首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Process parameters such as gelation and curing temperatures are parameters that influence the pultruded kenaf reinforced vinyl ester composites profile quality and performance. The effect of gelation and curing temperatures on mechanical (tensile, flexural and compression properties) and morphological properties of pultruded kenaf reinforced vinyl ester composites were analyzed. Obtained results indicated that increase of gelation and curing temperatures during the pultrusion process of kenaf reinforced vinyl ester composites influenced the mechanical properties of the composites. When the gelation and curing temperatures were increased, tensile strength, tensile modulus, flexural strength, flexural modulus and compressive strength were affected and they were either increased or decreased. The factors that influenced these results include improper curing, excessive curing, water diffusion, and the problems associated with interfacial bonding between fibre and matrices. The optimum values of the tensile strength for gelation and curing temperatures of kenaf pultruded composites were at 100 °C and 140 °C, tensile modulus at 80 °C and 180 °C, flexural strength at 100 ° and 140 °, flexural modulus at 120 ° and 180 °, and compressive strength at 120 °C and 180 °C, respectively. The scanning electron micrographs of tensile fractured samples clearly show that with the increase in gelation temperature, it creates the lumens between matrix and kenaf fibre thus reducing tensile properties whereas increasing the curing temperature caused less fibre pull out and enhanced fibre/matrix interfacial bonding.  相似文献   

2.
Soyprotein-jute fiber composites developed using water without any chemicals as the plasticizer show much better flexural and tensile properties than polypropylene-jute composites. Co-products of soybean processing such as soy oil, soyprotein concentrate and soy protein isolates are inexpensive, abundantly available and are renewable resources that have been extensively studied as potential matrix materials to develop biodegradable composites. However, previous attempts on developing soy-based composites have either chemically modified the co-products or used plasticizers such as glycerol. Chemical modifications make the composites expensive and less environmentally friendly and plasticizers decrease the properties of the composites. In this research, soyprotein composites reinforced with jute fibers have been developed using water without any chemicals as plasticizer. The effects of water on the thermal behavior of soyproteins and composite fabrication conditions on the flexural, tensile and acoustic properties of the composites have been studied. Soyprotein composites developed in this research have excellent flexural strength, tensile strength and tensile modulus, much higher than polypropylene (PP)-jute fiber composites. The soyprotein composites have better properties than the PP composites even at high relative humidity (90%).  相似文献   

3.
Unsaturated polyester (UP) resin has been blended with phenolic resin (PF) resole type at various ratios to obtain a homogeneous blend with improved flame resistance compared to its parent polymers. The polymer blend was reinforced with 20 wt% kenaf using hand lay out technique. Fourier transform infrared spectroscopy (FT-IR) was used to characterize changes in the chemical structure of the synthesized composites. The thermal properties of the composites were investigated using thermogravimetric analysis (TGA). The thermal stability of UP/PF kenaf composites co-varies with the PF content, as shown by the degradation temperature at 50 % weight loss. The char yield of the composites increases linearly with PF content as shown by the TGA results. The flammability properties of the composites were determined using the limiting oxygen index (LOI) and UL-94 fire tests. The LOI increased with the PF content while the composites exhibit improved flame retardancy as demonstrated by UL-94 test. The mechanical and morphological properties of the composites were determined by tensile test and scanning electron microscopy (SEM), respectively. The tensile strength and the Young’s modulus of the blend/composites slightly decreased with increasing PF content albeit higher than PF/kenaf fiber composites.  相似文献   

4.
In this work, hybrid composites were fabricated by hand layup method to hybridize treated Pineapple leaf fibre (PALF) and kenaf fibre (KF) in order to achieve superior mechanical properties on untreated hybrid composites. Silane treated PALF/KF phenolic hybrid composites were prepared on various fibre fraction to investigate mechanical properties and compared with untreated PALF/KF phenolic hybrid composites. The effects of silane treatment on hybrid composites were investigated by fourier transform infrared spectroscopy (FTIR) and found very effective peaks. Effects of treated hybrid composites were morphologically investigated by using scanning electron microscopy images and analysed the tensile results. Treated PALF/KF phenolic hybrid composites enhanced the flexural strength, modulus, impact strength and energy absorption while tensile strength and modulus decreased. The overall performances of 70 % PALF 30 % Kenaf hybrid composites were improved after silane treatment. Silane treatment of fibres improved the mechanical performance of hybrid composites and it can be utilized to produce components for building structure, materials and automobile applications.  相似文献   

