首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Objective- This study evaluates the clinical usefulness and anesthetic effect of propofol, and compares these effects with those of xylazine-ketamine-halothane anesthesia in sheep.
Study Design- Prospective, randomized, clinical trial. Animals or Sample Population- Fourteen healthy adult male sheep.
Methods- Sheep were randomly assigned to two different drug regimens: (1) Bolus injection of propofol (3 mg/kg, intravenously [IV]) followed by continuous intravenous infusion and (2) xylazine (0.11 mg/kg, IV) and ketamine (2.2 mg/kg, IV) for induction followed by halothane anesthesia. Heart rate, respiratory rate, and arterial blood pressures were monitored during anesthesia. Venous blood samples were collected for blood gas analysis. Quality of induction and recovery were also recorded.
Results- The average dose of propofol used to induce and maintain anesthesia was 6.63 ±2.06 mg/kg and 29.3 ±11.7 mg/kg/hr (0.49 ±0.20 mg/kg/min), respectively. The duration of propofol anesthesia was 45.3 ±13.2 minutes and recovery to standing occurred in 14.7 ±5.7 minutes. Sheep receiving xylazine-ketamine-halothane were anesthetized for 35.9 ±4.0 minutes and recovery to standing occurred within 28.5 ±7.5 minutes. Sheep anesthetized with propofol had a significantly higher heart rate, diastolic blood pressure and Pvo2, and a lower Pvco2 at 30 minutes and lower BE at 15 and 30 minutes than sheep anesthetized with xylazine-ketamine-halothane.
Conclusions- Propofol anesthesia was characterized by a smooth induction, effective surgical anesthesia and rapid recovery which was comparable to anesthesia with xylazine-ketamine-halothane.
Clinical Relevance- Propofol may be indicated in situations when it is desirable to maintain anesthesia with an intravenous infusion followed by a rapid recovery in healthy sheep.  相似文献   

2.
Objective—To determine the safety and efficacy of propofol, after detomidine-butorphanol premedication, for induction and anesthetic maintenance for carotid artery translocation and castration or ovariectomy in goats. Study Design—Case series. Animals—Nine 4-month-old Spanish goats (17.1 ± 2.6 kg) were used to evaluate propofol anesthesia for carotid artery translocation and castration or ovariectomy. Methods—Goats were premedicated with detomidine (10 μg/kg intramuscularly [IM]) and butorphanol (0.1 mg/kg IM) and induced with an initial bolus of propofol (3 to 4 mg/kg intravenously [IV]). If necessary for intubation, additional propofol was given in 5-mg (IV) increments. Propofol infusion (0.3 mg/kg/min IV) was used to maintain anesthesia, and oxygen was insufflated (5 L/min). The infusion rate was adjusted to maintain an acceptable anesthetic plane as determined by movement, muscle relaxation, ocular signs, response to surgery, and cardiopulmonary responses. Systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures, heart rate (HR), ECG, respiratory rate (RR), Spo2, and rectal temperature (T) were recorded every 5 minutes postinduction; arterial blood gas samples were collected every 15 minutes. Normally distributed data are represented as mean ± SD; other data are medians (range). Results—Propofol (4.3 ± 0.9 mg/kg IV) produced smooth, rapid (15.2 ± 6 sec) sternal recumbency. Propofol infusion (0.52 ± 0.11 mg/kg/min IV) maintained anesthesia. Mean anesthesia time was 83 ± 15 minutes. Muscle relaxation was good; eye signs indicated surgical anesthesia; two goats moved before surgery began; one goat moved twice during laparotomy. Means are reported over the course of the data collection period. Means during the anesthesia for pHa (arterial PH), Paco2, Pao2, HCO3, and BE (base excess) ranged from 7.233 ± 0.067 to 7.319 ± 0.026, 54.1 ± 4.6 to 65.3 ± 12.0 mm Hg, 133.1 ± 45.4 to 183.8 ± 75.1 mm Hg, 26.9 ± 2.6 to 28.2 ± 2.1 mEq/L, and -0.8 ± 2.9 to 1.4 ± 2.2 mEq/L. Means over time for MAP were 53 ± 12 to 85 ± 21 mm Hg. Mean HR varied over time from 81 ± 6 to 91 ± 11 beats/minute; mean RR, from 9 ± 8 to 15 ± 5 breaths/minute; Spo2, from 97 ± 3% to 98 ± 3%; mean T, from 36.0 ± 0.6±C to 39.1 ± 0.7±C. Over time, Spo2 and Sao2 did not change significantly; HR, RR, T, and Paco2 decreased significantly; SAP, DAP, MAP, pHa, Pao2, and BE increased significantly. HCO3 concentrations increased significantly, peaking at 45 minutes. Recoveries were smooth and rapid; the time from the end of propofol infusion to extubation was 7.3 ± 3 minutes, to sternal was 9.2 ± 5 minutes, and to standing was 17.7 ± 4 minutes. Median number of attempts to stand was two (range of one to four). Postoperative pain was mild to moderate. Conclusions—Detomidine-butorphanol-propofol provided good anesthesia for carotid artery translocation and neutering in goats. Clinical Relevance—Detomidine-butorphanol-propofol anesthesia with oxygen insufflation may be safely used for surgical intervention in healthy goats.  相似文献   

