首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
香蕉束顶病毒(BBTV)侵染对寄主内源激素的影响   总被引:11,自引:0,他引:11  
 本试验用ELISA方法测定了香蕉感染束顶病毒(BBTV)后植株体内的3种内源激素,赤霉素(GA3)、玉米素类(iPAs)和脱落酸(ABA)的变化。结果表明,感株的GA3水平在侵染过程中虽有微弱增加,但含量和增长速度显著低于健株对照;iPAs在接种BBTV第14天后明显下降,并维持较低水平;ABA在BBTV侵染后被大量诱导增加并不断积累,在接种后第35天测定含量最高,为对照的3.34倍。试验还同时检测了BBTV在侵染过程中的运转。用间接ELISA测定的接种叶和顶叶的BBTV含量显示:接种21天后BBTV在接种叶和顶叶中还大量增殖,呈系统性分布。但寄主的症状在接种35天后才逐渐在顶叶表现。以上结果表明:香蕉束顶病的症状表现似乎主要与病株中的内源激素的失调有关,而与BBTV在体内的运转并不直接相关  相似文献   

2.
The application ofTrichoderma harzianum andPseudomonas fluorescens led to increases in dry matter content, starch, total soluble sugars (TSS) and reducing sugar contents in leaves of sunflower (Helianthus annuus) when done as seed treatment or coupled with spray. There was a significant increase in TSS and reducing sugars in stem tissue after treatment with biocontrol agents. The content of total phenols in leaves increased after treatment at 30 and 60 days after sowing (DAS) and at 30 DAS in stem tissues. Biocontrol agents increased the activities of phenylalanine ammonia lyase (PAL) in leaves and stem tissue after 30 DAS and significantly reduced total phenolic content and PAL activity in the stem at 60 DAS. Following treatment with biocontrol agents, seed lipid content increased, the proportion of linoleic acid increased and that of oleic acid decreased. Application of biocontrol agents to sunflower plants initiated certain biochemical changes, which can be considered to be part of the plant’s defense response. http://www.phytoparasitica.org posting August 6, 2008.  相似文献   

3.
The effect of soluble silicon (Si) on photosynthetic parameters and soluble sugar concentrations was determined in leaves of rice cv. Oochikara and mutant plants of Oochikara defective in active Si uptake [low silicon 1 (lsi1)]. Plants were grown in hydroponic culture amended with 0 (?Si) or 2 mm Si (+Si), under either low or high photon flux density (PFD) and with or without inoculation with Bipolaris oryzae, the causal agent of brown spot of rice. Leaf Si concentration increased by 141 and 435% in +Si cv. Oochikara and by 119 and 251% in +Si lsi1 mutant plants under high and low PFD, respectively, compared with ?Si plants. Plant biomass accumulation was improved by Si regardless of PFD, especially plants for cv. Oochikara. Brown spot severity was highest in ?Si plants for cv. Oochikara and lsi1 mutant plants under low PFD. In the presence of Si, disease severity in plants grown under both low and high PFD was reduced, except for lsi1 mutant plants under high PFD. Plant inoculation reduced the photosynthetic parameters measured regardless of plant material or Si supply. A decrease of net carbon assimilation rate (A) of inoculated plants under low PFD compared with non‐inoculated plants was associated with damage in the photosynthetic apparatus, except for +Si cv. Oochikara in which stomatal restriction [low water vapour conductance (gs)] contributed to A reduction. Under high PFD, damage to the photosynthetic apparatus of inoculated plants was the main reason for the reduction in A for +Si and ?Si lsi1 mutant plants. In addition, for ?Si cv. Oochikara, a reduction in gs contributed to reduced A. However, for +Si cv. Oochikara, gs was the limiting factor for A. Inoculated plants of +Si cv. Oochikara had higher A values than +Si lsi1 mutant plants, regardless of environmental conditions. Soluble sugars were not detected in leaf tissues of plants under low PFD. For high PFD, Si improved the hexose concentration in non‐inoculated plants at 144 h after inoculation (hai) for lsi1 mutant plants and from 96 hai onwards for cv. Oochikara compared with ?Si plants. However, plant inoculation reduced hexose concentration compared with non‐inoculated plants, mainly in +Si plants, regardless of plant material. Sucrose concentration increased in leaves of cv. Oochikara in the presence of Si whether inoculated or not. For +Si lsi1 mutant plants, sucrose concentration increased only at 48 hai compared with ?Si plants, whether inoculated or not. The results of this study show that a minimum Si concentration is needed in leaf tissues of rice plants to avoid the negative impact of B. oryzae infection on photosynthesis and sugar concentration. High leaf Si concentration resulted in an increased soluble sugar concentration and together, but in independent ways, soluble sugar and Si reduced brown spot severity of rice.  相似文献   

