首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Propofol is a potentially useful intravenous anesthetic agent for total intravenous anesthesia (TIVA) in horses. The purpose of this study was to compare the anesthetic and cardiorespiratory effects of TIVA following the administration of propofol alone(P–TIVA) and ketamine–medetomidine–propofol (KM–P–TIVA) in adult horses. The carotid artery was translocated to a subcutaneous position during TIVA with P–TIVA (n = 6) or KM–P–TIVA (n = 6). All horses were premedicated with medetomidine [0.005 mg kg–1, intravenously (IV)]. Anesthesia was induced with midazolam (0.04 mg kg–1 IV) and ketamine (2.5 mg kg IV). All horses were orotracheally intubated and breathed 100% oxygen. The KM drug combination (ketamine 40 mg mL–1 and medetomidine 0.05 mg mL–1) was infused at a rate of 0.025 mL kg–1 hour–1. Subsequently, a loading dose of propofol (0.5 mg kg–1, bolus IV) was administered to all horses; surgical anesthesia (determined by horse response to incision and surgical manipulation, positive response being purposeful or spontaneous movement of limbs or head) was maintained by varying the propofol infusion rate as needed. Arterial blood pressure and HR were also monitored. Both methods of producing TIVA provided excellent general anesthesia for the surgical procedure. Anesthesia time was 115 ± 17 (mean ± SD) and 112 ± 11 minutes in horses anesthetized with KM–P–TIVA and P–TIVA, respectively. The infusion rate of propofol required to maintain surgical anesthesia with KM–P–TIVA was significantly less than for P–TIVA (mean infusion rate of propofol during anesthesia; KM–P–TIVA 0.15 0.02 P–TIVA 0.23 ± 0.03 mg kg–1 minute–1, p = 0.004). Apnea occurred in all horses lasting 1–2 minutes and intermittent positive pressure ventilation was started. Cardiovascular function was maintained during both methods of producing TIVA. There were no differences in the time to standing after the cessation of anesthesia (KM–P–TIVA 62 ± 10 minutes versus P–TIVA 87 ± 36 minutes, p = 0.150). The quality of recovery was good in KM–P–TIVA and satisfactory in P–TIVA. KM–P–TIVA and P–TIVA produced clinically useful general anesthesia with minimum cardiovascular depression. Positive pressure ventilation was required to treat respiratory depression. Respiratory depression and apnea must be considered prior to the use of propofol in the horse.  相似文献   

2.
Objective— To characterize the behavior of horses recovering in the Anderson Sling Suspension System after 4 hours of desflurane anesthesia and postdesflurane intravenous (IV) administration of propofol and xylazine. Study Design— Experimental study. Animals— Healthy horses (n=6), mean±SEM age 12.3±1.8 years; mean weight 556±27 kg. Methods— Each horse was anesthetized with xylazine, diazepam, and ketamine IV and anesthesia was maintained with desflurane in O2. At the end of 4 hours of desflurane, each horse was positioned in the sling suspension system and administered propofol–xylazine IV. Recovery events were quantitatively and qualitatively assessed. Venous blood was obtained before and after anesthesia for biochemical and propofol analyses. Results— Anesthetic induction and maintenance were without incident. Apnea commonly accompanied propofol administration. All horses had consistent recovery behavior characterized by a smooth, careful, atraumatic return to a standing posture. Conclusions— Results of this study support careful, selective clinical use of desflurane, propofol–xylazine, and the Anderson Sling Suspension System to atraumatically transition horses with high anesthetic recovery risk to a wakeful standing posture. Clinical Relevance— Technique choices to facilitate individualized, atraumatic recovery of horses from general anesthesia are desirable. Use of IV propofol and xylazine to transition horses from desflurane anesthesia during sling recovery to standing posture may facilitate improved recovery management of high‐injury risk equine patients requiring general anesthesia.  相似文献   

3.
Objective- This study evaluates the clinical usefulness and anesthetic effect of propofol, and compares these effects with those of xylazine-ketamine-halothane anesthesia in sheep.
Study Design- Prospective, randomized, clinical trial. Animals or Sample Population- Fourteen healthy adult male sheep.
Methods- Sheep were randomly assigned to two different drug regimens: (1) Bolus injection of propofol (3 mg/kg, intravenously [IV]) followed by continuous intravenous infusion and (2) xylazine (0.11 mg/kg, IV) and ketamine (2.2 mg/kg, IV) for induction followed by halothane anesthesia. Heart rate, respiratory rate, and arterial blood pressures were monitored during anesthesia. Venous blood samples were collected for blood gas analysis. Quality of induction and recovery were also recorded.
Results- The average dose of propofol used to induce and maintain anesthesia was 6.63 ±2.06 mg/kg and 29.3 ±11.7 mg/kg/hr (0.49 ±0.20 mg/kg/min), respectively. The duration of propofol anesthesia was 45.3 ±13.2 minutes and recovery to standing occurred in 14.7 ±5.7 minutes. Sheep receiving xylazine-ketamine-halothane were anesthetized for 35.9 ±4.0 minutes and recovery to standing occurred within 28.5 ±7.5 minutes. Sheep anesthetized with propofol had a significantly higher heart rate, diastolic blood pressure and Pvo2, and a lower Pvco2 at 30 minutes and lower BE at 15 and 30 minutes than sheep anesthetized with xylazine-ketamine-halothane.
Conclusions- Propofol anesthesia was characterized by a smooth induction, effective surgical anesthesia and rapid recovery which was comparable to anesthesia with xylazine-ketamine-halothane.
Clinical Relevance- Propofol may be indicated in situations when it is desirable to maintain anesthesia with an intravenous infusion followed by a rapid recovery in healthy sheep.  相似文献   