5.
In this research, reinforcing effect of hybrid filler including rice husk (RH), beech bark (BB) and nano-SiO2, in polypropylene has been investigated. In the sample preparation, four levels of filler loading were used for waste lignocellulosic materials (55-58 wt.%) and nano-SiO2 (0-4 wt.%). In order to increase the interphase adhesion, polypropylene grafted with maleic anhydride was added as a coupling agent to all the composites studied. The physical properties, viz. the thickness swelling and water absorption, and mechanical properties, namely, the tensile, flexural and notched Izod impact strengths, of the composites were determined. Generally, high amount of filler content in composites can lead to the reduction of interfacial adhesion between matrix polymer and filler, and it limits their applications. The results showed that while flexural properties and elongation at break were moderately improved by the increase in the amount of filler in the matrix, tensile and Izod impact strengths decreased dramatically. However, the composites had acceptable mechanical strength levels. The mechanical properties of composites filled with RH are generally greater than BB composites. The thickness swelling and water absorption of the composites increased with the increase in the filler loading, but to a negligible extent as compared with the wood-based composites and the solid woods. Nano-SiO2 addition showed little positive effect on the mechanical properties. It can be concluded from this study that the used waste lignocellulosic materials are attractive reinforcements from the standpoint of their physico-mechanical properties.  相似文献   

6.
Most materials used in daily life are polymeric materials based on petrochemistry. The used polymeric materials can cause land pollution and air pollution after landfill or incineration. In contrast, natural fiber reinforced (NFR) composites are more suitable for the environment, however the reliability in terms of the durability and weatherability of NFR composites is still lacking. Thus, NFR composites require the reliability involved with durability and weatherability. In this work, poly(butylene terephthalate-co-glutarate) (PBTG), with a chemical structure similar to biodegradable PBAT, was used as the matrix in the composites, and hemp fibers were used as the reinforcement. Hemp/PBTG composites were fabricated by stacking hemp-fiberwebs and PBTG films with various fiber contents and thermal exposure times. Characteristics of the composites, such as the morphological structure, chemical structure, tensile properties, compressive properties, flexural properties, and impact strength, were analyzed to obtain the effects of fiber volume fraction and thermal exposure. As a result, hemp/PBTG composites were hardened in proportion to fiber volume fractions, and the hardening behavior of the composites increased tensile strength and flexural strength. However, the hardened structure of the composites decreased the impact strength and compressive strength of the composites. On the other hand, the mechanical properties of hemp/PBTG composites with thermal exposure times, were governed significantly by the brittleness behavior of the resin and the increased crystallinity of hemp fibers. Thus, the hemp fibers contributed to the improvements on structural stability, tensile strength and flexural strength of the hemp/PBTG composites, and increased the thermal durability of the composites with various thermal exposures.  相似文献   

7.
Natural fibers are largely divided into two categories depending on their origin: plant based and animal based. Plant based natural jute fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated by compression molding. Bending strength (BS), bending modulus (BM), tensile strength (TS), Young’s modulus (YM), and impact strength (IS) of the composites were found 44.2 MPa, 2200 MPa, 41.3 MPa, 750 MPa and 12 kJ/m2, respectively. Animal based natural B. mori silk fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated in the same way and the mechanical properties were compared over the silk based composites. TS, YM, BS, BM, IS of silk fiber reinforced polypropylene composites were found 55.6 MPa, 760 MPa, 57.1 MPa, 3320 MPa and 17 kJ/m2 respectively. Degradation of composites in soil was measured upto twelve weeks. It was found that plant based jute fiber/PP composite losses its strength more than animal based silk fiber/PP composite for the same period of time. The comparative study makes it clear that mechanical properties of silk/PP composites are greater than those values of jute/PP composites. But jute/PP composites are more degradable than silk/PP composites i.e., silk/PP composites retain their strength for a longer period than jute/PP composites.  相似文献   

8.
The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly ‘green’ composites. SEM micrographs of a longitudinal and cross-sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young’s modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to 160°C with no decrease in tensile strength or Young’s modulus. However, at temperatures higher than 160°C the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9%. These properties make ramie fibers suitable as reinforcement for ‘green’ composites. Also, the green composites can be fabricated at temperatures up to 160°C without reducing the fiber properties.  相似文献   