4.
Resistance in the leaf blades of rice plants against a virulent race of the rice blast fungus Magnaporthe oryzae was quantitatively examined using a modified spot inoculation method. Numbers of conidia produced in the lesions were affected by plant age and paralleled the frequency of resistance infection types, which is indicative of whole-plant-specific resistance (WPSR), in the inoculated leaf sheaths of the corresponding plants. Exogenous abscisic acid treatment, which suppresses WPSR, also increased the susceptibility of the leaf blades. These results indicate a correlation between the resistance of the leaf blades and the WPSR in the leaf sheaths.  相似文献   

5.
Leaves of powdery mildew-susceptible barley (Hordeum vulgare cv. Ingrid) and related near-isogenic lines bearing various resistance genes (Mla12, Mlg or mlo5) were inoculated with Blumeria graminis f. sp. hordei race A6. Fungal attack induced several-fold increases in ethylene emission and electrolyte leakage in leaves of susceptible Ingrid beginning 3 days after inoculation. Activities of peroxidase, superoxide dismutase, glutathione S-transferase, ascorbate peroxidase and glutathione reductase enzymes were induced markedly in susceptible leaves 5–7 days after inoculation. Similar, but less pronounced pathogen-induced changes were detected in inoculated leaves of Mla-type resistant plants that show hypersensitive cell death upon inoculation, and, to an even lesser extent, in the Mlg and mlo lines, where no visible symptoms accompanied the incompatible interaction. Glutathione content increased only in susceptible barley 7 days after inoculation. Catalase activity, total ascorbate content and redox state were not influenced by inoculation in any of the genotypes. The activity of dehydroascorbate reductase was significantly reduced 3–5 days after inoculation in the susceptible parental plants and after 5 days in Mla and Mlg lines, while it was stable in the mlo barley. Slightly elevated levels of H2O2 were observed in the inoculated resistant plants. In contrast, H2O2 content decreased in the susceptible line 7 days after pathogen attack. These data indicate that high levels of antioxidants are involved in the compatible interaction of susceptible barley and powdery mildew by protecting the pathogen from oxidative damage.  相似文献   

6.
Alfalfa (Medicago sativa) cv. Beaver was screened for resistance to alfalfa mosaic virus (AIMV). A1MV infection in clonal plants was tested by double-antibody sandwich ELISA 4 and 8 weeks after inoculation with purified A1MV (1 mg/ml in 0025 M phosphate buffer, pH 7 0). Twelve clones showed a hypersensitive reaction 3–4 days after inoculation and the infection was restricted to the inoculated leaves. All the plants of hypersensitive clones consistently produced local lesions when inoculated with purified AIM V. In contrast, plants inoculated with AIMV in crude sap remained symptomless, although AIMV was detectable in inoculated leaves. The remaining 16 clones were susceptible to AIMV and showed systemic infection.  相似文献   

7.
The application of silicon to the roots or leaves reduces the severity of powdery mildew (Podosphaera xanthii) in melon but the latter treatment is less effective. This study compared key biochemical defence responses of melon triggered by P. xanthii after root or foliar treatment with potassium silicate (PS). Treatments consisted of pathogen‐inoculated or mock‐inoculated plants supplied with PS via roots or foliarly, as well as a non‐treated control. The activity of defence enzymes and the concentration of phenolic compounds, lignin and malondialdehyde were determined from leaf samples at different time points after inoculation. Pathogen‐inoculated plants irrigated with PS showed both an accumulation of silicon and primed defence responses in leaves that were not observed in pathogen‐inoculated plants either sprayed with PS or not treated. These responses included the anticipated activity of peroxidase and accumulation of soluble phenols, the activation of chitinase and repression of catalase, and the stronger activation of superoxide dismutase, peroxidase and β‐1,3‐glucanase. Moreover, the lignin concentration increased in response to inoculation, whereas the malondialdehyde concentration decreased. For the foliar treatment, however, only an increase in lignin deposition was observed compared with the control plants. The results show that silicon strongly plays an active role in modulating the defence responses of melon against P. xanthii when supplied to the roots as opposed to the foliage.  相似文献   

