首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For three successive growing seasons (1999–2001), a completely randomized block design experiment was established at the surrounding area of each of four sugar beet processing plants of Hellenic Sugar Industry SA, Greece (a total of 12 experiments). Nitrogen was applied at five rates (0, 60, 120, 180 and 240 kg N ha−1) and six replications per rate. Nitrogen fertilization had site-specific effects on quantitative (fresh root and sugar yields) and qualitative (sucrose content, K, Na, α-amino N) traits. When data were combined over years and sites, fresh root and sugar yields were maximized at high N rates (330.75 and 295 kg N ha−1 respectively), as derived from quadratic functions fitted to data. In three trials, increased N rates had negative effects on root and sugar yield. These sites were characterized by high yield in control plots, light soil texture (sand > 50 %) and low CEC values. When data were converted into relative values (the ratio of the trait values to the control mean of each experiment), root and sugar yield was found to be maximized at higher N rates (350 and 316 kg N ha−1, respectively). Sucrose content was strongly and linearly reduced by the increased N rates when data were combined but a significant reduction with increasing N rates was found in only two sites. Non-sugar impurities (K, Na, α-amino N) were positively related to the increased N rates when data were combined. Sodium and α-amino N showed to be most affected by N fertilization as positive relationships were found in six and eight of 12 locations, respectively. Increased N supply resulted in higher soil NO3-N concentrations (0–90 cm depth) at harvest which were related with amino N contents in sugar beet roots (in 1999 and 2001).  相似文献   

2.
Drought stress may affect sucrose accumulation of sugar beet by restricting leaf development and storage root growth. The objective of this study was to identify changes occurring in the storage root of Beta beets in growth characteristics and ions and compatible solutes accumulation under drought with regard to sucrose accumulation. Two pot experiments were conducted: (1) sugar beet well supplied with water (100 % water capacity), under continuous moderate (50 %) and severe drought stress (30 %), (2) sugar beet and fodder beet well supplied with water (100 %) and under continuous severe drought stress (30 %). Under drought stress, the ratio of storage root to leaf dry matter of sugar beet decreased indicating a different partitioning of the assimilates. The sucrose concentration of the storage root was reduced. In the root, the number of cambium rings was only slightly affected, although drought stress was implemented already 6 weeks after sowing. In contrast, the distance between adjacent rings and the cell size was considerably restricted, which points to a reduced expansion of existing sink tissues. The daily rate of sucrose accumulation in the root showed a maximum between 16 and 20 weeks after sowing in well‐watered plants, but it was considerably reduced under drought stress. The concentration of compatible solutes (K, Na, amino acids, glycine betaine, glucose and fructose) decreased during growth, while it was enhanced because of drought. However, when sucrose concentration was added, a constant sum of all examined solutes was found throughout the vegetation period. It was similar in sugar beet and in fodder beet despite different concentrations of single solutes, and the total sum was not affected by water supply. A close negative relationship between the concentration of compatible solutes and sucrose occurred. It is therefore concluded that the accumulation of compatible solutes in the storage root of Beta beets under drought might be a physiological constraint limiting sucrose accumulation.  相似文献   

3.
史应武  娄恺  李春 《作物学报》2009,35(5):946-951
采用内生真菌F11液浸种、喷叶及灌根处理方法,调查其对甜菜栽培品种KWS2409的主要农艺性状及对甜菜氮、糖代谢关键酶即硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、蔗糖合酶(SS)和蔗糖磷酸合酶(SPS)活性的影响。结果表明,内生真菌F11菌株对甜菜的含糖量有明显的提高作用,其中以灌根处理效果最好,其叶鲜重、叶绿素含量、单根重、含糖率和产糖量的平均值分别提高了66.67%、47.42%、6.96%、17.46%和25.63%。在整个生育期,内生真菌F11显著提高了氮糖代谢酶活性,其中NR和GS活力分别呈“M”型双峰曲线和抛物线型变化,而SS和GS活力呈单峰曲线变化,后期根部SS合成活力明显高于分解方向活力,生育前期SPS活力高于后期。叶丛形成期达到最高峰,说明NR、GS、SS和SPS活性的增强是甜菜含糖量升高的主要生理原因。  相似文献   

