on wheat heads were F. culmorum, F. avenaceum (Gibberella avenacea) and F. graminearum (Gibberella zeae), at 21.1%, 17.2% and 7.1%, respectively. A monthly rainfall sum of 113.9 mm and a relatively low air temperature (monthly average 15.5 °C) resulted in the highest FHBi in untreated wheat (25.1%). Agronomic factors crucial for the FHB incidence were the pre-crop, fungicidal treatments and cultivar selection. In wheat planted after wheat or corn, the FHBi was higher compared with a pre-crop of sugar beet. A double application of fungicides at BBCH 30–32 with prothioconazole and spiroxamine and at a BBCH 65 with fluoxastrobin and prothioconazole effectively reduced the FHBi and mycotoxin concentrations, respectively, in grain. The cultivar ‘Cytra’ had a greater FHBi (10.4%) than ‘Monsun’ (4.6%), and grain infestations by Fusarium species were also greater in ‘Cytra’, at 16.5%, than in ‘Monsun’, at 11.2%. Untreated cv. Cytra grown after corn in spring produced grains with the highest amounts of the mycotoxins, deoxynivalenol, 3-acetyldeoxynivalenol, zearalenone and HT-2 (605, 103, 17.5 and 5.53 μg/kg, respectively). Total mycotoxin levels in wheat were correlated with five determinants: duration of the period between the end of flowering and the beginning of kernel abscission, FHBi, F. culmorum isolation, G. zeae isolation and Fusarium ratio (FR) as a % of total mould isolations. Although, the mean concentration of mycotoxins in grain did not exceed the maximum permissible values for unprocessed wheat our study suggests necessity to monitor and mitigate FHB risk for susceptible cultivars, when wheat spring sowing follows corn or wheat.  相似文献   

7.
Fusarium is one of the most destructive fungal genera whose members cause many diseases on plants, animals, and humans. Moreover, many Fusarium species secrete mycotoxins (e.g. trichothecenes and fumonisins) that are toxic to humans and animals. Fusarium isolates from date palm trees showing disease symptoms, e.g. chlorosis, necrosis and whitening, were collected from seven regions across Saudi Arabia. After single-sporing, the fungal strains were morphologically characterized. To confirm the identity of morphologically characterized Fusarium strains, three nuclear loci, two partial genes of translation elongation factor 1 α (tef1α) and β-tubulin (tub2), and the rDNA-ITS region, were amplified and sequenced. Of the 70 Fusarium strains, 70 % were identified as F. proliferatum that were recovered from six regions across Saudi Arabia. Fusarium solani (13 %), as well as one strain each of the following species: F. brachygibbosum, F. oxysporum, and F. verticillioides were also recovered. In addition, five Fusarium-like strains were recognized as Sarocladium kiliense by DNA-based data. The preliminary in vitro pathogenicity results showed that F. proliferatum had the highest colonization abilities on date palm leaflets, followed by F. solani. Although F. oxysporum f. sp. albedinis is the most serious date palm pathogen, F. proliferatum and F. solani are becoming serious pathogens and efforts should be made to restrict and control them. In addition, the potential toxin risks of strains belonging to F. proliferatum should be evaluated.  相似文献   

8.
A qPCR approach was developed to specifically monitor in soils Fusarium graminearum, the main agent responsible for Fusarium Head Blight, and the biocontrol agent Gliocladium catenulatum J1446 (Prestop®). For both fungi, the amplification efficacy of standard curves obtained by mixing pure fungal DNA and soil background DNA was high (qPCR efficacy>96% with R2?>?0.97) with a linear range from 10?3 ng to 10 ng/μL. Our qPCR method allowed quantifying down to 1 μg of F. graminearum and G. catenulatum J1446 mycelium per g of soil. The strong correlation observed between fungal biomass and quantified DNA (R2?=?0.9927 and 0.9356 for F. graminearum and G. catenulatum J1446, respectively) supported the use of the primers to monitor both fungi in soils. Under our experimental conditions, the ability of Prestop® to reduce F. graminearum growth was significantly higher in autoclaved soil compared to living soils, suggesting that there is an antagonistic effect of the soil microbial communities. In contrast, G. catenulatum J1446 growth was mostly not affected by the presence of F. graminearum and was able to persist in both autoclaved and living soils after 15 days of incubation. These results indicate that our qPCR approach may be used to assess the success of soil colonization by a biocontrol agent and its control efficacy by monitoring the dynamics of the BCA and the targeted pathogen in soil.  相似文献   