4.
ObjectiveTo evaluate the heart rate (HR) and systemic arterial pressure (sAP) effects, and propofol induction dose requirements in healthy dogs administered propofol with or without guaifenesin for the induction of anesthesia.Study designProspective blinded crossover experimental study.AnimalsA total of 10 healthy adult female Beagle dogs.MethodsDogs were premedicated with intravenous (IV) butorphanol (0.4 mg kg–1) and administered guaifenesin 5% at 50 mg kg–1 (treatment G50), 100 mg kg–1 (treatment G100) or saline (treatment saline) IV prior to anesthetic induction with propofol. HR, invasive sAP and respiratory rate (fR) were recorded after butorphanol administration, after guaifenesin administration and after propofol and endotracheal intubation. Propofol doses for intubation were recorded. Repeated measures analysis of variance (anova) was used to determine differences in propofol dose requirements among treatments, and differences in cardiopulmonary values over time and among treatments with p < 0.05 considered statistically significant.ResultsPropofol doses (mean ± standard deviation) for treatments saline, G50 and G100 were 3.3 ± 1.0, 2.7 ± 0.7 and 2.1 ± 0.8 mg kg–1, respectively. Propofol administered was significantly lower in treatment G100 than in treatment saline (p = 0.04). In treatments G50 and G100, HR increased following induction of anesthesia and intubation compared with baseline measurements. HR was higher in treatment G100 than in treatments G50 and saline following induction of anesthesia. In all treatments, sAP decreased following intubation compared with baseline values. There were no significant differences in sAP among treatments. fR was lower following intubation than baseline and post co-induction values and did not differ significantly among treatments.Conclusions and clinical relevanceWhen administered as a co-induction agent in dogs, guaifenesin reduced propofol requirements for tracheal intubation. HR increased and sAP and fR decreased, but mean values remained clinically acceptable.  相似文献   

5.
ObjectiveTo evaluate the cardiovascular, respiratory, electrolyte and acid–base effects of a continuous infusion of dexmedetomidine during propofol–isoflurane anesthesia following premedication with dexmedetomidine.Study designProspective experimental study.AnimalsFive adult male Walker Hound dogs 1–2 years of age averaging 25.4 ± 3.6 kg.MethodsDogs were sedated with dexmedetomidine 10 μg kg?1 IM, 78 ± 2.3 minutes (mean ± SD) before general anesthesia. Anesthesia was induced with propofol (2.5 ± 0.5 mg kg?1) IV and maintained with 1.5% isoflurane. Thirty minutes later dexmedetomidine 0.5 μg kg?1 IV was administered over 5 minutes followed by an infusion of 0.5 μg kg?1 hour?1. Cardiac output (CO), heart rate (HR), ECG, direct blood pressure, body temperature, respiratory parameters, acid–base and arterial blood gases and electrolytes were measured 30 and 60 minutes after the infusion started. Data were analyzed via multiple linear regression modeling of individual variables over time, compared to anesthetized baseline values. Data are presented as mean ± SD.ResultsNo statistical difference from baseline for any parameter was measured at any time point. Baseline CO, HR and mean arterial blood pressure (MAP) before infusion were 3.11 ± 0.9 L minute?1, 78 ± 18 beats minute?1 and 96 ± 10 mmHg, respectively. During infusion CO, HR and MAP were 3.20 ± 0.83 L minute?1, 78 ± 14 beats minute?1 and 89 ± 16 mmHg, respectively. No differences were found in respiratory rates, PaO2, PaCO2, pH, base excess, bicarbonate, sodium, potassium, chloride, calcium or lactate measurements before or during infusion.Conclusions and clinical relevanceDexmedetomidine infusion using a loading dose of 0.5 μg kg?1 IV followed by a constant rate infusion of 0.5 μg kg?1 hour?1 does not cause any significant changes beyond those associated with an IM premedication dose of 10 μg kg?1, in propofol–isoflurane anesthetized dogs. IM dexmedetomidine given 108 ± 2 minutes before onset of infusion showed typical significant effects on cardiovascular parameters.  相似文献   