3.
OBJECTIVE: To evaluate concomitant propofol and fentanyl infusions as an anesthetic regime, in Greyhounds. ANIMALS: Eight clinically normal Greyhounds (four male, four female) weighing 25.58 +/- 3.38 kg. DESIGN: Prospective experimental study. METHODS: Dogs were premedicated with acepromazine (0.05 mg/kg) by intramuscular (i.m.) injection. Forty five minutes later anesthesia was induced with a bolus of propofol (4 mg/kg) by intravenous (i.v.) injection and a propofol infusion was begun (time = 0). Five minutes after induction of anesthesia, fentanyl (2 microg/kg) and atropine (40 microg/kg) were administered i.v. and a fentanyl infusion begun. Propofol infusion (0.2 to 0.4 mg/kg/min) lasted for 90 minutes and fentanyl infusion (0.1 to 0.5 microg/kg/min) for 70 minutes. Heart rate, blood pressure, respiratory rate, end-tidal carbon dioxide, body temperature, and depth of anesthesia were recorded. The quality of anesthesia, times to return of spontaneous ventilation, extubation, head lift, and standing were also recorded. Blood samples were collected for propofol and fentanyl analysis at varying times before, during and after anesthesia. RESULTS: Mean heart rate of all dogs varied from 52 to 140 beats/min during the infusion. During the same time period, mean blood pressure ranged from 69 to 100 mm Hg. On clinical assessment, all dogs appeared to be in light surgical anesthesia. Mean times (+/- SEM), after termination of the propofol infusion, to return of spontaneous ventilation, extubation, head lift and standing for all dogs were 26 +/- 7, 30 +/- 7, 59 +/- 12, and 105 +/- 13 minutes, respectively. Five out of eight dogs either whined or paddled their forelimbs in recovery. Whole blood concentration of propofol for all eight dogs ranged from 1.21 to 6.77 microg/mL during the infusion period. Mean residence time (MRTinf) for propofol was 104.7 +/- 6.0 minutes, mean body clearance (Clb) was 53.35 +/- 0.005 mL/kg/min, and volume of distribution at steady state (Vdss) was 3.27 +/- 0.49 L/kg. Plasma concentration of fentanyl for seven dogs during the infusion varied from 1.22 to 4.54 ng/mL. Spontaneous ventilation returned when plasma fentanyl levels were >0.77 and <1.17 ng/mL. MRTinf for fentanyl was 111.3 +/- 5.7 minutes. Mean body clearance was 29.1 +/- 2.2 mL/kg/min and Vdss was 2.21 +/- 0.19 L/kg. CONCLUSION AND CLINICAL RELEVANCE: In Greyhounds which were not undergoing any surgical stimulation, total intravenous anesthesia maintained with propofol and fentanyl infusions induced satisfactory anesthesia, provided atropine was given to counteract bradycardia. Despite some unsatisfactory recoveries the technique is worth investigating further for clinical cases, in this breed and in mixed breed dogs.  相似文献   