9.
Bread wheat (BW) and durum wheat (DW) are both strongly affected by Septoria tritici blotch caused by the hemibiotrophic fungus Zymoseptoria tritici. However, only the BW-Z. tritici pathosystem has been well studied so far. Here, we compared compatible interactions between Z. tritici and both BW and DW species at the cytological, biochemical and molecular levels. Fungal infection process investigations showed close spore germination and leaf penetration features in both interactions, although differences in the patterns of these events were observed. During the necrotrophic phase, disease severity and sporulation levels were associated in both interactions with increases of the two cell-wall degrading enzyme activities endo-β-1,4-xylanase and endo-β-1,3-glucanase as well as protease. An analysis of plant defense responses during the first five days post inoculation revealed inductions of GLUC, Chi4, POX and PAL and a repression of LOX gene expressions in both wheat species, although differences in kinetics and levels of induction or repression were observed. In addition, peroxidase, catalase, glucanase, phenylalanine ammonia-lyase and lipoxygenase activities were induced in both wheat species, while only weak accumulations of hydrogen peroxide and polyphenols were detected at the fungal penetration sites. Our study revealed overall a similarity in Z. tritici infection process and triggered wheat defense pathways on both pathosystems.  相似文献   

10.
Fusarium culmorum can affect plants including cereals or develop saprophytically in the soil. It is unknown whether its saprophytic ability is different in strains with a different aggressiveness. This knowledge could be used for effective breeding of resistant cultivars. Here, we aimed to study the development of two F. culmorum strains with a different aggressiveness in the soil under barley, to compare their saprophytic ability and to reveal the influence, if any, of the host plant on the development of strains in the soil and on the roots. Saprophytic development of the strains was studied on membranes inoculated with macroconidia and placed into non-sterile soil under barley of two genotypes. The fungus was identified on the membranes and on barley roots by indirect immunofluorescent method. Both strains could develop saprophytically. The more aggressive strain (Fc538) showed a lesser saprophytic fitness than the less aggressive strain (Fc885): its mycelial density was lower and the number of chlamydospores was greater. Barley genotypes influenced the development of the fungal strains. Interestingly, conditions for saprophytic development of both strains were more favourable in the soil under barley of the resistant genotype. The more aggressive strain colonized barley of the resistant genotype more actively. Rot symptoms appeared earlier in the barley of the resistant genotype, but the number of diseased plants was greater in the barley of the susceptible genotype. The presence of a saprophytic stage in life cycle should slow down the accumulation of aggressive races in field populations of F. culmorum. Possible interactions between F. culmorum strains and barley plants are discussed.  相似文献   