9.
Cellulose nanowhiskers were used to improve the performance of poly (lactic acid) (PLA). The nanocomposites mixed with three different molecular weight of poly (ethylene glycol) (PEG) were characterized by mechanical testing, thermal gravimetry and differential scanning calorimetry. The tensile test showed an increase in tensile strength and elongation at break with the addition of PEG to PLA/CNW nanocomposites, the thermal analysis results showed an increase of crystallization temperature (T c) and crystallization compatibility (larger crystallization and melting areas), which indicated that the cellulose nanowhiskers (CNW) and PEG or CNW alone should not be considered as nucleating agents for the PLA matrix; The CNW was homo-dispersed which contributed to decreasing mobility of polymer chain segments. The compatibility between hydrophobic PLA matrix and the hydrophilic CNW was improved by the addition of different molecular weight polymeric-PEG. The thermo gravimetric analysis indicated that the thermal stability of the different composites were reflected well in the region between 25 °C and 245 oC. The structure of the PLA/CNW/PEG composites was characterized by AFM, which showed that the CNW dispersed in the PLA matrix evenly.  相似文献   

10.
The bleached jute fabric (BJF) reinforced polypropylene (PP) composites with various contents of acrylic acid (AA)-treated BJF and un-AA-treated BJF were fabricated by compression moulding method at 190 °C. The AA-grafted BJF reinforced PP composites were then irradiated by γ-ray at various doses. The mechanical properties of neat PP (N-P), ungrafted-BJF and PP composites (UG-BJFPC), AA-grafted-BJF and PP composites (AA-BJFPC) and γ-ray cum AA-grafted-BJF and PP composites (γAA-BJFPC) show maximum tensile strength (TS) of 30, 46, 47 and 51 MPa, maximum flexural strength (FS) of 34, 49, 50 and 54 MPa and maximum Young’s modulus (E) of 280, 428, 436, and 680 MPa, respectively. The increase of TS, FS and E from UG-BJFPC are 2 %, 2 %, and 2 % for AA-BJFPC and 11 %, 10 % and 59 % for γAA-BJFPC. The TS, FS and E are found to increase with radiation dose up to 500Krad and then decrease. The water absorption (WA) for UG-BJFPC, AA-BJFPC and γAA-BJFPC is respectively about 14, 10 and 9 %, indicating a gradual development of hydrophobic character of the composites first by AA-treatment and then by γ-ray-treatment. AA treatment on jute fabric and gamma irradiation on composite result in significant change of morphology of the jute fabric composites surface and better mechanical bonding between fabric and polymer matrix, as a result improved mechanical properties are found.  相似文献   

11.
A simple method based on the combination of the intercalation from solution and melt-processing preparation methods was used to prepare highly exfoliated and compatible thermoplastic starch (TPS) and montmorillonite clay (MMT) nanocomposites. The effects of the MMT content on the thermal, structural, and mechanical properties of the nanocomposites were investigated. XRD diffraction was used to investigate the MMT exfoliation/intercalation degrees in the TPS matrix. Data from thermogravimetric analysis and differential scanning calorimetry revealed that the addition of MMT increased the thermal stabilities of TPS nanocomposites. Young's modulus and tensile strength increased from 8.0 to 23.8 MPa and 1.5 to 2.8 MPa with an increasing MMT content from 0 to 5 wt% without diminishing their flexibility. The improvement in such properties can be attributed to the good dispersion/exfoliation of MMT in the TPS matrix. Combining both methods, it was possible to obtain homogenous and transparent nanocomposites with excellent thermal and mechanical properties for application as packaging materials.  相似文献   

12.
The research on coir-polyester composites initiated the interest in the development of woven coir fiber-reinforced polyester composites. The mechanical properties of woven coir-polyester composites were evaluated as per ASTM standards and the machinability behavior was studied by conducting drilling tests in this investigation. The woven coir-polyester composites exhibited the average values of tensile, flexural and impact strength of 19.9 MPa, 31.3 MPa and 49.9 kJ/m2 respectively. The effect of NaOH treatment on the improvement of mechanical properties of woven coir-polyester composites were studied in this investigation. The 40 % increase of tensile strength, 42 % increase of flexural strength and 20 % increase of impact strength were achieved by treated woven coir fiber-reinforced polyester composites. The regression models for predicting thrust force, torque and tool wear in drilling of woven coir-polyester composites were developed and the effect of drilling parameters were analyzed.  相似文献   