4.
OBJECTIVE: To evaluate propofol for induction and maintenance of anesthesia, after detomidine premedication, in horses undergoing abdominal surgery for creation of an experimental intestinal adhesion model. STUDY DESIGN: Prospective study. ANIMALS: Twelve horses (424 +/- 81 kg) from 1 to 20 years of age (5 females, 7 males). METHODS: Horses were premedicated with detomidine (0.015 mg/kg i.v.) 20 to 25 minutes before induction, and a propofol bolus (2 mg/kg i.v.) was administered for induction. Propofol infusion (0.2 mg/kg/min i.v.) was used to maintain anesthesia. The infusion rate was adjusted to maintain an acceptable anesthetic plane as determined by muscle relaxation, occular signs, response to surgery, and cardiopulmonary responses. Oxygen (15 L/min) was insufflated through an endotracheal tube as necessary to maintain the SpO2 greater than 90%. Systolic (SAP), mean (MAP), and diastolic (DAP) arterial pressures, heart rate (HR), electrocardiogram (ECG), respiratory rate (RR), SpO2 (via pulse oximetry), and nasal temperature were recorded at 15 minute intervals, before premedication and after induction of anesthesia. Arterial blood gas samples were collected at the same times. Objective data are reported as mean (+/-SD); subjective data are reported as medians (range). RESULTS: Propofol (2.0 mg/kg i.v.) induced anesthesia (mean bolus time, 85 sec) within 24 sec (+/-22 sec) after the bolus was completed. Induction was good in 10 horses; 2 horses showed signs of excitement and these two inductions were not smooth. Propofol infusion (0.18 mg/kg/min +/- 0.04) was used to maintain anesthesia for 61 +/- 19 minutes with the horses in dorsal recumbency. Mean SAP, DAP, and MAP increased significantly over time from 131 to 148, 89 to 101, and 105 to 121 mm Hg, respectively. Mean HR varied over time from 43 to 45 beats/min, whereas mean RR increased significantly over anesthesia time from 4 to 6 breaths/min. Mean arterial pH decreased from a baseline of 7.41 +/- 0.07 to 7.30 +/- 0.05 at 15 minutes of anesthesia, then increased towards baseline values. Mean PaCO2 values increased during anesthesia, ranging from 47 to 61 mm Hg whereas PaO2 values decreased from baseline (97 +/- 20 mm Hg), ranging from 42 to 57 mm Hg. Muscle relaxation was good and no horses moved during surgery: Recovery was good in 9 horses and acceptable in 3; mean recovery time was 67 +/- 29 minutes with 2.4 +/- 2.4 attempts necessary for the horses to stand. CONCLUSIONS: Detomidine-propofol anesthesia in horses in dorsal recumbency was associated with little cardiovascular depression, but hypoxemia and respiratory depression occurred and some excitement was seen on induction. CLINICAL RELEVANCE: Detomidine-propofol anesthesia is not recommended for surgical procedures in horses if dorsal recumbency is necessary and supplemental oxygen is not available (eg, field anesthesia).  相似文献   

5.
OBJECTIVE: To determine the minimum infusion rate (MIR50) for propofol alone and in combination with ketamine required to attenuate reflexes commonly used in the assessment of anesthetic depth in cats. ANIMALS: 6 cats. PROCEDURE: Propofol infusion started at 0.05 to 0.1 mg/kg/min for propofol alone or 0.025 mg/kg/min for propofol and ketamine (low-dose ILD] constant rate infusion [CRI] of 23 microg/kg/min or high-dose [HD] CRI of 46 microg/kg/min), and after 15 minutes, responses of different reflexes were tested. Following a response, the propofol dose was increased by 0.05 mg/kg/min for propofol alone or 0.025 mg/kg/min for propofol and ketamine, and after 15 minutes, reflexes were retested. RESULTS: The MIR50 for propofol alone required to attenuate blinking in response to touching the medial canthus or eyelashes; swallowing in response to placement of a finger or laryngoscope in the pharynx; and to toe pinch, tetanus, and tail-clamp stimuli were determined. Addition of LD ketamine to propofol significantly decreased MIR50, compared with propofol alone, for medial canthus, eyelash, finger, toe pinch, and tetanus stimuli but did not change those for laryngoscope or tail-clamp stimuli. Addition of HD ketamine to propofol significantly decreased MIR50, compared with propofol alone, for medial canthus, eyelash, toe pinch, tetanus, and tail-clamp stimuli but did not change finger or laryngoscope responses. CONCLUSIONS AND CLINICAL RELEVANCE: Propofol alone or combined with ketamine may be used for total IV anesthesia in healthy cats at the infusion rates determined in this study for attenuation of specific reflex activity.  相似文献   

6.
Propofol is a potentially useful intravenous anesthetic agent for total intravenous anesthesia (TIVA) in horses. The purpose of this study was to compare the anesthetic and cardiorespiratory effects of TIVA following the administration of propofol alone(P–TIVA) and ketamine–medetomidine–propofol (KM–P–TIVA) in adult horses. The carotid artery was translocated to a subcutaneous position during TIVA with P–TIVA (n = 6) or KM–P–TIVA (n = 6). All horses were premedicated with medetomidine [0.005 mg kg–1, intravenously (IV)]. Anesthesia was induced with midazolam (0.04 mg kg–1 IV) and ketamine (2.5 mg kg IV). All horses were orotracheally intubated and breathed 100% oxygen. The KM drug combination (ketamine 40 mg mL–1 and medetomidine 0.05 mg mL–1) was infused at a rate of 0.025 mL kg–1 hour–1. Subsequently, a loading dose of propofol (0.5 mg kg–1, bolus IV) was administered to all horses; surgical anesthesia (determined by horse response to incision and surgical manipulation, positive response being purposeful or spontaneous movement of limbs or head) was maintained by varying the propofol infusion rate as needed. Arterial blood pressure and HR were also monitored. Both methods of producing TIVA provided excellent general anesthesia for the surgical procedure. Anesthesia time was 115 ± 17 (mean ± SD) and 112 ± 11 minutes in horses anesthetized with KM–P–TIVA and P–TIVA, respectively. The infusion rate of propofol required to maintain surgical anesthesia with KM–P–TIVA was significantly less than for P–TIVA (mean infusion rate of propofol during anesthesia; KM–P–TIVA 0.15 0.02 P–TIVA 0.23 ± 0.03 mg kg–1 minute–1, p = 0.004). Apnea occurred in all horses lasting 1–2 minutes and intermittent positive pressure ventilation was started. Cardiovascular function was maintained during both methods of producing TIVA. There were no differences in the time to standing after the cessation of anesthesia (KM–P–TIVA 62 ± 10 minutes versus P–TIVA 87 ± 36 minutes, p = 0.150). The quality of recovery was good in KM–P–TIVA and satisfactory in P–TIVA. KM–P–TIVA and P–TIVA produced clinically useful general anesthesia with minimum cardiovascular depression. Positive pressure ventilation was required to treat respiratory depression. Respiratory depression and apnea must be considered prior to the use of propofol in the horse.  相似文献   