6.
This study provides baseline information on the potential use of propofol as a general anesthetic for horses. Using a Latin square design, propofol (2, 4, and 8 mg/kg) was administered intravenously on three separate occasions to six mature horses. Information about anesthetic induction, duration, and recovery was recorded along with results of rectal temperature, heart rate, respiratory rate, pHa, Paco2 and Pao2. Statistical analysis included a mixed model analysis of variance, a general linear model analysis and least square means test for post hoc comparisons. A P <.05 was considered significant. The quality of induction of anesthesia varied from poor to good. Two horses were not recumbent following the lowest dose of propofol. Brief paddling limb movements occurred occasionally and unpredictably after recumbency induced by all three doses. During recovery, horses were uniformly calm and coordinated in their moves to stand. Duration of recumbency (minutes) was dose related; 15.05 ± 1.58 (±±SD) following 2 mg/kg, 31.06 ± 5.56 following 4 mg/kg, and 47.85 ± 13.63 following 8 mg/kg. During recumbency at all doses, heart rate significantly increased from a predrug value of 40 ± 6 beats per minute. Substantial respiratory depression, characterized by a significant decrease in respiratory rate (from 11.7 ± 2.9 to 3.7 ± 1.6 breaths per minute) and increased Paco2 (from 44.5 ± 2.5 to 52.7 ± 8.0 mm Hg) was seen only after 8 mg/kg. A significant decrease in Pao2 was observed throughout the recumbency induced by 8 mg/kg, and also at 3 and 5 minutes following induction of anesthesia with 4 mg/ kg propofol. At 5 minutes after injection, Pao2 was 87.4 ± 13.8 and 58.1 ± 17.0 mm Hg after 4 and 8 mg/kg, respectively. The results of this study do not favor the routine use of propofol as a sole anesthetic in otherwise unmedicated horses.  相似文献   

7.
ObjectiveTo evaluate the effects of the co-administration of midazolam on the dose requirement for propofol anesthesia induction, heart rate (HR), systolic arterial pressure (SAP) and the incidence of excitement.Study designProspective, randomized, controlled and blinded clinical study, with owner consent.AnimalsSeventeen healthy, client owned dogs weighing 28 ± 18 kg and aged 4.9 ± 3.9 years old.MethodsDogs were sedated with acepromazine 0.025 mg kg?1 and morphine 0.25 mg kg?1 intramuscularly (IM), 30 minutes prior to induction of anesthesia. Patients were randomly allocated to receive midazolam (MP; 0.2 mg kg?1) or sterile normal saline (CP; 0.04 mL kg?1) intravenously (IV) over 15 seconds. Propofol was administered IV immediately following test drug and delivered at 3 mg kg?1 minute?1 until intubation was possible. Scoring of pre-induction sedation, ease of intubation, quality of induction, and presence or absence of excitement following co-induction agent, was recorded. HR, SAP and respiratory rate (fR) were obtained immediately prior to, immediately following, and 5 minutes following induction of anesthesia.ResultsThere were no significant differences between groups with regard to weight, age, gender, or sedation. Excitement occurred in 5/9 dogs following midazolam administration, with none noted in the control group. The dose of propofol administered to the midazolam group was significantly less than in the control group. Differences in HR were not significant between groups. SAP was significantly lower in the midazolam group compared with baseline values 5 minutes after its administration. However, values remained clinically acceptable.Conclusions and clinical relevanceThe co-administration of midazolam with propofol decreased the total dose of propofol needed for induction of anesthesia in sedated healthy dogs, caused some excitement and a clinically unimportant decrease in SAP.  相似文献   

8.
ObjectiveTo characterize cardiovascular, respiratory and biochemical effects and recovery behavior associated with a 3‐hour continuous infusion of a micellar microemulsion propofol formulation in horses.Study designProspective experimental trial.AnimalsSix healthy adult horses, 9 ± 2 years old and weighing 557 ± 14 kg.MethodsAll horses received xylazine (1 mg kg?1, IV) 5 minutes prior to anesthetic induction. Each horse was anesthetized on two occasions with a 5% micellar microemulsion propofol formulation (2 mg kg?1, IV); first as a single bolus (phase I) and then as a 3‐hour continuous infusion (phase II). Propofol pharmacokinetics were obtained from phase I and used to determine the starting infusion rates in phase II. Anesthetic induction and recovery characteristics were quantitatively and qualitatively assessed. Cardiovascular, respiratory and biochemical parameters were monitored during anesthesia and recovery.ResultsInduction quality varied, ranging from good to poor. Standing and overall recovery quality scores were consistently excellent in phase I but more variability was observed among horses in phase II. Heart rate (HR) and mean arterial pressure (MAP) were adequately maintained but marked hypoventilation developed. There were only minimal changes in blood biochemical analytes following anesthesia.Conclusions and clinical relevanceThe micellar microemulsion propofol formulation, administered as a 3‐hour continuous infusion, showed similar results compared to those previously described with a commercially available propofol preparation. However, based on present findings, use of propofol as a primary anesthetic in horses for prolonged periods of anesthesia requires further study to determine the limits of safety and clinical applicability.  相似文献   