8.
Local lesion formation on cowpea leaves was more than 50% inhibited by treatment with a 23 kDa RNase-like glycoprotein from Cucumis figarei, figaren, from 24 hr before to 1 hr after inoculation with Cucumber mosaic virus (CMV). CMV accumulation detected by ELISA in tobacco leaves treated with figaren 6 or 0 hr before inoculation with CMV was suppressed. When upper leaves of tobacco plants were treated with figaren and inoculated 10 min later with CMV, mosaic symptoms were delayed for 5–7 days on most of the tobacco plants, and some plants remained asymptomatic. From fluorescence in situ hybridization, infection sites were present in figaren-treated cowpea or melon leaves after inoculation with CMV, though the sites were reduced in number and size compared with those in water-treated control leaves. The amount of CMV RNAs and CMV antigen in melon protoplasts inoculated with CMV and subsequently incubated with figaren similarly increased with time as did that in the control. ELISA and local lesion assays indicated that CMV infection on the upper surfaces of the leaves of tobacco, melon, cowpea and C. amaranticolor whose lower surfaces had been treated with figaren 5–10 min before CMV inoculation was almost completely inhibited. Figaren did not inhibit CMV infection on the opposite untreated leaf halves of melon, cowpea and C. amaranticolor, whereas it almost completely inhibited CMV infection on the untreated halves of leaves of tobacco. CMV infection was not inhibited in the untreated upper or lower leaves of the four plants. These data suggest that figaren does not completely prevent CMV invasion but does inhibit the initial infection processes. It may also induce localized acquired resistance in host plants. Received 10 October 2000/ Accepted in revised form 6 February 2001  相似文献   

9.
Proliferation and collapse of subcuticular hyphae of Venturia nashicola race 1 were studied ultrastructurally, after inoculation of susceptible Japanese pear cv. Kousui, resistant Japanese pear cv. Kinchaku, resistant Asian pear strain Mamenashi 12 and nonhost European pear cv. Flemish Beauty leaves, to understand the nature of the resistance mechanism. After cuticle penetration by the pathogen, the hyphae were observed at lower frequency in epidermal pectin layers and middle lamellae of leaves of the three resistant plants than in those of susceptible ones. This result suggested that fungal growth was suppressed in the incompatible interaction between pear and V. nashicola race 1. In the pectin layers of all inoculated plants, some hyphae had modifications such as breaks in the plasmalemma with plasmolysis, necrotic cytoplasm and degraded cell walls. More hyphae had collapsed in the leaves of the three resistant plants than in those of the susceptible cv. Kousui. In collapsed hyphae, the polymerized cell walls broke into numerous fibrous and amorphous pieces, showing that the scab resistance might be associated with cell wall-degrading enzymes from pear plants.  相似文献   

10.
ABSTRACT In an investigation of the interaction between two isolates of Albugo candida that were compatible (CO) and incompatible (IN) on a Brassica juncea accession, the IN isolate induced both local and systemic protection of cotyledons and true leaves against the CO isolate. The extent of the protection was proportional to the zoosporangia concentration used in the inducing (IN) inoculation. Protection was greatest locally on cotyledons and least on true leaves (the most remote tissue from the point of the inducing inoculation). Protection occurred when the two isolates were inoculated together but was greater when the interval between the IN and CO isolate inoculations was longer. The IN isolate induced only slight protection when it was inoculated after the CO isolate. No induced susceptibility to the IN isolate occurred with any treatment. There was some evidence of competition between CO and IN zoospores for infection sites (stomata). The occurrence of systemic protection and changes detected in phenylalanine ammonia lyase and total soluble peroxidase activities in inoculated cotyledons, particularly after the inducing (IN) inoculation, suggested that host-mediated factors also may be involved in the interaction between the two isolates.  相似文献   

11.
D-pinitol is an effective agent for controlling powdery mildew (Podosphaera xanthii) in cucumber. In this study, we determined the mechanisms of D-pinitol in controlling powdery mildew in cucumber plants. We compared P. xanthii development on cucumber leaf surface treated with D-pinitol or water (2 mg ml−1) at different time points after inoculation. The germinating conidia, hyphae, and conidiophores of the pathogen were severely damaged by D-pinitol at any time of application tested. The highest level of suppression of fungal development was obtained at 3 days after inoculation. The contents of chlorophyll, total phenolics, flavonoid, and gallic acid and its derivatives (GAD); the activities of phenylalanine ammonialyase (PAL), polyphenoloxidase (PPO), peroxidase (POX), and superoxide dismutase (SOD); and the expression of the genes encoding for PR-1, peroxidase (POX), lipoxygenase (LOX1), chitinase (Chit1) were higher in the cucumber leaves treated with D-pinitol and inoculated than in the leaves either treated with D-pinitol or inoculated with the pathogen. These results suggest that D-pinitol triggers several plant defense responses in cucumber leading to pathogen suppression and resistance to powdery mildew.  相似文献   