7.
Propofol was used as an induction agent of general anesthesia in 77 dogs and 64 cats, all client owned, for a variety of surgeries/treatments or diagnostic procedures. The mean intravenous doses of propofol required to achieve endotracheal intubation in dogs and cats were 6.5 +/- 1.4 mg/kg and 10.1 +/- 2.8 mg /kg, respectively. Most of the animals could be induced to anesthesia smoothly by the administration of propofol with a high incidence of apnea. Propofol is a clinically valuable anesthetic induction agent in both dogs and cats, however, care must be taken for apnea.  相似文献   

8.
Objective-To compare the anesthetic and cardiorespiratory effects of total IV anesthesia with propofol (P-TIVA) or a ketamine-medetomidine-propofol combination (KMP-TIVA) in horses. Design-Randomized experimental trial. Animals-12 horses. Procedure-Horses received medetomidine (0.005 mg/kg [0.002 mg/lb], IV). Anesthesia was induced with midazolam (0.04 mg/kg [0.018 mg/lb], IV) and ketamine (2.5 mg/kg [1.14 mg/lb], IV). All horses received a loading dose of propofol (0.5 mg/kg [0.23 mg/lb], IV), and 6 horses underwent P-TIVA (propofol infusion). Six horses underwent KMP-TIVA (ketamine [1 mg/kg/h {0.45 mg/lb/h}] and medetomidine [0.00125 mg/kg/h {0.0006 mg/lb/h}] infusion; the rate of propofol infusion was adjusted to maintain anesthesia). Arterial blood pressure and heart rate were monitored. Qualities of anesthetic induction, transition to TIVA, and maintenance of and recovery from anesthesia were evaluated. Results-Administration of KMP IV provided satisfactory anesthesia in horses. Compared with the P-TIVA group, the propofol infusion rate was significantly less in horses undergoing KMP-TIVA (0.14 +/- 0.02 mg/kg/min [0.064 +/- 0.009 mg/lb/min] vs 0.22 +/- 0.03 mg/kg/min [0.1 +/- 0.014 mg/lb/min]). In the KMP-TIVA and P-TIVA groups, anesthesia time was 115 +/- 17 minutes and 112 +/- 11 minutes, respectively, and heart rate and arterial blood pressure were maintained within acceptable limits. There was no significant difference in time to standing after cessation of anesthesia between groups. Recovery from KMP-TIVA and P-TIVA was considered good and satisfactory, respectively. Conclusions and Clinical Relevance-In horses, KMP-TIVA and P-TIVA provided clinically useful anesthesia; the ketamine-medetomidine infusion provided a sparing effect on propofol requirement for maintaining anesthesia.  相似文献   

9.
OBJECTIVE: To compare cardiovascular effects of equipotent infusion doses of propofol alone and in combination with ketamine administered with and without noxious stimulation in cats. ANIMALS: 6 cats. PROCEDURE: Cats were anesthetized with propofol (loading dose, 6.6 mg/kg; constant rate infusion [CRI], 0.22 mg/kg/min) and instrumented for blood collection and measurement of blood pressures and cardiac output. Cats were maintained at this CRI for a further 60 minutes, and blood samples and measurements were taken. A noxious stimulus was applied for 5 minutes, and blood samples and measurements were obtained. Propofol concentration was decreased to 0.14 mg/kg/min, and ketamine (loading dose, 2 mg/kg; CRI, 23 microg/kg/min) was administered. After a further 60 minutes, blood samples and measurements were taken. A second 5-minute noxious stimulus was applied, and blood samples and measurements were obtained. RESULTS: Mean arterial pressure, central venous pressure, pulmonary arterial occlusion pressure, stroke index, cardiac index, systemic vascular resistance index, pulmonary vascular resistance index, oxygen delivery index, oxygen consumption index, oxygen utilization ratio, partial pressure of oxygen in mixed venous blood, pH of arterial blood, PaCO2, arterial bicarbonate concentration, and base deficit values collected during propofol were not changed by the addition of ketamine and reduction of propofol. Compared with propofol, ketamine and reduction of propofol significantly increased mean pulmonary arterial pressure and venous admixture and significantly decreased PaO2. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of propofol by CRI for maintenance of anesthesia induced stable hemodynamics and could prove to be clinically useful in cats.  相似文献   