4.
旨在更加科学真实地评价甜菜种质资源的品质性状,有针对性地对种质资源优异品质性状进一步挖掘利用。引用甜菜块根蔗糖可回收率、杂质指数、可回收蔗糖量3 个综合指标,排除甜菜块根中有害性非糖分钾、钠、α-氮的影响,对参试的162 份甜菜种质资源2 年试验鉴定结果的有关品质性状进行分析。结果表明:甜菜块根中影响蔗糖提取的有害性非糖分钾、钠、α-氮在不同的种质资源材料间差异较大,其中钠含量在参试种质资源材料中极差达到4.763 mmol/100 g,为平均数的1.84 倍,变异系数34.43%;α-氮含量和钾含量在不同参试种质资源材料间也表现出较大差异,变异系数分别为16.90%和19.03%。通过对参试种质资源材料的评价,筛选出蔗糖含量高、有害性非糖分含量低的高糖组种质资源材料10份、中高糖组48份材料,2组平均蔗糖可回收率分别为15.88%和14.95%;筛选出杂质指数低于4.0、块根产量在45.00 t/hm2以上的丰产型种质资源材料7份,杂质指数4.0~4.5、块根产量在45.00 t/hm2以上丰产性较好的种质资源材料14 份。甜菜块根中可回收蔗糖量指标综合了蔗糖可回收率和块根产量2个性状指标,利用该项指标评价种质资源材料,可以挖掘出丰产优质的种质资源。用可回收蔗糖量指标评价甜菜品种,筛选丰产、高工艺品质的品种,兼顾甜菜种植者和制糖企业双方利益,有利于甜菜制糖产业可持续发展。  相似文献   

5.
Twenty commercial sugar beet varieties were grown at two sites in central Greece during the 2001 growing season (March to October), in a completely randomized block design with three replications. Carbon isotope discrimination (Δ) in sugar beet leaves was found to be affected by site and marginally by variety. No relation was found between fresh root yield and Δ, but significant correlations were found between Δ and sucrose content (positive) and between Δ and root α‐amino‐N (negative). Also, the harvest index, determined at one site, was negatively correlated with Δ.  相似文献   

6.
Depending on genotype, sugar beet can differ considerably in yield and quality characteristics. These are additionally modified by environmental conditions with drought stress recently gaining in importance, restricting growth and altering the chemical composition of the beet. The occurrence and development of these genotypic differences during the vegetation period and their possible interaction with environmental conditions were investigated. In 2002 and 2003, four sugar beet genotypes differing in yield and quality and putative different with regard to drought tolerance were tested in field trials, partly under irrigated conditions, in a total of 10 environments with consecutive harvests starting in early summer. In 2 years of stress and non-stress conditions they exhibited significant differences for taproot and leaf dry matter and the concentration of sucrose, K, Na and α-amino nitrogen in the taproot. These differences existed already in mid-June and virtually did not change any more from this time on. Accordingly, interactions between genotype and harvest date did not occur. For sugar beet, genotype by environment interactions generally do not exist. Water supply, as an important single determinant of the effect of the environment, was studied separately analysing data from selected locations. Under drought conditions, withholding irrigation reduced leaf and taproot growth and root-to-leaf ratio, decreased the percentage of sucrose in dry matter and resulted in an accumulation of α-amino N. Interactions between genotype and water supply did not occur for any of the parameters under study. A genotype-specific high α-amino N content, which might be of advantage for osmoregulation, did not improve the adaptation to drought. Differences in leaf maintenance or taproot-to-leaf ratio during drought also did not affect yield response. Due to the lack of interaction between genotype and harvest date as well as between genotype and irrigation it is concluded that harvest date or climatic factors of the growing region do not have to be taken into consideration when choosing a variety.  相似文献   

7.
尹希龙  石杨  李王胜  兴旺 《作物杂志》2022,38(6):152-40
干旱胁迫是抑制甜菜生长发育和影响产量的重要非生物因素。以耐旱型甜菜种质依安一号(V1)和干旱敏感型种质92011/1-6/1(V2)为试验材料,探讨不同耐旱品种甜菜幼苗光合生理对干旱胁迫的响应。研究了干旱胁迫对甜菜幼苗生长发育、总叶绿素含量和表观光合指标的影响。结果表明,干旱胁迫下2种甜菜幼苗的茎粗、根长、株高、叶鲜重、根鲜重、叶干重和根干重均呈下降趋势,V1下降幅度不明显且各指标降低幅度均小于V2;干旱胁迫降低了2种甜菜幼苗的叶绿素含量,叶绿素含量在第7天降到最低,且V1的含量明显高于V2;干旱胁迫使甜菜幼苗的净光合速率、蒸腾速率、叶片气孔导度和胞间CO2浓度显著下降,V1受到的影响比V2要小。不同耐旱性甜菜品种对干旱胁迫的响应机制存在一定差异,可以进一步分析其抗旱能力,为甜菜的育种、抗逆栽培和稳产提供理论依据。  相似文献   