12.
Two cucumber ( Cucumis sativus ) cultivars differing in their resistance to powdery mildew, Ningfeng No. 3 (susceptible) and Jinchun No. 4 (resistant), were used to study the effects of foliar- and root-applied silicon on resistance to infection by Podosphaera xanthii (syn. Sphaerotheca fuliginea ) and the production of pathogenesis-related proteins (PRs). The results indicated that inoculation with P. xanthii significantly suppressed subsequent infection by powdery mildew compared with noninoculation, regardless of Si application. Root-applied Si significantly suppressed powdery mildew, the disease index being lower in Si-supplied than in Si-deprived plants, regardless of inoculation treatment. The resistant cultivar had a more constant lower disease index than the susceptible cultivar, irrespective of inoculation or Si treatment. Moreover, with root-applied Si, activities of PRs (for example peroxidase, polyphenoloxidase and chitinase) were significantly enhanced in inoculated lower leaves or noninoculated upper leaves in inoculated plants of both cultivars. Root-applied Si significantly decreased the activity of phenylalanine ammonia-lyase in inoculated leaves, but increased it in noninoculated upper leaves. However, Si treatment failed to change significantly the activity of PRs in plants without fungal attack. Compared to the control (no Si), foliar-applied Si had no effects either on the suppression of subsequent infection by P. xanthii or on the activity of PRs, irrespective of inoculation. Based on the findings in this study and previous reports, it was concluded that foliar-applied Si can effectively control infections by P. xanthii only via the physical barrier of Si deposited on leaf surfaces, and/or osmotic effect of the silicate applied, but cannot enhance systemic acquired resistance induced by inoculation, while continuously root-applied Si can enhance defence resistance in response to infection by P. xanthii in cucumber.  相似文献   

13.
Two experiments were carried out to assess the changes associated with photoassimilate production and partitioning in the source–sink relationship of flag leaves and spikes of wheat plants infected with Pyricularia oryzae, the causal agent of blast. Flag leaves and spikes were inoculated at 10 and 20 days after anthesis (daa) with a conidial suspension of P. oryzae. Analysis of chlorophyll a fluorescence using maximal photosystem II quantum efficiency (Fv?Fm), fraction of energy absorbed that is used in photochemistry (YII), quantum yield of non‐regulated energy dissipation (Y(NO)) and quantum yield of regulated energy dissipation (Y(NPQ)), showed an impairment of the photosynthetic performance in both infected flag leaves and spikes, coupled with reduced concentrations of chlorophyll b and carotenoids. Compared to non‐inoculated controls, there was lower capacity for CO2 fixation by RuBisCO in the infected flag leaves. Similarly, in the infected flag leaves and grains (obtained from infected spikes), there were lower concentrations of soluble sugars, while the hexoses‐to‐sucrose ratio increased in infected flag leaves. Compared to non‐inoculated controls, infected flag leaves showed lower sucrose phosphate synthase (SPS) activity and lower expression of the sucrose synthesis (SuSy) gene, while higher expression and activity of acid invertases also occurred. At the advanced stages of fungal infection, the concentration of starch in grains decreased but remained high for the infected flag leaves. There were reductions in ADP‐glucose pyrophosphorylase activity and the expression of ADP‐glucose pyrophosphorylase genes and a down‐regulation of β‐ and α‐amylase expression at the advanced stages of fungal infection on flag leaves and spikes. In conclusion, the effect of blast on both grain quality and yield can be associated with alterations in both production and partitioning of carbohydrates during the grain filling process.  相似文献   