10.
Cardiovascular effects of total intravenous anesthesia using ketamine-medetomidine-propofol drug combination (KMP-TIVA) were determined in 5 Thoroughbred horses undergoing surgery. The horses were anesthetized with intravenous administration (IV) of ketamine (2.5 mg/kg) and midazolam (0.04 mg/kg) following premedication with medetomidne (5 µg/kg, IV) and artificially ventilated. Surgical anesthesia was maintained by controlling propofol infusion rate (initially 0.20 mg/kg/min following an IV loading dose of 0.5 mg/kg) and constant rate infusions of ketamine (1 mg/kg/hr) and medetomidine (1.25 µg/kg/hr). The horses were anesthetized for 175 ± 14 min (range from 160 to 197 min). Propofol infusion rates ranged from 0.13 to 0.17 mg/kg/min, and plasma concentration (Cpl) of propofol ranged from 11.4 to 13.3 µg/ml during surgery. Cardiovascular measurements during surgery remained within clinically acceptable ranges in the horses (heart rate: 33 to 37 beats/min, mean arterial blood pressure: 111 to 119 mmHg, cardiac index: 48 to 53 ml/kg/min, stroke volume: 650 to 800 ml/beat and systemic vascular resistance: 311 to 398 dynes/sec/cm5). The propofol Cpl declined rapidly after the cessation of propofol infusion and was significantly lower at 10 min (4.5 ± 1.5 µg/ml), extubation (4.0 ± 1.2 µg/ml) and standing (2.4 ± 0.9 µg/ml) compared with the Cpl at the end of propofol administration (11.4 ± 2.7 µg/ml). All the horses recovered uneventfully and stood at 74 ± 28 min after the cessation of anesthesia. KMP-TIVA provided satisfactory quality and control of anesthesia with minimum cardiovascular depression in horses undergoing surgery.  相似文献   

11.
OBJECTIVE: To evaluate bispectral index (BIS) values in pigs during anesthesia maintained with sevoflurane-fentanyl or propofol-fentanyl as a predictor of changes in hemodynamic parameters and duration of recovery from anesthesia. ANIMALS: 12 pigs. PROCEDURE: Pigs were randomly allocated to undergo 1 of 2 anesthetic regimens. Anesthesia was induced with propofol (2 mg/kg, i.v.); 6 pigs were administered sevoflurane via inhalation (1 minimum alveolar concentration [MAC] at a fresh gas flow rate of 3 L/min; group I), and 6 were administered propofol (11 mg/kg/h, i.v.; group II). All pigs received fentanyl (2.5 mg/kg, i.v., q 30 min). After abdominal surgery, pigs were allowed to recover from anesthesia. Cardiovascular variables and BIS values were recorded at intervals throughout the procedure; duration of recovery from anesthesia was noted. RESULTS: No correlation was established between arterial blood pressure and BIS and between heart rate and BIS. Mean BIS at discontinuation of administration of the anesthetic agent was greater in group-II pigs (65.2 +/- 10.6 minutes) than in group-I pigs (55.8 +/- 2.9 minutes). However, recovery from anesthesia was significantly longer in group II (59.80 +/- 2.52 minutes) than in group I (9.80 +/- 2.35 minutes). CONCLUSIONS AND CLINICAL RELEVANCE: In swine anesthetized with sevoflurane or propofol and undergoing abdominal surgery, the BIS value derived from an electroencephalogram at the end of anesthesia was not useful for predicting the speed of recovery from anesthesia. Moreover, BIS was not useful as a predictor of clinically important changes in arterial blood pressure and heart rate in those anesthetized pigs.  相似文献   