9.
Objective To evaluate disposition of a single dose of butorphanol in goats after intravenous (IV) and intramuscular (IM) administration and to relate behavioral changes after butorphanol administration with plasma concentrations. Design Randomized experimental study. Animals Six healthy 3‐year‐old neutered goats (one male and five female) weighing 46.5 ± 10.5 kg (mean ± D). Methods Goats were given IV and IM butorphanol (0.1 mg kg?1) using a randomized cross‐over design with a 1‐week interval between treatments. Heparinized blood samples were collected at fixed intervals for subsequent determination of plasma butorphanol concentrations using an enzyme linked immunosorbent assay (ELISA). Pharmacokinetic values (volume of distribution at steady state [VdSS], systemic clearance [ClTB], extrapolated peak plasma concentration [C0] or estimated peak plasma concentration [CMAX], time to estimated peak plasma concentration [TMAX], distribution and elimination half‐lives [t1/2], and bioavailability) were calculated. Behavior was subjectively scored. A two‐tailed paired t‐test was used to compare the elimination half‐lives after IV and IM administration. Behavioral scores are reported as median (range). A Friedman Rank Sums test adjusted for ties was used to analyze the behavioral scores. A logit model was used to determine the effect of time and concentration on behavior. A value of p < 0.05 was considered significant. Results Volume of distribution at steady state after IV administration of butorphanol was 1.27 ± 0.73 L kg?1, and ClTB was 0.0096 ± 0.0024 L kg?1 minute?1. Extrapolated C0 of butorphanol after IV administration was 146.5 ± 49.8 ng mL?1. Estimated CMAX after IM administration of butorphanol was 54.98 ± 14.60 ng mL?1, and TMAX was 16.2 ± 5.2 minutes; bioavailability was 82 ± 41%. Elimination half‐life of butorphanol was 1.87 ± 1.49 and 2.75 ± 1.93 hours for IV and IM administration, respectively. Goats became hyperactive after butorphanol administration within the first 5 minutes after administration. Behavioral scores for goats were significantly different from baseline at 15 minutes after IV administration and at 15 and 30 minutes after IM administration. Both time and plasma butorphanol concentration were predictors of behavior. Behavioral scores of all goats had returned to baseline by 120 minutes after IV administration and by 240 minutes after IM administration. Conclusions and Clinical Relevance The dose of butorphanol (0.1 mg kg?1, IV or IM) being used clinically to treat postoperative pain in goats has an elimination half‐life of 1.87 and 2.75 hours, respectively. Nonpainful goats become transiently excited after IV and IM administration of butorphanol. Clinical trials to validate the efficacy of butorphanol as an analgesic in goats are needed.  相似文献   

10.
Objective To characterize responses to different doses of propofol in horses pre‐medicated with xylazine. Animals Six adult horses (five females and one male). Methods Each horse was anaesthetized four times with either ketamine or propofol in random order at 1‐week intervals. Horses were pre‐medicated with xylazine (1.1 mg kg?1 IV over a minute), and 5 minutes later anaesthesia was induced with either ketamine (2.2 mg kg?1 IV) or propofol (1, 2 and 4 mg kg?1 IV; low, medium and high doses, respectively). Data were collected continuously (electrocardiogram) or after xylazine administration and at 5, 10 and 15 minutes after anaesthetic induction (arterial pressure, respiratory rate, pH, PaO2, PaCO2 and O2 saturation). Anaesthetic induction and recovery were qualitatively and quantitatively assessed. Results Differences in the quality of anaesthesia were observed; the low dose of propofol resulted in a poorer anaesthetic induction that was insufficient to allow intubation, whereas the high dose produced an excellent quality of induction, free of excitement. Recorded anaesthesia times were similar between propofol at 2 mg kg?1 and ketamine with prolonged and shorter recovery times after the high and low dose of propofol, respectively (p < 0.05; ketamine, 38 ± 7 minutes; propofol 1 mg kg?1, 29 ± 4 minutes; propofol 2 mg kg?1, 37 ± 5 minutes; propofol 4 mg kg?1, 50 ± 7 minutes). Times to regain sternal and standing position were longest with the highest dose of propofol (32 ± 5 and 39 ± 7 minutes, respectively). Both ketamine and propofol reversed bradycardia, sinoatrial, and atrioventricular blocks produced by xylazine. There were no significant alterations in blood pressure but respiratory rate, and PaO2 and O2 saturation were significantly decreased in all groups (p < 0.05). Conclusion The anaesthetic quality produced by the three propofol doses varied; the most desirable effects, which were comparable to those of ketamine, were produced by 2 mg kg?1 propofol.  相似文献   