11.
In previous research, concentrated metabolites produced by bacteria of the genera Xenorhabdus and Photorhabdus (which are symbionts of entomopathogenic nematodes) were reported to be highly suppressive to fungal and oomycete plant pathogens. Conceivably, application of non-concentrated bacterial filtrates would be more economically feasible compared to using concentrated metabolites. We evaluated the potency of 10 % v/v cell-free supernatants of the bacteria X. bovienii, X. nematophila, X. cabanillasii, X. szentirmaii, P. temperata, P. luminescens (VS) and P. luminescens (K22) against Fusicladium carpophilum (peach scab), F. effusum (pecan scab), Monilinia fructicola (brown rot), Glomerella cingulata (anthracnose) and Armillaria tabescens (root rot). A bioactive compound derived from Photorhabdus bacteria, trans-cinnamic acid (TCA), was also compared with the bacterial filtrates. Fungal colony size based on manual measurements was compared for accuracy to measurements taken by image analysis. Supernatants of Xenorhabdus spp. exhibited stronger suppressive effects on spore germination and vegetative growth when compared with Photorhabdus spp. Overall, TCA was the most effective treatment; vegetative growth was completely inhibited by TCA (1.27 mg/ml). TCA treatments also suppressed spore germination of F. carpophylium and F. effussum by approximately 90 %. The efficacy of supernatants varied among Xenorhabdus species depending on the species tested, but X. szentirmaii filtrates tended to cause greater inhibition relative to the other bacteria supernatants. Manual measurement of colony diameter required at least two replicate estimates of the colony to avoid a type II error. Area measurements were slightly overestimated based on ruler measurements, but did not affect the outcome of the analysis. Supernatants of Xenorhabdus spp., Photorhabdus spp., or TCA, did not cause any phytotoxic effects when applied to various plant species in the greenhouse. Our results indicate the potential of using TCA or Xenorhabdus cell free supernatants as bio-fungicides. Such a product, based on bacterial culture supernatants, would be economically viable, marketable and easily applicable by the end-users in many situations.  相似文献   

12.
Phytophthora capsici infection of chili pepper seedlings can cause substantial losses due to damping-off and collar rot diseases. Chemical control is no longer effective due to reported resistance development, on top of the related environmental concerns and the consumer demands for reduced use of fungicides. Biological control is a sustainable option, with several agents having been reported to be effective against this pathogen. This research focused on optimizing the application of strain THSW13 of Trichoderma hamatum and a bacterial isolate BJ10–86 with the objectives of improving chili pepper seed germination, reduce damping-off disease incidence, and improve the growth of the seedlings. Bacterial isolate BJ10–86 was subjected to molecular identification and found to be Pseudomonas aeruginosa. Chili pepper seeds treated with the biocontrol agents, individually or in combination, were seeded into commercial nursery media that had been pre-inoculated with P. capsici zoospores. Over a period of 35 days the chili pepper seed treatments significantly (P = 0.008) reduced the disease incidence of seedlings damping-off. Combined application of T. hamatum and P. aeruginosa was the best biocontrol treatment with an area under disease curve of only 36.61 units compared to 92.87 units for the control treatment. Similar results were observed in vitro where T. hamatum and P. aeruginosa synergistically inhibited P. capsici growth by 73.2 %. The inhibition activity of this treatment was similar to mefenoxam treatment, which implies that it is an effective and sustainable alternative for chili pepper seed treatment. The biocontrol seed treatment had no effect on seed germination and seedling growth.  相似文献   

13.
Competitive effects between Fusarium graminearum, causing Fusarium head blight, and the endophyte Epicoccum nigrum, were performed in in vitro competition assays between the two species. Two E. nigrum isolates were isolated from wheat grains and tested as competitors against two F. graminearum isolates. A dual petri dish assay showed that E. nigrum reduced the mycelial growth of F. graminearum and vice versa. A glass slide assay revealed that E. nigrum crude cultural filtrate also had reducing effect on the growth of F. graminearum comparable to that of E. nigrum spore suspensions. Microscopy showed hyphae of F. graminearum and E. nigrum with many side branches when in close proximity, in contrast to pronounced apical hyphal growth when growing alone. Combinations of F. graminearum and E. nigrum on sterilised wheat grains were studied over time by qPCR. F. graminearum biomass was significantly reduced in inoculations applying E. nigrum three days prior to F. graminearum. In conclusion, these results showed competition and mycelial behaviour effects between F. graminearum and E. nigrum and support that E. nigrum may have potential to reduce F. graminearum infections in wheat. Competition experiments should be carried out in planta to study the interaction further.  相似文献   