12.
This study examined the pharmacokinetics of propofol by infusion in ponies using an analyser for the rapid measurement of propofol concentrations. The analyser (Pelorus 1000; Sphere Medical Ltd., Cambridge, UK) has a measurement cycle of approximately five minutes. Ten Welsh‐cross ponies (weighing 135–300 kg) undergoing minor procedures were studied after premedication with acepromazine 0.03 mg/kg and detomidine 0.015 mg/kg. Anaesthesia was induced with ketamine 2 mg/kg and diazepam 0.03 mg/kg, and maintained with an infusion of propofol at an initial rate of 0.16 mg/kg/min for the first thirty minutes, after a bolus of 0.3 mg/kg; and ketamine by infusion (20–40 μg/kg/min). Blood samples (<2 mL) were collected prior to, during and after the infusion, and on assuming standing position. Anaesthesia was uneventful; with the duration of infusion 31–89 min. Blood propofol concentrations during the infusion ranged between 1.52 and 7.65 μg/mL; pseudo‐steady state concentrations 3.64–6.78 μg/mL, and concentrations on assuming standing position 0.75–1.40 μg/mL. Propofol clearance and volume of distribution were 31.4 (SD 6.1) mL/min/kg and 220.7 (132.0) mL/kg, respectively. The propofol analyser allows titration of propofol to a given concentration; and may be useful for anaesthesia in animals where kinetics are unknown; in disease states; and where intercurrent therapies affect propofol disposition.  相似文献   

13.
OBJECTIVE: To determine induction doses, anesthetic constant rate infusions (CRI), and cardiopulmonary effects of propofol in red-tailed hawks and great horned owls and propofol pharmacokinetics in the owls during CRI. ANIMALS: 6 red-tailed hawks and 6 great horned owls. PROCEDURE: The CRI dose necessary for a loss of withdrawal reflex was determined via specific stimuli. Anesthesia was induced by IV administration of propofol (1 mg/kg/min) and maintained by CRI at the predetermined dose for 30 minutes. Heart and respiratory rates, arterial blood pressures, and blood gas tensions were obtained in awake birds and at various times after induction. End-tidal CO2 (ETCO2) concentration and esophageal temperature were obtained after induction. Propofol plasma concentrations were obtained after induction and after completion of the CRI in the owls. Recovery times were recorded. RESULTS: Mean +/- SD doses for induction and CRI were 4.48 +/- 1.09 mg/kg and 0.48 +/- 0.06 mg/kg/min, respectively, for hawks and 3.36 +/- 0.71 mg/kg and 0.56 +/- 0.15 mg/kg/min, respectively, for owls. Significant increases in PaCO2, HCO3, and ETCO2 in hawks and owls and significant decreases in arterial pH in hawks were detected. A 2-compartment model best described the owl pharmacodynamic data. Recovery times after infusion were prolonged and varied widely. Central nervous system excitatory signs were observed during recovery. CONCLUSIONS AND CLINICAL RELEVANCE: Effects on blood pressure were minimal, but effective ventilation was reduced, suggesting the need for careful monitoring during anesthesia. Prolonged recovery periods with moderate-to-severe excitatory CNS signs may occur in these species at these doses.  相似文献   

14.
Sharks are important exhibit animals in aquariums and zoologic institutions worldwide. Although veterinarians are encountering these species more frequently in these institutions, our knowledge regarding safe restraint and anesthesia is limited. To date there have been only a few anecdotal reports or studies evaluating the effects of tricaine methane sulfonate (MS-222), ketamine hydrochloride, and tiletamine and zolazepam (Telazol) in sharks. The purpose of this study was to evaluate the clinical and cardiorespiratory effects of propofol in spotted bamboo sharks (Chylloscyllium plagiosum). Nine wild-caught adult female spotted bamboo sharks (mean weight 2.4 kg+/-SD 1.45 kg) were used in this study. Propofol (2.5 mg/kg) was administered over 30 sec via the caudal tail vein. Heart rate, respiratory rate, time to relaxation, escape response, loss of righting reflex, and response to noxious stimuli (fin pinch) were evaluated and recorded at baseline and 5, 10, 15, 30, 45, 60, and 75 min after propofol administration. A surgical plane of anesthesia was achieved when the shark lost its righting reflex, did not respond to noxious painful stimuli, and no longer resisted handling. The righting reflex was lost within 5 min of propofol administration, and a surgical plane of anesthesia was observed in all nine sharks. Heart rate (P = 0.5) and respiratory rate (P = 0.5) did not change significantly over time. The righting response returned within 60 min in 44% (4/9) of the sharks, 75 min in 22% (2/ 9) of the sharks, and over 200 min in 33% (3/9) of the sharks. All nine animals recovered uneventfully. Propofol provided a safe anesthetic event for spotted bamboo sharks.  相似文献   

15.
Ventilatory effects at induction of anaesthesia were studied following intubation in 66 dogs anaesthetised using thiopentone (10 mg/kg) or propofol (4 mg/kg, injected rapidly or 4 mg/kg, injected slowly). Acepromazine and morphine preanaesthetic medication was administered, and anaesthesia was maintained with halothane in nitrous oxide and oxygen. The time from connection of the breathing system to the first breath was measured. Apnoea was defined as cessation of spontaneous respiration for 15 seconds or longer. Respiratory rate and minute volume were measured for the first five minutes of anaesthesia. Propofol was associated with a greater incidence of apnoea than thiopentone (59 per cent and 64 per cent compared with 32 per cent), but this difference was not statistically significant. Time to first breath was significantly longer with propofol than thiopentone and longest with the slower injection of propofol (P<0.05) (median of four seconds for thiopentone, 19.5 seconds for the propofol rapid injection, and 28.8 seconds for the propofol slow injection). In conclusion, the induction agent and speed of injection affect the incidence and duration of post-intubation apnoea.  相似文献   