11.
ObjectiveTo report the cardiovascular variables, anaesthetic effects and recovery quality of an anaesthesia technique using variable rate infusion propofol combined with constant rate infusion fentanyl in dogs undergoing elective surgery.Study designProspective clinical trial.AnimalsA total of 27 dogs, aged 2.7 ± 2.65 years and weighing 24 ± 11 kg.MethodsFollowing intramuscular acepromazine (0.03 or 0.05 mg kg?1) and subcutaneous carprofen (4 mg kg?1) pre-medication, anaesthesia was induced with propofol (4.0 ± 0.5 mg kg?1) intravenously (IV). All dogs were ventilated with 100% oxygen to maintain normocapnia. Propofol was infused at 0.4 mg kg?1 minute?1 for 20 minutes and then at 0.3 mg kg?1minute?1. If mean arterial blood pressure (MAP) decreased below 70 mmHg, propofol infusion was reduced by 0.1 mg kg?1 minute?1. Five minutes after induction of anaesthesia, fentanyl was administered (2 μg kg?1) IV followed by the infusion at 0.5 μg kg?1 minute?1 and atropine (40 μg kg?1) IV. Heart rate, MAP, respiratory rate, tidal volume, end-tidal carbon dioxide, presence of reflexes, movements and recovery times and quality were recorded.ResultsMean anaesthetic duration was 131 ± 38.5 minutes. Mean heart rate peaked 10 minutes after atropine injection and gradually declined, reaching pre-anaesthetic values at 55 minutes. MAP easily was maintained above 70 mmHg. Mean times to return of spontaneous ventilation, extubation, head lift and sternal recumbency were 21 ± 10.1, 33 ± 14.6, 43 ± 19.7 and 65 ± 23.4 minutes, respectively. Recovery was smooth and quiet. The time to sternal recumbency was significantly correlated with the duration of anaesthesia and total dose of propofol; time to extubation was correlated to total dose of propofol.Conclusion and clinical relevancePropofol and fentanyl infusions provided stable cardiovascular function and satisfactory conditions for surgery. Some modifications of infusion rates are required to improve the long-recovery times.  相似文献   

12.
ObjectiveTo investigate an infusion of propofol for anesthesia in comparison to tiletamine-zolazepam anesthesia, evaluating physiological variables and recovery in squirrel monkeys.Study designProspective non-blinded randomized study.AnimalsEight healthy squirrel monkeys (Saimiri sciureus), aged 3 years and weighing 0.340–0.695 kg.MethodsPremedication was intramuscular midazolam (0.5 mg) and meperidine (4 mg). Anesthesia was induced with intravenous (IV) propofol (4 mg kg?1 minute?1) and maintained with propofol starting at 0.4 mg kg?1 minute?1 (PRO, n = 4) or IV tiletamine-zolazepam (5 mg kg?1) and maintained with supplementary doses of TZ (TZ, n = 4). Cardiopulmonary variables were measured continuously. Arterial blood gases and lactate concentration were measured at the end of anesthesia. Quality and times of recovery were determined. Repeatedly measured data for significant differences were tested between groups with t-test and within groups by anova.ResultsMedian time for induction of anesthesia in PRO was 180 seconds. Mean maintenance infusion rate of propofol was 0.43 ± 0.05 mg kg?1 minute?1, varying during the 1 hour period. One monkey died after administration of TZ; others required 1, 4, or 8 supplemental doses. Cardiopulmonary variables were similar between groups, but hypotension was recorded. Recovery times to ventral recumbency in PRO (32 ± 17 minutes) and TZ (84 ± 11 minutes) and normal ambulation in PRO (58 ± 22 minutes) and TZ (358 ± 109minutes) were significantly different (p < 0.05). Recovery quality was superior in PRO, with less ataxia and fewer unsuccessful attempts to stand. Lactate concentration was not different between treatments.Conclusions and clinical relevanceCardiopulmonary variables were similar between protocols, aside from the higher incidence of hypotension in PRO, indicating that further studies with a larger number of animals are required. Compared to tiletamine-zolazepam, propofol anesthesia provided faster and superior anesthetic recovery in these animals.  相似文献   