14.
Fusarium wilt, one of the destructive diseases of cucumber can be effectively controlled by using biocontrol agents such as Trichoderma harzianum. However, the mechanisms controlling T. harzianum-induced enhanced resistance remain largely unknown in cucumber plants. Here we screened the potent T. harzianum isolate TH58 that could effectively control F. oxysporum (FO). Glasshouse efficacy trials also showed that TH58 decreased disease incidence by 69.7 %. FO induced ROS over accumulation, while TH58 inoculation suppressed ROS over accumulation and improved root cell viability under F. oxysporum infection. TH58 inoculation could reverse the FO-induced cell division block and regulate the proportional distribution of nuclear DNA content through inducing 2C fraction. Moreover, the expression levels of cell cycle-related genes such as CDKA, CDKB, CycA, CycB, CycD3;1 and CycD3;2 in TH58 - pre-inoculated seedlings were up-regulated compared with those infected with FO alone. Taken together, these results suggest that T. harzianum improved plant resistance against Fusarium wilt disease via alterations in nuclear DNA content and cell cycle-related genes expression that might maintain a lower ROS accumulation and higher root cell viability in cucumber seedlings.  相似文献   

15.
The vector competence of Frankliniella occidentalis for Chrysanthemum stem necrosis virus (CSNV) was evaluated. Three vector strains with distinct competences for Tomato spotted wilt virus (TSWV) transmission were investigated, including an artificially selected strain (TsH) that has a particularly high competence (>90 %). Newly hatched larvae of F. occidentalis were given an acquisition access period of 5 days on CSNV-infected D. stramonium leaves, and reared to maturity. Their transmission efficiencies were examined using a leaf disk assay using Petunia x hybrida leaves. Following the leaf disk assay, the virus accumulation in the vectors was examined via a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) of their bodies. The results showed that the CSNV acquisition and transmission efficiency of the TsH strain did not differ from those of the others, indicating that the competence of F. occidentalis as a vector for CSNV is not related to that for TSWV. The CSNV transmission and acquisition efficiencies of two F. intonsa strains (Hiroshima and Fukuoka) were also evaluated. In Hiroshima strain, 35 % of adults were viruliferous, but only two transmitters (3 %) were observed. In Fukuoka strain, 6 % were viruliferous, and no transmitters were observed. These results indicate that F. intonsa cannot be a major vector for CSNV. The accumulation of CSNV in the adults of F. occidentalis and F. intonsa evaluated using DAS-ELISA showed a significant difference in ELISA values among transmitter, viruliferous non-transmitter, and non-viruliferous individuals. These results clearly demonstrated that only transmitters that accumulated a threshold quantity of virus can transmit CSNV to plants.  相似文献   

16.
Experiments were conducted to determine the extent of Fusarium langsethiae infection in wheat, barley and oats grown under identical experimental conditions. In total, four experiments were conducted with both winter and spring sown experiments at two locations. The amount of F. langsethiae infection was determined by quantifying F. langsethiae DNA and quantifying the combined concentration of the trichothecene mycotoxins HT-2 and T-2 (HT-2 + T-2) in cereal head fractions (grain and rest of the head) after threshing at harvest. Results of the study showed that under identical experimental conditions, oats had the highest F. langsethiae DNA and HT-2 + T-2 concentrations compared to wheat and barley. This indicates that the high levels detected on UK oats compared to wheat and barley from surveys of commercial crops is a consequence of genetic differences rather than differences in agronomy applied to the cereal species. The concentration of HT-2 and T-2 per unit of F. langsethiae DNA in oats compared to wheat and barley was also significantly higher indicating host differences in either the stimulation of HT-2 and T-2 production or in the metabolism of HT-2 and T-2. The study also showed that the proportion of F. langsethiae DNA in threshed grains was significantly lower than that in the rest of the cereal head.  相似文献   