8.
To study the effects of different levels of drought stress on root yield and some morpho-physiological traits of sugar beet genotypes, a study was conducted in the research farm of Islamic Azad University of Birjand, Iran in 2013 as strip-split plot experiments based on randomized complete block design. Different levels of drought stress were considered as vertical factor in three levels including normal irrigation, moderate stress, and severe stress. Horizontal factor was assigned to five varieties of sugar beet. Drought stress had a significant effect on root dry weight, total dry weight, root yield, and leaf temperature at 1% probability level and on leaf dry weight, crown dry weight, and harvest index at 5% probability level. Drought stress had an adverse effect on root yield of investigated genotypes of sugar beet. Under normal conditions, the mean of root yield was higher than middle and severe drought stress. Different investigated genotypes of sugar beet responded to drought stress based on their yield potential. The highest positive correlation of root yield was observed with root dry weight (r=0.977**). Stepwise regression analysis and path coefficient analysis showed that root dry weight and petiole dry weight are the most important traits that can affect root yield of sugar beet under drought stress and can used as selection criteria in investigated cultivars of sugar beet. Finally, 7221 genotypes can be considered as tolerant genotypes in the next studies. In comparison, Jolgeh cultivar (as susceptible control) yielded well in areas with normal irrigation, but under moderate and severely stresses its root yield was reduced.  相似文献   

9.
Viral disease of rhizomania is one of the most important diseases of sugar beet all over the world. The disease significantly has reduced the yield and quality of sugar beet, and has imposed high economic loss to farmers. Long-term breeding programs to introduce tolerant cultivars are the only chance of avoiding further yield losses. This study tried to measure and analyze the growth of shoots and roots of rhizomania-tolerant and -susceptible sugar beet with the aim of providing information for modeling of the rhizomania effects on the growth of sugar beet. Growth indices were used for analyzing, quantification, and time-course of sugar beet growth under infested and non-infested soils conditions. A 2-year experiment was conducted using four sugar beet cultivars in 2010 and 2011 in Mashhad, Iran. The results of this study showed that under infested soils, root dry matter and leaf area index of the susceptible cultivars in comparison to tolerant cultivars were lower by 57 and 24%, respectively. In addition, crop growth rate and net assimilation rate of susceptible cultivars were affected by rhizomania and were lower than in tolerant cultivars. On non-infested soil, the difference between dry matter and growth indices of susceptible and tolerant sugar beet cultivars was not significant. Rhizomania decreased green area and photosynthesis capacity and led to lower growth rate and dry matter production. Our study quantified the growth of rhizomania-infested sugar beet plants in comparison with non-infested plants and provided information to be used for modeling of the rhizomania effects on the growth of sugar beet.  相似文献   

10.
优异甜菜种质资源筛选评价   总被引:1,自引:1,他引:0  
旨在筛选评价优异的甜菜种质资源,为在育种上科学利用提供可靠信息支撑。本研究对277份甜菜种质资源的块根产量、含糖率、有害性非糖分以及主要病害抗性等8个主要性状的试验数据,按规范标准进行分组划类,分别对各类型种质资源进行筛选与评价。筛选出块根产量52 t/hm2以上的高产型种质资源37份,含糖率17%以上高糖型88份。其中,高产高糖型4份、高产中糖型的21份、中产高糖型的72份。种质资源中有害性非糖分:钾含量低于3.79 mmol/100 g的25份、钠含量低于2.00 mmol/100 g的96份,α-N低于4.76 mmol/100 g的49份,其中,低钾、低钠含量的4份,低钾、低α-N含量的4份,低钠、低α-N含量的20份,低钾、低钠、低α-N含量的3份。参试种质资源中具有高抗褐斑病兼中抗立枯病的种质资源10份,高抗褐斑病兼抗根腐病的5份,抗褐斑病兼中抗立枯病的14份,抗褐斑病兼抗根腐病的5份、抗褐斑病兼中抗根腐病的3份。结果表明,现有甜菜种质资源中高产型较少、高糖型的比较丰富;抗褐斑病种质资源较多,抗立枯病和抗根腐病的数量少并且抗性级别低。  相似文献   