14.
The time course of accumulation of two phytoalexins, the terpenoid rishitin and the polyacetylene cis-tetradeca-6-ene-1,3-diyne-5,8-diol, was determined in near-isogenic susceptible and resistant tomato lines inoculated with either Verticillium albo-atrum or Fusarium oxysporum f.sp. lycopersici.Cultivars containing the Ve gene for verticillium wilt resistance accumulated phytoalexins at a rate similar to that in susceptible plants following stem inoculation with V. albo-atrum. Higher amounts of phytoalexins were isolated from susceptible than from resistant plants at 11 days after inoculation. Inoculum concentrations of 105, 106, 107 and 108 conidia ml−1 had no differential effect on phytoalexin accumulation at 3 days after inoculation. Also, no differences were observed between fungal growth in susceptible and resistant cultivars during that period.A cultivar containing the I-1 gene for fusarium wilt resistance contained more rishitin than did susceptible plants at 2 and 3 days after inoculation with 107 conidia of F. oxysporum f.sp. lycopersici ml−1, but at 7 and 11 days after inoculation more rishitin had accumulated in the susceptible plants.No difference was observed between the rate of accumulation of phytoalexin in stem segments from resistant and susceptible plants inoculated by vacuum-infiltration.To estimate the concentration of phytoalexins in the xylem fluid, sap was expressed from vascular tissue and amounts of phytoalexins were determined in the sap and in the expressed tissue. Less than 5% of the phytoalexins present in stem segments was recovered from the sap, indicating that their concentration in the xylem fluid may be relatively low.The role of phytoalexins in resistance to verticillium and fusarium wilt is discussed.  相似文献   

15.
Wheat blast, caused by Pyricularia oryzae, can cause large yield losses in crops. This study aimed to investigate defence responses in flag leaves and spikes of wheat cultivars BR-18 (moderately resistant) and BRS-Guamirim (susceptible), which differ in their levels of basal resistance. In contrast to cultivar BRS-Guamirim, infected plants of cultivar BR-18 showed more pronounced increases in activities of β-1,3-glucanase and chitinase as well as higher concentrations of lignin-thioglycolic acid derivatives in the flag leaves and total soluble phenolics in the spikes. Polyphenoloxidase activity increased in both flag leaves and spikes in response to fungal infection, regardless of cultivar. Phenylalanine ammonia-lyase (PAL) activity increased in infected flag leaves of both cultivars, especially in BR-18. PAL activity was lower in spikes of infected compared to noninfected plants of both cultivars, although to a lesser extent in BR-18. Compared to BRS-Guamirim, the antioxidative system in both flag leaves and spikes of BR-18 was more efficient in removing reactive oxygen species, reducing cellular damage caused by fungal infection. The lower catalase and peroxidase activities, associated with high superoxide dismutase activity, in flag leaves and spikes of infected BR-18 culminated in a high hydrogen peroxide concentration. The increase in ascorbate peroxidase activity was higher in both flag leaves and spikes of infected plants of BR-18 than in infected BRS-Guamirim. It was concluded that wheat resistance to blast depended on the basal level of resistance of the cultivar, which was mainly associated with the activities of defence enzymes and a more effective antioxidative system.  相似文献   

16.
No infection occurred at less than 95% relative humidity (r.h.) when chickpea plants were dried after inoculation with conidia of Didymella rabiei. Infection was significant when the dry leaves were exposed to 98% r.h. for 48 h. When inoculated plants were subjected to different leaf wetness periods, some infection occurred with 4 h wetness, and disease severity increased with wetness duration according to an exponential asymptote, with a maximum value after about 18 h. Germination of conidia and germ tube penetration increased linearly with increasing wetness periods when recorded 42 h after inoculation. With a 24-h wetness period, germination of conidia was first observed 12 h after inoculation and increased linearly with time up to 52 h (end of the experiment). Dry periods immediately after inoculation, followed by 24-h leaf wetness, reduced disease severity; as the dry period increased the severity decreased. Disease severity increased with increasing periods of darkness after inoculation. The number of pycnidia and the production of conidia on infected leaves increased only slightly with high r.h. (either in the light or in the dark), but large increases occurred over an 8-day period when the leaves were kept wet.  相似文献   

17.
 番茄叶霉菌小种4是番茄Cf5品系的非亲和小种,接种Cf5植株第3叶后,经不同诱导间隔期以亲和小种5接种第3叶和第4叶,15 d后检查叶霉病发病情况。试验表明,在诱导间隔期为3 d和5 d时,小种4诱导接种的第3叶和未经诱导接种的上位第4叶发病面积比不接种或接种小种5的对照显著降低,以5 d间隔期处理效果最好。上述2个叶位的发病分别比对照降低90%和85%。小种4接种第3叶后该叶位和上部未接种第4叶内水杨酸含量迅速增加,以接种后3 d含量最高,分别达4.02 μg/g鲜重和3.21μg/g鲜重,比对照分别高2倍和1.8倍。接种后5 d内始终保持较高水平。接种8 d后逐渐下降,但仍高于对照。水杨酸含量的增加早于抗性表现,因而可能在该系统的抗性诱导中起作用。  相似文献   