13.
Ionic conductivity and mechanical properties of a mixed polymer matrix consisting of poly(ethylene glycol) (PEG) and cyanoresin type M (CRM) with various lithium salts and plasticizer were examined. The CRM used was a copolymer of cyanoethyl pullulan and cyanoethyl poly(vinyl alcohol) with a molar ratio of 1:1, mixed plasticizer was ethylene carbonate (EC) and propylene carbonate (PC) at a volume ratio of 1:1. The conductive behavior of polymer electrolytes in the temperature range of 298∼338 K was investigated. The PEG/LiClO4 complexes exhibited the highest ionic conductivity of ∼10−5 S/cm at 25°C with the salt concentration of 1.5 M. In addition, the plasticized PEG/LiClO4 complexes exhibited improvement of ionic conductivity. However, their complexes showed decreased mechanical properties. The improvement of ionic conductivity and mechanical properties could be obtained from the polymer electrolytes by using CRM. The highest ionic conductivity of PEG/CRM/LiClO4/(EC-PC) was 5.33×10−4 S/cm at 25°C.  相似文献   

14.
In this work, surface acetylation of cellulose nanocrystals was performed to improve their interfacial adhesion with hydrophobic polymer matrix and to restore their thermal stability by removing the sulfate groups. The morphological, chemical, and thermal characteristics of the surface-modified cellulose nanocrystals (ACNs) were confirmed by field emission-transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Furthermore, poly(butylene succinate) (PBS)/ACNs nanocomposites were also prepared via melt-mixing process, and the reinforcing effects of ACNs on the thermal, mechanical, and biodegradable properties of the nanocomposites were investigated. The Young’s modulus and tensile strength of the PBS/ACN nanocomposites increased from 115.36 and 33.67 MPa for the neat PBS to 130.55 MPa and 39.97 MPa, respectively. The thermal stability and biodegradability of the nanocomposites also increased with increasing ACN content.  相似文献   

15.
The poultry meat processing industry produces large amounts of feather meal, which is traditionally used as lowvalue plant fertilizer or fish nutrient. A higher value application for feather meal is described in this paper - a thermal blending and compression molding method to create compostable composites out of environmentally friendly materials: feather meal, glycerol, and a biodegradable copolymer of methyl vinyl ether and maleic anhydride (MVEMA). The composite’s mechanical, microstructural and chemical characteristics are described. Feather meal plasticized only with glycerol is mechanically fragile, with average tensile strength of 1.7 MPa, Young’s modulus of 296 MPa and strain-at-failure of 0.6 %. With the addition of MVEMA copolymer, feather meal is transformed into a ductile plastic composite, with tensile modulus reduced 2- to 5-fold and strain-at-failure increased 4- to 25-fold. These properties are ideal for creating feather mealbased compostable bioplastics for agricultural and industrial applications.  相似文献   

16.
Biodegradable packaging is gaining much attention in food industry as the awareness on sustainability has increased. Thermoplastic starch is a possible alternative. This study evaluated the influence of malic acid (MA) and citric acid (CA), used as a plasticizer, on the mechanical properties of thermoplastic starch (TPS) obtained by spray drying. TPS powder was produced from solution spray drying. This powder was further compression molded to prepare TPS dog-bone test samples. X-ray Diffraction (XRD) results showed that both the spray dried TPS powder and dog-bone test samples were amorphous in nature irrespective of the amount of plasticizer added. Scanning electron microscope (SEM) was used to examine the morphology of solution spray dried TPS powder. No noticeable difference was observed in the morphology. Particles were spherical in shape with homogenous surface. The FT-IR analysis indicated the interaction of plasticizers with starch chains by hydrogen bonding. During TGA analysis, apart from moisture loss at 100 °C, samples were thermally stable up to 170 °C. Mechanical testing of TPS dog-bone revealed that sample containing malic acid as plasticizer exhibited a more elastic behavior as compared to citric acid plasticized formulations. It was revealed that the tensile strength of TPS dog-bone samples was inversely proportional to the quantity of plasticizer used.  相似文献   

17.
Denim, a twilled cotton fabric, was used to enhance the mechanical and thermal properties of poly(lactic acid) (PLA). The denim fabric reinforced composites with different numbers of denim layers were fabricated by using a hand layup method. The impact, tensile, and dynamic mechanical properties of the composites were observed with increasing denim layers to examine the reinforcing effect of denim fabrics. Numerical analysis was carried out to model the elastic modulus of the composite by using a commercial software. Three-dimensional geometry of the denim fabric reinforced PLA composite was generated through a CAD program, and the elastic modulus was calculated by applying uniform deformation on one surface. The impact strength, tensile strength, and thermal properties of the composites were improved by piling denim fabrics. The denim fabric reinforced composites exhibited outstanding impact strength due to the retarded crack propagation as well as large energy dissipation. The 3 layer denim reinforced composite showed best results among all specimens, and its impact strength, tensile strength, and tensile modulus were measured to be 82 J/m, 75.76 MPa, and 4.65 GPa, respectively. The PLA/denim composites have good mechanical properties and can substitute traditional composites such as glass fiber or carbon fiber reinforced composites.  相似文献   