13.
Our understanding of clinical anesthesia for amphibians is limited. This study represents the first attempt to evaluate the effectiveness of clove oil and propofol as anesthetic agents for tiger salamanders (Ambystoma tigrinum). Twelve apparently healthy adult tiger salamanders were anesthetized in a water bath containing clove oil (450 mg/L of water). After a 2-week wash-out period, 11 of the salamanders were used to evaluate the effectiveness of propofol as an anesthetic agent. Propofol was administered intracoelomically at a dose of 25 mg/kg (n = 5) or 35 mg/kg (n = 6). Heart and respiratory rates were monitored at 5-, 10-, 15-, 20-, 30-, 40-, 50-, 60-, 70-, 80-, 90-, 100-, 120-, 150-, and 180-minute intervals after exposure to the anesthetics. Righting, escape, corneal, superficial pain, and deep pain reflexes were also monitored at these time intervals and ranked as (1) normal, (2) slow, or (3) absent. Surgical anesthesia was determined to be when all of the reflexes were lost. Clove oil produced a surgical level of anesthesia in 67% (8/12) of the salamanders. Propofol administered at 25 mg/kg produced surgical anesthesia in 40% (2/5) of the salamanders, whereas propofol at 35 mg/kg produced surgical anesthesia in 83% (5/6) of the animals. Clove oil did not significantly (P > 0.05) affect respiratory rate at any time, but did decrease heart rate significantly (P < 0.05) after 30 minutes. Propofol produced a significant (P < 0.05) reduction in the respiratory rate at both doses. Heart rate was also found to decrease significantly (P < 0.05) for propofol at 25 mg/kg after 90 minutes and for propofol at 35 mg/kg at 60 minutes and after 80 minutes. Both clove oil and propofol were found to provide a surgical plane of anesthesia for tiger salamanders. However, clove oil provided more rapid onset of the desired level of anesthesia with a longer duration. Although the intracoelomic route for propofol was effective, the time to surgical anesthesia was prolonged. These anesthetics show promise and may prove useful to veterinarians or field biologists working with urodelans.  相似文献   

14.
Propofol anaesthesia for surgery in late gestation pony mares   总被引:2,自引:0,他引:2  
Objective To characterize propofol anaesthesia in pregnant ponies. Animals Fourteen pony mares, at 256 ± 49 days gestation, undergoing abdominal surgery to implant fetal and maternal vascular catheters. Materials and methods Pre‐anaesthetic medication with intravenous (IV) acepromazine (20 µg kg?1), butorphanol (20 µg kg?1) and detomidine (10 µg kg?1) was given 30 minutes before induction of anaesthesia with detomidine (10 µg kg?1) and ketamine (2 mg kg?1) IV Maternal arterial blood pressure was recorded (facial artery) throughout anaesthesia. Arterial blood gas values and plasma concentrations of glucose, lactate, cortisol and propofol were measured at 20‐minute intervals. Anaesthesia was maintained with propofol infused initially at 200 µg kg?1 minute?1, and at 130–180 µg kg?1 minute?1 after 60 minutes, ventilation was controlled with oxygen and nitrous oxide to maintain PaCO2 between 5.0 and 6.0 kPa (37.6 and 45.1 mm Hg) and PaO2 between 13.3 and 20.0 kPa (100 and 150.4 mm Hg). During anaesthesia flunixin (1 mg kg?1), procaine penicillin (6 IU) and butorphanol 80 µg kg?1 were given. Lactated Ringer's solution was infused at 10 mL kg?1 hour?1. Simultaneous fetal and maternal blood samples were withdrawn at 85–95 minutes. Recovery from anaesthesia was assisted. Results Arterial blood gas values remained within intended limits. Plasma propofol levels stabilized after 20 minutes (range 3.5–9.1 µg kg?1); disposition estimates were clearance 6.13 ± 1.51 L minute?1 (mean ± SD) and volume of distribution 117.1 ± 38.9 L (mean ± SD). Plasma cortisol increased from 193 ± 43 nmol L?1 before anaesthesia to 421 ± 96 nmol L?1 60 minutes after anaesthesia. Surgical conditions were excellent. Fetal umbilical venous pH, PO2 and PCO2 were 7.35 ± 0.04, 6.5 ± 0.5 kPa (49 ± 4 mm Hg) and 6.9 ± 0.5 kPa (52 ± 4 mm Hg); fetal arterial pH, PO2 and PCO2 were 7.29 ± 0.06, 3.3 ± 0.8 kPa (25 ± 6 mm Hg) and 8.7 ± 0.9 kPa (65 ± 7 mm Hg), respectively. Recovery to standing occurred at 46 ± 17 minutes, and was generally smooth. Ponies regained normal behaviour patterns immediately. Conclusions and clinical relevance Propofol anaesthesia was smooth with satisfactory cardiovascular function in both mare and fetus; we believe this to be a suitable anaesthetic technique for pregnant ponies.  相似文献   