11.
为了探索适宜糖用甜菜高产优质种植的氮磷钾最佳施肥效应模型,本文以糖用甜菜为研究对象,采用大田回归组合试验,对糖用甜菜栽培中的氮、磷、钾肥因子与糖用甜菜的产量和品质的关系进行研究,采用层次分析法(Analytic Hierarchy Process, AHP)确定了各品质指标(糖度、钾、钠、a-氮)和产量为指标的权重,通过隶属函数对各种施肥处理糖用甜菜的产量和品质进行模糊综合评价,根据评价得分为品质指数初步建立并优化了氮、磷、钾肥因子与糖用甜菜综合品质指数的回归方程。结果表明:大田试验适宜的氮肥施用量为68.89~88.61 kg.ha-1,施磷量为47.94~92.06 kg.ha-1,施钾量为54.34 ~100.66kg.ha-1。  相似文献   

12.
Breeding has led to a continuous increase of the performance of sugar beet varieties and thereby contributes to meet the global needs for food and biomass. This study aimed to analyze the extent of the breeding progress in sugar beet and to determine which parameters and traits were modified by breeding. In 2007 and 2008 sugar beet varieties registered between 1964 and 2003 were cultivated in field trials and in greenhouse experiments to exclude effects from changes in agronomic operations and climatic conditions. Differences in white sugar yield related to the reference variety registered in 1964 were regarded as breeding progress. The results showed an increase in the white sugar yield of 0.6–0.9% a−1 from 1964 to 2003 due to breeding. This was achieved by an improved biomass partitioning (higher root to leaf ratio and higher sugar to marc ratio), better technical quality (decreased concentration of K, Na, and amino N combined as standard molasses loss) and enhanced assimilation (higher chlorophyll content, higher assimilation rates). No changes were observed in leaf development and cambium ring formation. A principle component analysis pointed out that breeding targets have shifted with time from “yield” to “biomass quality”. To continue the breeding progress in future it is essential to integrate multiple resistances and tolerances against biotic and abiotic stress.  相似文献   

13.
Sugar beet (Beta vulgaris L.) yield and quality are determined by genotype and environment. This study aimed at analysing the relative importance of the environment for yield and quality of sugar beet genotypes and at assessing parameters which could give essential improvement for beet quality if included as additional selection criteria. For that purpose, root yield and quality (sugar, K, Na, amino N, total soluble N, betaine, glutamine, invert sugar, raffinose) of 9 sugar beet genotypes were investigated in 52 environments (25 sites in 2003 and 27 sites in 2004) in randomised field trials across Europe.The environment accounted for about 80% of the total variance for all parameters. Effects of the tested genotypes were larger for the content of betaine (8.5%) and sugar (7.6%) than for other parameters (1–5%). With the exception of invert sugar and amino N, the genotype by environment interaction was about 3% and thereby lower than the main effect of genotypes. Interactions resulted in an increase of the differences between genotypes which can be used to select genotypes in the most discriminating environments. The response of genotypes in sugar content was contrasting to other parameters and points to a physiological limit for sugar storage at about 20%. As no crossover interaction occurred for root yield or any quality parameter, there seemed to be no specific suitability of the tested genotypes to certain environmental stress conditions. This is probably due to the fact that the harvested beetroot is a vegetative storage organ and has no growth stages susceptible to unfavourable environmental conditions such as flowering and grain filling which are important for final yield in cereals. Invert sugar showed the largest relative differences between genotypes which were strongly enhanced in southern and some south-eastern European environments. Because of its importance during processing, considering invert sugar in breeding could improve technical quality for processing considerably for those extreme environments.  相似文献   

14.
重茬对甜菜品质的影响研究   总被引:1,自引:1,他引:0  
为明确甜菜重茬的危害,利用多粒、单粒两种类型供试材料,在田间同时进行重茬和生茬比较试验。研究重茬对甜菜产量、品质质量的影响。结果表明:(1)供试的几个多粒种平均减产22429 kg/hm2,单粒种平均减产18354 kg/hm2。(2)多粒种平均含糖下降2.58度,单粒种下降1.36度。(3)K、Na、α-N,多粒种平均分别增加了0.37 mmol/100g、3.31 mmol/100g、1.04 mmol/100g,单粒种分别为0.15 mmol/100g、2.21 mmol/100g、0.39 mmol/100g。(4)重茬地甜菜有害物质含量增加导致甜菜的品质下降,糖份损失率增加,多粒种平均增加0.69,单粒种平均增加0.47;可提取糖率减少,多粒种平均下降3.27,单粒种平均下降2.17;产糖量减少,多粒种减少4996 kg/hm2,单粒种减少3814 kg/hm2。(5)重茬地褐斑病发病早,比生茬地高1~2级。  相似文献   