18.
The biocontrol agent Pythium oligandrum (PO) can suppress bacterial wilt caused by Ralstonia solanacearum (RS) in tomato. To understand the primary biocontrol mechanisms of bacterial wilt by PO, we pretreated tomato plants with sterile distilled water or preinoculated them with PO, followed by inoculation with RS, then observed PO and RS in fixed sections of tomato tissues using a confocal laser-scanning microscope and fluorescence labeling until 14 days after the inoculation with RS. Horizontal and vertical movement of RS bacteria was frequently observed in the xylem vessels of roots and stems of tomato plants (cv. Micro-Tom) that had not been inoculated with PO. In plants that were preinoculated with PO, the movement of RS was suppressed, and bacteria appeared to be restricted to the pit of vessels, a reaction similar to that observed in resistant rootstocks. PO colonization was mainly observed at the surfaces of taproots, the junctions between taproots and lateral roots, and the middle sections of the lateral roots. PO was not observed near wound sites or root tips where RS tended to colonize. However, RS colonization was significantly repressed at these sites in PO preinoculated plants. These observations suggest that the induction of plant defense reactions is the main mechanism for the control of tomato bacterial wilt by PO, not direct competition for infection sites.  相似文献   

19.
The mode of action of soluble silicon against strawberry powdery mildew (Sphaerotheca aphanis var. aphanis) was investigated in four experiments. First, silicon-treated leaves from plants grown with silicate (Si+) and control leaves were excised, inoculated with conidia, and subsequent germination and formation of appressoria in a petri dish was assessed after 24 h. The germination rate was 49.7% on Si+ leaves, and was 67.2% on control leaves (t-test, P < 0.01). Second, we soaked cellulose membranes in various solvents and then placed the membranes on 4% water agar, dusted the membranes with conidia, and examined after 12 h. No difference was apparent between any treatment and the control (distilled water). Third, strawberries growing hydroponically with additional silicon in the medium were inoculated with conidia, and leaves were observed with a scanning electron microscope 1–2 days after inoculation. Germ tubes and secondary hyphae were shorter and had fewer branches on Si+ leaves than on the control. Moreover, penetration appeared to be inhibited. Fourth, the cuticle was separated from leaves from plants grown as in the third experiment, placed on water agar, and dusted with conidia. Germination of conidia, observed with a light microscope, on Si+ leaves was suppressed markedly to 40%–60% of that of the control. These results suggested that soluble silicon induced physiological changes in the cuticle layer after absorption by the plant. In addition, soluble silicate reduced germination of conidia, formation of appressoria, and possibly the penetration of powdery mildew.  相似文献   

20.
Conidia ofSclerospora sorghi, obtained from either systemically-infected or local-lesion-infected leaves of sorghum (cv. Vidan), were capable of inducing typical downy mildew systemic infection, including oospore formation, in sorghum and corn hybrids. Very young inoculated seedlings displayed chlorotic systemic symptoms already on the first leaf, and often died at fourth-leaf stage. Systemic infection was induced by conidia on sorghum 1–14 days old at inoculation. Incidence of infection was much higher and symptoms less delayed when the shoot rather than coleorhizas of young sorghum and corn seedlings were inoculated; in two-week-old sorghum with three leaves, inoculation of the coleoptile or of the base of the second and third blades resulted in systemic infection; with coleoptile inoculation partial leaf chlorosis was delayed until the fourth-or fifth-leaf stage, showing that penetration without symptoms had occurred as far as the meristematic tissues of young leaves still within the leaf tube. Conidial inoculation of young sorghum tillers sprouting after cutting down healthy mother shoots resulted in systemic infection. Conidial inoculum is deemed to be the probable major means for systemic infection of corn and sorghum sown in fields in which oospores are not present; inoculation of new tillers of forage sorghum by conidia from infected plants in a neighboring field can explain the rise in numbers of plants systemically stricken. Two sweet corn hybrids — one considered resistant in the field, the other very susceptible — proved equally susceptible when inoculated with conidia at 5 days of age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号