15.
The purpose of this study was to compare the echocardiographic Doppler blood pressure and heart rate effects of 1:1 thiopental/propofol with thiopental and propofol, when used as anesthesia‐induction agents. Seven healthy dogs (six Beagles and one Pembroke Welsh Corgi), ranging in age from 1 to 9 years and weighing 14.2 ± 2.4 kg (mean ± SD), were used during the study. In a cross‐over study design with a minimum drug interval of 3 days, each dog received propofol, thiopental, or a mixture of propofol–thiopental IV until each dog received all the three anesthetic agents. An initial dose (propofol 4.9 ± 0.8 mg kg?1; thiopental 12.9 ± 2.4 mg kg?1; propofol–thiopental 2.3 ± 0.3 mg kg?1 (P)?5.7 ± 0.8 mg kg?1 (T)) of each anesthetic agent was titrated IV until intubation was accomplished. Echocardiographic Doppler blood pressure and heart rate variables were recorded prior to anesthesia and at 1, 5, and 10 minutes after induction of anesthesia. anova and the Bonferroni's t‐test were used to evaluate the groups for differences. Alpha was <0.05. There was no significant effect of treatment on systolic or diastolic ventricular wall thickness, septal thickness, left atrial diameter, or systolic left ventricular diameter. There was a tendency for diastolic left ventricular diameter to decrease over time. There was a tendency for heart rate to increase with a significant difference at the 10‐minute time period between propofol (109 ± 26 beats minute?1) and thiopental (129 ± 23 beats minute?1). At the 10‐minute recording period, heart rate following the propofol/thiopental mixture (110 ± 34 beats minute?1) was closer to that following propofol than to that following thiopental. With all induction agents, indirect blood pressure tended to decrease over time (p = 0.005); however, there was no difference between the groups. The changes observed were not considered to be of clinical significance. The propofol/thiopental mixture produces similar changes in echocardiographic variables when compared to propofol or thiopental, and could be substituted for propofol for induction of anesthesia in dogs.  相似文献   

16.
Objective —The purpose of this study was to determine the hemodynamic effects of epidural ketamine administered during isoflurane anesthesia in dogs. Study Design —Prospective, single-dose trial. Animals —Six healthy dogs (five males, one female) weighing 25.3 ± 3.88 kg. Methods —Once anesthesia was induced, dogs were maintained at 1.5 times the predetermined, individual minimum alveolar concentration (MAC) of isoflurane. Dogs were instrumented and allowed to stabilize for 30 minutes before baseline measurements were recorded. Injection of 2 mg/kg of ketamine in 1 mL saline/4.5 kg body weight was then performed at the lumbosacral epidural space. Hemodynamic data were recorded at 5, 10, 15, 20, 30, 45, 60, and 75 minutes after epidural ketamine injection. Statistical analysis included an analysis of variance (ANOVA) for repeated measures over time. All data were compared with baseline values. A P < .05 was considered significant. Results —Baseline values ±standard error of the mean (X ± SEM) for heart rate, mean arterial pressure, mean pulmonary artery pressure, central venous pressure, pulmonary capillary wedge pressure, cardiac index, stroke index, systemic vascular resistance, pulmonary vascular resistance, and rate-pressure product were 108 ± 6 beats/min, 85 ± 10 mm Hg, 10 ± 2 mm Hg, 3 ± 1 mm Hg, 5 ± 2 mm Hg, 2.3 ± 0.3 L/min/m2, 21.4 ± 1.9 mL/beat/m2, 3386 ± 350 dynes/sec/cm5, 240 ± 37 dynes/sec/cm5, and 12376 ± 1988 beats/min±mm Hg. No significant differences were detected from baseline values at any time after ketamine injection. Conclusions —The epidural injection of 2 mg/kg of ketamine is associated with minimal hemodynamic effects during isoflurane anesthesia. Clinical Relevance —These results suggest that if epidural ketamine is used for analgesia in dogs, it will induce minimal changes in cardiovascular function.  相似文献   

17.
18.
ObjectiveTo evaluate and compare the cardiopulmonary effects of induction of anesthesia with isoflurane (Iso), ketamine–diazepam (KD), or propofol–diazepam (PD) in hypovolemic dogs.Study designProspective randomized cross–over trial.AnimalsSix healthy intact, mixed breed, female dogs weighing 20.7 ± 4.2 kg and aged 22 ± 2 months.MethodsDogs had 30 mL kg?1 of blood removed at a rate of 1.5 mL kg?1 minute?1 under isoflurane anesthesia. Following a 30–minute recovery period, anesthesia was reinduced. Dogs were assigned to one of three treatments: isoflurane via facemask using 0.5% incremental increases in the delivered concentration every 30 seconds, 1.25 mg kg?1 ketamine and 0.0625 mg kg?1 diazepam intravenously (IV) with doses repeated every 30 seconds as required, and 2 mg kg?1 propofol and 0.2 mg kg?1 diazepam IV followed by 1 mg kg?1 propofol increments IV every 30 seconds as required. Following endotracheal intubation all dogs received 1.7% end–tidal isoflurane in oxygen. Cardiopulmonary variables were recorded at baseline (before induction) and at 5 or 10 minute intervals following endotracheal intubation.ResultsInduction time was longer in Iso (4.98 ± 0.47 minutes) compared to KD (3.10 ± 0.47 minutes) or PD (3.22 ± 0.45 minutes). To produce anesthesia, KD received 4.9 ± 2.3 mg kg?1 ketamine and 0.24 ± 0.1 mg kg?1 diazepam, while PD received 2.2 ± 0.4 mg kg?1 propofol and 0.2 mg kg?1 diazepam. End–tidal isoflurane concentration immediately following intubation was 1.7 ± 0.4% in Iso. Arterial blood pressure and heart rate were significantly higher in KD and PD compared to Iso and in KD compared to PD. Arterial carbon dioxide partial pressure was significantly higher in PD compared to KD and Iso immediately after induction.Conclusions and clinical relevanceIn hypovolemic dogs, KD or PD, as used in this study to induce anesthesia, resulted in less hemodynamic depression compared to isoflurane.  相似文献   