15.
内蒙古地区甜菜临界氮浓度稀释模型的构建及应用   总被引:2,自引:0,他引:2  
甜菜是我国两大主要糖料作物之一,然而氮素过量或者不足不仅会影响甜菜产量和含糖量,而且过量的氮素还会造成一定的环境风险,如何判别甜菜的氮素营养在一个合理的范围对于保障甜菜产量、品质和减少环境风险具有重要意义。临界氮浓度稀释曲线是作物氮素营养诊断的基础,本研究的主要目的是构建我国甜菜临界氮浓度稀释曲线模型,并利用相应的氮素营养指数进行甜菜氮素营养诊断。研究于2017—2018年在内蒙古呼和浩特市和赤峰市进行了2个甜菜品种、不同施氮量的田间试验。在甜菜的苗期、叶丛生长期、块根膨大期、糖分积累期和收获期5个关键时期进行地上部叶片和地下部块根取样测定生物量和氮浓度,并计算出甜菜全株生物量和全株氮浓度。根据全株生物量和全株氮浓度建立临界氮浓度稀释模型和相应的氮素营养指数。结果表明,甜菜地上部生物量和地上部氮浓度以及全株生物量和全株氮浓度都是随着生育时期的推进呈现出负幂函数关系,基于地上部生物量和地上部氮浓度建立的临界氮浓度稀释曲线决定系数平均在0.45,而以全株生物量和全株氮浓度建立临界氮浓度稀释曲线决定系数平均在0.94,较前者有显著提高。以全株生物量和全株氮浓度建立临界氮浓度稀释模型更为合理,...  相似文献   

16.
Autumn sown sugar beets (winter beets) are expected to yield markedly higher than spring sown beets. This requires a continuous growth during an extended growing period. So far, bolting‐resistant sugar beet varieties are not available to test winter beets under field conditions in Central Europe. The objective of this study was therefore to analyse yield formation and sugar storage of sugar beet plants during an extended growing period to estimate whether sugar beet has the potential to generate the theoretically expected yield increase. From 2008 to 2012, pot experiments were carried out in the glasshouse with 11 sowing dates spread over the years with sequential harvests. The oldest plants were grown for 859 days (14 242 °Cd). Root fresh matter yield continuously increased till the latest harvest. In contrast, the sugar concentration reached an optimum value between 3400 and 5000 °Cd and then decreased with time. Despite longer growing periods, the number of cambium rings, which are regarded as essential for sugar storage, did not change. This points to an early and genetically fixed determination of the formation of cambium rings. Additionally, the rate of photosynthesis decreased concomitantly with the sugar concentration. In conclusion, there is some evidence that the sugar concentration of the storage root is limited by the sink capacity, which in turn controls the source activity by a feedback regulation of photosynthesis and leaf formation. The dry matter composition of the storage root changed towards lower sugar concentration and concurrent higher concentration of cell wall compounds (marc). The sugar yield still increased beyond a thermal time at which winter beets will probably be harvested in practice. Hence, the theoretical yield increase in autumn sown sugar beets can be realized, provided that the plants show sufficient winter hardiness and bolting resistance.  相似文献   

17.
甜菜蔗糖代谢两种相关酶的活性变化及其相互关系   总被引:1,自引:0,他引:1  
为了研究不同类型甜菜品种蔗糖代谢能力存在明显差异的生理机制,以糖用甜菜(高糖)和饲用甜菜(丰产)为试验对象,测定了不同生育阶段叶片、叶柄和块根中的蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)活性。结果表明:叶片、叶柄和块根中存在蔗糖合成与降解过程,不同类型甜菜在生长期蔗糖合成酶和蔗糖磷酸合成酶活性存在差别,同一品种不同部位,块根中蔗糖的代谢强度高于叶片和叶柄,糖用甜菜两种酶活性高于饲用甜菜,蔗糖代谢相关酶活性差异是品种特性,可用于甜菜的选种实践。  相似文献   

