首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对轴类零件在车床或磨床上切削加工过程中,常以两轴端中心孔为定位基准,采用单爪拨盘传动,加工外圆表面的工艺情况,运用解析法,综合机床刚度分析研究单侧传动力对加工精度的影响,得出传动力对加工表面形状精度产生系统误差的变化规律,为机械加工精度单因素分析以及消除误差影响因素方法提供理论参考依据。  相似文献   

2.
通过主轴模型的建立、网格的划分、边界条件的设置和载荷的施加、刚度与强度分析以及模态分析,对暗直榫欧式木窗专用数控机床主轴的静态特性进行了有限元分析。结果表明:主轴加载后的最大位移出现在主轴最下端,且最大位移值为0.114 mm,是在误差的允许范围; 对主轴的应力、应变进行了分析,得到主轴的最大应力为282.76 MPa,小于主轴的许用应力[σ]=355 MPa,符合主轴的设计要求; 对主轴进行了模态分析,得到主轴前6阶固有频率,当机床工作时的固有频率低于主轴的1阶固有频率时,就不会引起机床的共振。并获得了主轴的位移云图、应力应变云图,验证其刚度在静态下均在许用范围内,可满足设计要求。  相似文献   

3.
热误差是影响机床加工精度的主要因素之一。主轴的热变形是机床总的热变形的重要组成部分。因此本文在分析数控铣齿机主轴热源的基础上,计算发热量,确定边界条件,并利用有限元软件abaqus建立主轴系统的温度场模型并进行了数字模拟仿真,为主轴系统的进一步热变形控制提供了基础。  相似文献   

4.
目前我国天然林、大径级木材日益匮乏,小径级木材成为主要制材原料,针对小径材加工利用效率不高且精度低等问题,提出数控小径材纵向弧面指接机总体结构的设计。通过分析纵向弧面指接机的加工工艺,拟定设备的总体方案,对数控小径材纵向弧面指接机总体结构进行实体建模,完成数控小径材纵向弧面指接机固定端总成、移动端总成以及底架总成的结构设计,并对粗铣主轴组件以及抛光主轴组件进行设计计算,得到粗铣电机功率4 kW、抛光电机功率3 kW,符合设备的设计要求。运用ANSYS对粗铣主轴进行静力学分析,得到主轴的应力、变形以及应变云图,其最大应力值为5.622 4 MPa,最大变形量为0.001 707 8 mm,最大应变值为0.031 479 mm/m,均在安全范围内,验证了主轴设计的合理性。因此,该机能够有效解决小径材出材率低的问题。  相似文献   

5.
通过运用铣削振动理论分析和试验的方法,分析研究铣削参数对切削振动的影响。对实木门窗料铣削过程建立刀具柔性的2自由度集中参数动力学模型,通过对铣削过程动力学模型的建立获取铣削振动的影响因素参数。然后设计构建实木门窗料铣削振动试验研究平台,由于铣削方式分为顺铣和逆铣,因此为更好地对比不同铣削方式下铣削参数对铣削振动的影响,特进行顺铣和逆铣2种铣削形式下铣削振动作对比。从试验结果分析得知,铣削振动随着切削速度、进给速度和切削宽度大小的变化而产生不同影响,同时也与切削力X、Y、Z方向有一定关系,但顺铣和逆铣方式对铣削振动产生影响较小。实木门窗料铣削振动理论分析与试验研究对实木门窗料铣削加工切削参数及工艺参数选择具有指导意义。  相似文献   

6.
加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数的符合程度.在机械加工中,误差是不可避免的,但误差必须存允许的范围内.通过误差分析,掌握其变化的基本规律,从而采取相应的措施减少加工误差,提高加工精度. 一、机械加工产生误差主要原因 (一)主轴同转误差.主轴回转误差是指主轴各瞬间的实际回转轴线相对其平均同转轴线的变动量.  相似文献   

7.
本文对座标镗床工作台的运动误差了分析和计算,指导出了工作台运动误差的精确计算公式,并给出了算例。对调整和修正座标镗床的运动规划,提高该机床的加工精度,具有一定的指导作用。  相似文献   

8.
本文参照文献[1] 的基本路线思路,构造了静压轴承--主轴系统的迭代计算方法。并联系机床中非常普遍的弹性两支承外伸轴系,以一台 MB1520型高速外圆磨床为例,考虑到该主轴系统径向轴承及推力轴承综合作用,用迭代法分析计算了该主轴部件的静态性能,一般情况下只需迭代1~3次,就可获得满意的结果。该方法计算效率高,占用计算机内存小,能在袖珍计算机上运算,为普及对机床主轴系统的静、动态特性研究及优化设计,提供了行之有效的方法。  相似文献   

9.
通过对影响数控铣床加工精度误差的分析,并对误差进行合理分类,阐述了双频激光干涉仪的工作原理及利用双频激光干涉仪对数控铣床进行精度检测的方法,对单轴数控铣床的螺距误差、反向间隙等进行标定与补偿,切实改善机床精度,提高零件加工质量,不至于在生产过程中产生废品。  相似文献   

10.
为研究薄壁零件加工的振动机理,本文在考虑动态切削厚度的变化以及顺铣和逆铣之间差别的基础上,建立了一个薄壁零件立铣的力学模型,并用两个铣削实例加以验证.结果表明,该模型可以预测动态铣削过程中的切削力和振动位移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号