19.
ObjectiveTo examine the cardiopulmonary effects of two anesthetic protocols for dorsally recumbent horses undergoing carpal arthroscopy.Study designProspective, randomized, crossover study.AnimalsSix horses weighing 488.3 ± 29.1 kg.MethodsHorses were sedated with intravenous (IV) xylazine and pulmonary artery balloon and right atrial catheters inserted. More xylazine was administered prior to anesthetic induction with ketamine and propofol IV. Anesthesia was maintained for 60 minutes (or until surgery was complete) using either propofol IV infusion or isoflurane to effect. All horses were administered dexmedetomidine and ketamine infusions IV, and IV butorphanol. The endotracheal tube was attached to a large animal circle system and the lungs were ventilated with oxygen to maintain end-tidal CO2 40 ± 5 mmHg. Measurements of cardiac output, heart rate, pulmonary arterial and right atrial pressures, and body temperature were made under xylazine sedation. These, arterial and venous blood gas analyses were repeated 10, 30 and 60 minutes after induction. Systemic arterial blood pressures, expired and inspired gas concentrations were measured at 10, 20, 30, 40, 50 and 60 minutes after induction. Horses were recovered from anesthesia with IV romifidine. Times to extubation, sternal recumbency and standing were recorded. Data were analyzed using one and two-way anovas for repeated measures and paired t-tests. Significance was taken at p=0.05.ResultsPulmonary arterial and right atrial pressures, and body temperature decreased from pre-induction values in both groups. PaO2 and arterial pH were lower in propofol-anesthetized horses compared to isoflurane-anesthetized horses. The lowest PaO2 values (70–80 mmHg) occurred 10 minutes after induction in two propofol-anesthetized horses. Cardiac output decreased in isoflurane-anesthetized horses 10 minutes after induction. End-tidal isoflurane concentration ranged 0.5%–1.3%.Conclusion and clinical relevanceBoth anesthetic protocols were suitable for arthroscopy. Administration of oxygen and ability to ventilate lungs is necessary for propofol-based anesthesia.  相似文献   

20.
Zonca, A., Ravasio, G., Gallo, M., Montesissa, C., Carli, S., Villa, R., Cagnardi, P. Pharmacokinetics of ketamine and propofol combination administered as ketofol via continuous infusion in cats. J. vet. Pharmacol. Therap.  35 , 580–587. The pharmacokinetics of the extemporaneous combination of low doses of ketamine and propofol, known as ‘ketofol’, frequently used for emergency procedures in humans to achieve safe sedation and analgesia was studied in cats. The study was performed to assess propofol, ketamine and norketamine kinetics in six female cats that received ketamine and propofol (1:1 ratio) as a loading dose (2 mg/kg each, IV) followed by a continuous infusion (10 mg/kg/h each, IV, 25 min of length). Blood samples were collected during the infusion period and up to 24 h afterwards. Drug quantification was achieved by HPLC analysis using UV‐visible detection for ketamine and fluorimetric detection for propofol. The pharmacokinetic parameters were deduced by a two‐compartment bolus plus infusion model for propofol and ketamine and a monocompartmental model for norketamine. Additional data were derived by a noncompartmental analysis. Propofol and ketamine were quantifiable in most animals until 24 and 8 h after the end of infusion, respectively. Propofol showed a long elimination half‐life (t1/2λ2 7.55 ± 9.86 h), whereas ketamine was characterized by shorter half‐life (t1/2λ2 4 ± 3.4 h) owing to its rapid biotransformation into norketamine. The clinical significance of propofol’s long elimination half‐life and low clearance is negligible when the drug is administered as short‐term and low‐dosage infusion. The concurrent administration of ketamine and propofol in cats did not produce adverse effects although it was not possible to exclude interference in the metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号