18.
Cassava bagasse is an inexpensive and broadly available waste byproduct from cassava starch production. It contains roughly 50% cassava starch along with mostly fiber and could be a valuable feedstock for various bioproducts. Cassava bagasse and cassava starch were used in this study to make fiber-reinforced thermoplastic starch (TPSB and TPSI, respectively). In addition, blends of poly (lactic acid) and TPSI (20%) and TPSB (5, 10, 15, 20%) were prepared as a means of producing low cost composite materials with good performance. The TPS and PLA blends were prepared by extrusion and their morphological, mechanical, spectral, and thermal properties were evaluated. The results showed the feasibility of obtaining thermoplastic starches from cassava bagasse. The presence of fiber in the bagasse acted as reinforcement in the TPS matrix and increased the maximum tensile strength (0.60 MPa) and the tensile modulus (41.6 MPa) compared to cassava starch TPS (0.40 and 2.04 MPa, respectively). As expected, blending TPS with PLA reduced the tensile strength (55.4 MPa) and modulus (2.4 GPa) of neat PLA. At higher TPSB content (20%) the maximum strength (19.9 MPa) and tensile modulus (1.7 GPa) were reduced about 64% and 32%, respectively, compared to the PLA matrix. In comparison, the tensile strength (16.7) and modulus (1.2 GPa) of PLA blends made with TPSI were reduced 70% and 51% respectively. The fiber from the cassava bagasse was considered a filler since no increase in tensile strength of PLA/TPS blends was observed. The TPSI (33.1%) had higher elongation to break compared to both TPSB (4.9%) and PLA (2.6%). The elongation to break increased from 2.6% to 14.5% by blending TPSI with PLA. In contrast, elongation to break decreased slightly by blending TPSB with PLA. Thermal analysis indicated there was some low level of interaction between PLA and TPS. In PLA/TPSB blends, the TPSB increased the crystallinity of the PLA component compared to neat PLA. The fiber component of TPSB appeared to have a nucleating effect favoring PLA crystallization.  相似文献   

19.
We investigated the surface modification of jute fiber by oxygen plasma treatments. Jute fibers were treated in different plasma reactors (radio frequency “RF” and low frequency “LF” plasma reactors) using O2 for different plasma powers to increase the interface adhesion between jute fiber and polyester matrix. The influence of various plasma reactors on mechanical properties of jute fiber-reinforced polyester composites was reported. Tensile, flexure, short beam shear tests were used to determine the mechanical properties of the composites. The interlaminar shear strength increased from 11.5 MPa for the untreated jute fiber/polyester composite to 19.8 and 26.3 MPa for LF and RF oxygen plasma treated jute fiber/polyester composites, respectively. O2 plasma treatment also improved the tensile and flexural strengths of jute fiber/ polyester composites for both plasma systems. It is clear that O2 plasma treatment of jute fibers by using RF plasma system instead of using LF plasma system brings about greater improvement on the mechanical properties of jute/polyester composites.  相似文献   

20.
Polymer matrix composites (PMCs) owing to their outstanding properties such as high strength, low weight, high thermal stability and chemical resistance are broadly utilized in various industries. In the present work, the influence of silanized CaCO3 (S-CaCO3) with 3-aminopropyltrimethoxysilane (3-APTMS) coupling agent at different values (0, 1, 3 and 5 wt.% with respect to the matrix) on the mechanical behavior of basalt fibers (BF)/epoxy composites was examined. BF-reinforced composites were fabricated via hand lay-up technique. Experimental results from three-point bending and tensile tests showed that with the dispersion of 3 wt.% S-CaCO3, flexural strength, flexural modulus, tensile strength and tensile modulus enhanced by 28 %, 35 %, 20 % and 30 %, respectively. Microscopic examinations revealed that the development of the mechanical properties of fibrous composites with the incorporation of modified CaCO3 was related to enhancement in the load transfer between the nanocomposite matrix and BF as well as enhanced mechanical properties of the matrix part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号