16.
OBJECTIVE: To investigate renal function in clinically normal dogs when awake and during anesthesia with medetomidine; xylazine, ketamine, and halothane (XKH) combination; or propofol. ANIMALS: 10 adult female Beagles. PROCEDURES: At intervals of 15 days, dogs were administered medetomidine (0.05 mg/kg, IV); XKH combination (xylazine [1 mg/kg, IV], ketamine [5 mg/kg, IV], and halothane [1% end-tidal concentration]); or propofol (6 mg/kg, IV) to induce anesthesia or no treatment. Glomerular filtration rate was assessed on the basis of renal uptake (RU; determined via renal scintigraphy) and plasma clearance (CL) of technetium 99m-labeled diethylenetriamine pentaacetic acid ((99m)Tc-DTPA). RESULTS: In awake dogs, mean +/- SEM RU was 9.7 +/- 0.4% and CL was 3.86 +/- 0.23 mL/min/ kg. Renal uptake and CL of (99m)Tc-DTPA were not significantly modified by administration of XKH (RU, 11.4 +/- 0.9%; CL, 4.6 +/- 0.32 mL/min/kg) or propofol (RU, 9.7 +/- 0.3%; CL, 3.78 +/- 0.37 mL/min/kg). Half-life elimination time of plasma (99m)Tc-DTPA decreased significantly in XKH-anesthetized dogs, compared with the value in awake dogs (14.4 minutes and 28.9 minutes, respectively). However, glomerular filtration rate was significantly decreased by administration of medetomidine (RU, 3.9 +/- 0.1%), and the time to maximum kidney activity was significantly increased (867 +/- 56 seconds vs 181 +/- 11 seconds without anesthesia). CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that anesthesia with propofol or an XKH combination did not alter renal function in healthy Beagles, but anesthesia with medetomidine decreased early RU of (99m)Tc-DTPA.  相似文献   

17.
OBJECTIVE: To compare the cardiopulmonary effects of anesthesia maintained by continuous infusion of ketamine and propofol with anesthesia maintained by inhalation of sevoflurane in goats undergoing magnetic resonance imaging. ANIMALS: 8 Saanen goats. PROCEDURES: Goats were anesthetized twice (1-month interval) following sedation with midazolam (0.4 mg/kg, IV). Anesthesia was induced via IV administration of ketamine (3 mg/kg) and propofol (1 mg/kg) and maintained with an IV infusion of ketamine (0.03 mg/kg/min) and propofol (0.3 mg/kg/min) and 100% inspired oxygen (K-P treatment) or induced via IV administration of propofol (4 mg/kg) and maintained via inhalation of sevoflurane in oxygen (end-expired concentration, 2.3%; 1X minimum alveolar concentration; SEVO treatment). Cardiopulmonary and blood gas variables were assessed at intervals after induction of anesthesia. RESULTS: Mean +/- SD end-expired sevoflurane was 2.24 +/- 0.2%; ketamine and propofol were infused at rates of 0.03 +/- 0.002 mg/kg/min and 0.29 +/- 0.02 mg/kg/min, respectively. Overall, administration of ketamine and propofol for total IV anesthesia was associated with a degree of immobility and effects on cardiopulmonary parameters that were comparable to those associated with anesthesia maintained by inhalation of sevoflurane. Compared with the K-P treatment group, mean and diastolic blood pressure values in the SEVO treatment group were significantly lower at most or all time points after induction of anesthesia. After both treatments, recovery from anesthesia was good or excellent. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that ketamine-propofol total IV anesthesia in goats breathing 100% oxygen is practical and safe for performance of magnetic resonance imaging procedures.  相似文献   