18.
Adaptation to low water availability in sugar beet includes the accumulation of solutes relevant for the technical quality of the beet. Two sugar beet genotypes were grown in pot experiments under drought stress of different severity to study effects on taproot composition and concentration of solutes relevant for technical quality, reversibility of drought effects after re‐watering and genotypic differences in drought response. Differences in stress sensitivity between the genotypes were not observed as reductions in taproot and leaf dry weight and white sugar yield were the same. Increasing dry matter concentration with decreasing water supply could, in part, be attributed to an increase in the concentration of cell wall components. The major solutes in the taproot were sucrose, potassium, amino N (the sum of amino acids) and betaine. Sucrose concentration decreased considerably under drought, indicating limited availability of assimilates. In contrast, all further solutes increased in concentration with increasing severity of stress. However, the response of individual solutes varied largely. Changes in amino N and nitrate were most pronounced and probably reflect accumulation of non‐utilized metabolites under limited growth. The drought‐induced accumulation of taproot solutes implicates a considerable decrease in the technical quality of the beet. It was only in part reversible by re‐watering. Genotypic variability for solute accumulation under water deficiency was observed but was not linked to drought tolerance.  相似文献   

19.
The soluble nitrogen (N) components in sugar beet seriously impair sugar recovery. The only N component determined routinely in the sugar factory is amino N (the sum of amino acids in the beet), which is assumed to reflect all the other N components. Amino N is affected by N supply and variety, but only little is known about the other N components such as total soluble N, betaine and nitrate. This study aimed at investigating the effect of N supply on the N composition of sugar beet varieties with special emphasis on N supply by variety interactions. In 2001 and 2002, field trials with four varieties and four N treatments were carried out at six sites in Germany. Storage root yield and the concentrations of sucrose, sodium, amino N, betaine, nitrate and total soluble N in the beet were determined. With increasing N supply, the concentration of amino N increased considerably and that of nitrate slightly, whereas that of betaine remained rather constant. Thus, the N composition of sugar beet changed with increasing N supply and the percentage of amino N of total soluble N increased. Although amino N has the closest correlation with total soluble N, for quality assessment it may overestimate the effect of N supply on other N components. Varieties clearly differed in root yield and quality as well as in all N components. The variety with the lowest amino N had the highest betaine concentration. However, as related to the concentration of total soluble N in the beet, for all varieties amino N as well as betaine showed the same response pattern. This indicates that the N composition of sugar beet is determined by the level of total soluble N, irrespective of variety or N supply. All varieties required the same N supply for obtaining maximum yield or quality. N supply did not affect the ranking of the varieties for all parameters studied, consequently it need not be considered for variety choice.  相似文献   

20.
为了评估感病区和非感病区对甜菜根产量和含糖率的影响,本试验对2017年和2018年的1个感病区和6个非感病区的10个甜菜品种的根产量和含糖率进行了测定。试验设计采用随机完全区组设计,配对t检验、多元方差分析对2017年和2018年种植于感病区和非感病区的10个甜菜品种的根产量和含糖率数据进行分析,共设置4个重复。多元方差分析结果显示,除2018年3区外,与2017年相比,2018年其他6个区域的4个重复的根产量差异不显著;2017年和2018年7个区域的10个品种之间显示出显著和非显著差异。箱线图显示,2017年的含糖率和2018年根产量与含糖率在7个区域的感病区(1区)与非感病区(2区~7区)均存在显著差异(配对t检验,p<0.001,p<0.001,p<0.001)。2017年,1区中的BETA377、BETA468、ST13112、LN90905、KWS2314、SV1554、BETA379和KWS9147没有显著差异,并处于较高水平。2018年,1区Knhn1357的根产量与其他9个品种具有显著差异,且处于高水平。在区域1中,2017年HI0554、BETA377、Kuhn1357、SV1554的含糖率与2018年HI0554、BETA468、KWS2314、Kuhn1357含糖率无显著差异,且处于较高水平。2017年和2018年,除2017年的LN90905与HI0554的根产量有显著差异外,5区10个品种的根产量和含糖率差异不显著。2017年和2018年,区域1的根产量和含糖率均存在显著差异(配对t检验,p<0.001,p=0.036)。区域5中,2017年和2018年10个甜菜品种的根产量差异不显著,含糖率差异显著(配对t检验,p=0.931,p<0.001)。经综合评估,ST13112,LN90905和SV1554抗病力较低;Knhn1357、BETA377、BETA468、KWS2314、KWS9147、BETA379和HI0554的抗病力较强。在同一区域和品种之间的根产量和含糖率存在显著性差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号