17.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

18.
Sclerotium rolfsii (Sr), a soil-borne fungal pathogen, causes disease in a wide range of crops. Recently, we identified five actinomycetes (Streptomyces globisporus subsp. globisporus, S. globisporus, S. flavotricini, S. pactum, and S. senoensis) showing significant inhibitory effects on plant pathogens. In this study, the effects of the five actinomycetes for the biocontrol of Sr were investigated using the plate culture method and microscopy examination. Two actinomycetes with higher inhibitory effect were subsequently examined for the inhibition of sclerotial germination of Sr in unsterile soil in vitro. The cell-free cultures of five actinomycetes mediated significant inhibition of hyphal growth and sclerotial formation and germination of Sr. All actinomycete strains exhibited the ability to produce extracellular cell wall degrading enzymes in the culture conditions. The crude enzyme suspensions of S. flavotricini and S. pactum hydrolyzed the cell wall of Sr. At a dose of 1 g per kilogram soil, the solid formulations of S. flavotricini and S. senoensis prevented germination of 24% and 68% of sclerotia, respectively. Our results provide evidence of effective strains for the biocontrol of Sr, in addition to a further understanding of the underlying mechanism.  相似文献   

19.
Fusarium Head Blight is a major disease of wheat and an important contributor to the reduced cultivation of wheat in South Africa, where the crop often is grown under irrigation. We collected Fusarium isolates from 860 Fusarium Head Blight-infected wheat heads in seven irrigated wheat-growing areas of South Africa. Six Fusarium species, i.e., F. chlamydosporum, F. crookwellense, F. culmorum, F. equiseti, F. graminearum and F. semitectum were recovered, three of which, i.e., F. chlamydosporum, F. equiseti and F. semitectum, were not previously associated with Fusarium Head Blight in South Africa. Fusarium graminearum occurred at high frequencies at all seven locations. Based on polymerase chain reaction (PCR) assays of diagnostic sequences, more isolates were predicted to produce deoxynivalenol than nivalenol. Fusarium graminearum (sensu lato) appears to be the primary causal agent of Fusarium Head Blight in irrigated wheat in South Africa, which may not be the case for wheat cultivated under rain-fed conditions. Rotations of irrigated wheat with other graminaceous crops and maize could increase fungal inoculum and disease pressure. The establishment of Fusarium Head Blight in the irrigated wheat region of the country means that resistant lines and alternative agronomic practices are needed to limit disease severity, yield losses and mycotoxin contamination.  相似文献   

20.
Fungal species comprising the Fusarium graminearum species complex (FGSC) may cause disease in maize and wheat. Host preference within the FGSC has been suggested, in particular F. boothii towards maize ears. Therefore, the disease development and mycotoxin production of five FGSC species in maize and wheat grain was determined. Eighteen isolates representing F. acaciae-mearnsii, F. boothii, F. cortaderiae, F. graminearum and F. meridionale were used. Each isolate was inoculated on maize ears and wheat heads to determine host preferences. Disease severity and disease incidence was measured for maize and wheat, respectively. Fungal colonisation and mycotoxins, deoxynivalenol (DON), nivalenol and zearalenone, was also quantified. Isolates differed significantly (P < 0.05) in their ability to produce symptoms on maize ears, however, no significant differences between FGSC species were determined. Similarly, significant differences (P < 0.05) between isolates but not between FGSC species in disease incidence on wheat were determined. The isolates also differed significantly (P < 0.05) in their ability to colonise maize and wheat grain. No significant differences in fungal colonisation, among the five FGSC species, were determined in field grown maize. However, under greenhouse conditions, F. boothii was the most successful coloniser of maize grain (P < 0.05). In wheat, F. graminearum colonised the grain more successfully and produced significantly more (P < 0.05) DON than the other species. Fusarium boothii isolates were the best colonisers and mycotoxin producers in maize, and F. graminearum isolates in wheat. The selective advantage of F. boothii to cause disease on maize was supported in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号