18.
OBJECTIVE: To evaluate the cardiovascular effects of intravenous propofol in rabbits. STUDY DESIGN: Randomized, prospective, experimental study. ANIMALS: Thirty-one female New Zealand White rabbits. METHODS: Rabbits were allocated to one of two groups [propofol (P) or conscious (C)]. In C (n = 16) vascular dimensions were measured using ultrasound of the left common carotid artery (ACC) and the abdominal aorta (AA). Group P (n = 15) received propofol 4.0-8.0 mg kg(-1) intravenously (IV). Anaesthesia was maintained with propofol at 1.2-1.3 mg kg(-1) minute(-1). Subsequently, three propofol injections (8 mg kg(-1)) were given. Before and for 10 minutes after each injection the following vascular and haemodynamic variables were recorded (a) at the ACC after the first injection; and (b) at the AA after the second injection: vessel diameter [D, (mm)], peak systolic, minimum diastolic, end-diastolic and average blood flow velocities [psBFV, mdBFV, edBFV, Vave (cm second(-1))], average volumetric flow [VFave (mL s(-1))], resistance index (RI) and pulsatility index (PI) mean arterial pressure (MAP), heart rate (HR), arterial oxygen saturation (SpO(2)) and end-tidal CO(2) (Pe'CO(2)). Echocardiography was performed after the third propofol bolus injection to investigate changes in cardiac parameters [fractional shortening, FS (%)]. RESULTS: Intravenous propofol injections caused a significant decrease in vessel diameter, volumetric flow and edBFV, and significant increases in psBFV, RI and PI. Baseline levels for vessel diameter and psBFV were restored 6-8 minutes after injection. Propofol injection decreased FS significantly by 7 minutes after injection while MAP and HR were significantly reduced for 4 minutes. CONCLUSION AND CLINICAL RELEVANCE: Injections of propofol (8 mg kg(-1)) produced an immediate, transient decrease in vascular diameters, a significant decrease in ventricular performance and an increase in peripheral vascular resistance (ACC and AA). Propofol should probably not be or only carefully used in rabbits with ventricular dysfunction.  相似文献   

19.
OBJECTIVE: To determine cardiopulmonary effects of total IV anesthesia with propofol and medetomidine in ponies and effect of atipamezole on recovery. ANIMALS: 10 ponies. PROCEDURE: After sedation was induced by IV administration of medetomidine (7 microg/kg of body weight), anesthesia was induced by IV administration of propofol 12 mg/kg) and maintained for 4 hours with infusions of medetomidine (3.5 microg/kg per hour) and propofol 10.07 to 0.11 mg/kg per minute). Spontaneous respiration was supplemented with oxygen. Cardiopulmonary measurements and blood concentrations of propofol were determined during anesthesia. Five ponies received atipamezole (60 microg/kg) during recovery. RESULTS: During anesthesia, mean cardiac index and heart rate increased significantly until 150 minutes, then decreased until cessation of anesthesia. Mean arterial pressure and systemic vascular resistance index increased significantly between 150 minutes and 4 hours. In 4 ponies, PaO2 decreased to < 60 mm Hg. Mean blood propofol concentrations from 20 minutes after induction onwards ranged from 2.3 to 3.5 microg/ml. Recoveries were without complications and were complete within 28 minutes with atipamezole administration and 39 minutes without atipamezole administration. CONCLUSIONS AND CLINICAL RELEVANCE: During total IV anesthesia of long duration with medetomidine-propofol, cardiovascular function is comparable to or better than under inhalation anesthesia. This technique may prove suitable in equids in which prompt recovery is essential; however, in some animals severe hypoxia may develop and oxygen supplementation may be necessary.  相似文献   

20.
The objective of this study was to determine the effects of propofol on the minimum alveolar concentration of sevoflurane needed to prevent motor movement (MACNM) in dogs subjected to a noxious stimulus using randomized crossover design. Six, healthy, adult beagles (9.2 ± 1.3 kg) were used. Dogs were anesthetized with sevoflurane on 3 occasions, at weekly intervals, and baseline MACNM (MACNM-B) was determined on each occasion. Propofol treatments were administered as loading dose (LD) and constant rate infusion (CRI) as follows: Treatment 1 (T1) was 2 mg/kg body weight (BW) and 4.5 mg/kg BW per hour; T2 was 4 mg/kg BW and 9 mg/kg BW per hour; T3 was 8 mg/kg BW and 18 mg/kg BW per hour, respectively. Treatment MACNM (MACNM-T) determination was initiated 60 min after the start of the CRI. Two venous blood samples were collected and combined at each MACNM-T determination for measurement of blood propofol concentration using high-performance liquid chromatography method (HPLC). Data were analyzed using a mixed-model ANOVA and are presented as least square means (LSM) ± standard error of means (SEM).Propofol infusions in the range of 4.5 to 18 mg/kg BW per hour resulted in mean blood concentrations between 1.3 and 4.4 μg/mL, and decreased (P < 0.05) sevoflurane MACNM in a concentration-dependent manner. The percentage decrease in MACNM was 20.5%, 43.0%, and 68.3%, with corresponding blood propofol concentrations of 1.3 ± 0.3 μg/mL, 2.5 ± 0.3 μg/mL, and 4.4 ± 0.3 μg/mL, for T1, T2, and T3, respectively. Venous blood propofol concentrations were strongly correlated (r = 0.855, P < 0.0001) with the decrease in MACNM. In dogs, propofol decreased the sevoflurane MACNM in a concentration-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号