首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
不同氮钙营养对菠菜安全品质与抗氧化酶活性的影响   总被引:2,自引:0,他引:2  
通过溶液培养研究了氮钙营养对菠菜生长、安全品质和抗氧化酶活性的影响。结果表明,在Ca2+浓度相同时,菠菜在供N浓度为12 mmol/L时产量最高;相同供N水平下,Ca2+浓度为5 mmol/L时,菠菜可获得较高产量。菠菜可食部位的硝酸盐含量随着N和Ca2+浓度的升高明显上升。当N浓度为8 mmol/L时,菠菜可食部位可溶态草酸含量最低;在Ca2+浓度为5 mmol/L时,草酸总量最低。N浓度相同时,以5 mmol/L Ca2+处理的叶片POD活性最低;当供N浓度为8 mmol/L时,5 mmol/L Ca2+处理的叶片SOD活性最高,而CAT活性则随着N和Ca2+浓度的提高而显著下降。相同Ca2+浓度下,丙二醛的含量随着供N浓度的升高而明显增加;而在相同N水平下,Ca2+浓度为5 mmol/L处理的叶片丙二醛含量最低。叶片游离脯氨酸的含量均随着Ca2+浓度的增加而明显降低,低N处理的脯氨酸含量也较低。说明在本试验条件下,N浓度为8 mmol/L和Ca2+浓度为5 mmol/L,是菠菜生长较适宜的氮钙浓度。  相似文献   

2.
Two hydroponic experiments were carried out to investigate the effects of nitrogen (N) levels and forms on the oxalate concentrations of different form in edible parts of spinach. Nitrogen was supplied at five levels (4, 8, 12, 16, 20 mM) in Experiment 1 and five ratios of nitrate (NO3 ?) to ammonium (NH4 +) (100/0, 75/25, 50/50, 25/75, 0/100) at a total N of 8 mM in Experiment 2. Biomass of spinach increased markedly from 4 mM to 8 mM N and reached the flat with further increase in N. The total oxalate and soluble oxalate in leaves and shoots (edible parts) increased significantly with increasing N levels from 4 to 12 mM, while the total oxalate and insoluble oxalate decreased markedly when N level was further increased from 12 to 20 mM. Oxalates of different forms in petioles increased first and then decreased and elevated again with increasing nitrogen levels. In the second experiment, decreasing NO3 ?/NH4 + ratios markedly increased at first and then significantly decreased the biomass of spinach plants and the maximum biomass was recorded in the treatment of the NO3 ?/NH4 + ratio of 50:50. The oxalate concentrations of different form in leaves and shoots were all decreased obviously as the ratio of NO3 ?/NH4 + decreased from 100:0 to 0:100. Concentrations of total oxalate and soluble oxalate in petioles could be reduced by increasing ammonium proportion and were the lowest as the ratio of NO3 ?/NH4 + was 50:50 and insoluble oxalate decreased as nitrate/ammonium ratio decreased. The concentrations of oxalate forms in leaves were all higher than those in petioles and soluble oxalate was predominant form of oxalates in both trials. It is evident that high biomass of spinach can be achieved and oxalate concentrations of different forms can be reduced by modulating N levels and NO3 ?/NH4 + ratio, so this will benefit for human health especially for those people with a history of calcium oxalate kidney stones.  相似文献   

3.
采用溶液培养试验研究了营养液中硝态氮/铵态氮比例对菠菜地上部可食部分不同器官硝酸盐以及不同形态草酸累积的影响。结果表明,菠菜地上部生物量随供铵比例从0%提高到50%呈增加趋势而后显著下降。叶片和地上部可食部分的硝酸盐含量和累积量均随供铵比例增加而显著下降;叶柄的硝酸盐含量随供铵比例提高而降低,而硝酸盐积累量则先升高后显著下降。叶片是菠菜积累草酸的主要器官,可溶态草酸与草酸总量分别占地上部的56.3%~89.8%和76.6%~87.4%。可溶态草酸是菠菜体内草酸的主要形态,在叶片、叶柄及地上部中所占草酸总量的比例分别在36.7%~83.5%,79.0%~93.3%以及50.0%~83.0%之间。地上部各器官的可溶态草酸含量、难溶态草酸含量和草酸总量以及积累量均随着供铵比例的增加而显著下降,叶片和地上部的草酸含量和积累量的下降幅度均高于叶柄。可见,调节营养液中硝态氮/铵态氮比例可以有效降低菠菜地上部可食部分硝酸盐和草酸的含量和积累量,50/50是营养液中适宜的硝态氮/铵态氮比例,不仅菠菜的生物量最高,而且硝酸盐和各形态草酸的含量以及累积量较低,从而大大减轻了硝酸盐和草酸对人体健康产生的负面影响。  相似文献   

4.
供氮水平对菠菜产量、硝酸盐和草酸累积的影响   总被引:27,自引:5,他引:27  
采用溶液培养方法研究了不同供氮水平对菠菜生物量、硝酸盐和不同形态草酸含量的影响。结果表明,供氮水平由4.mmol/L增加到8.mmol/L,菠菜产量显著增加,继续提高氮水平对产量没有显著影响。叶片中的维生素C(Vc)含量随着供氮浓度从4.mmol/L提高到8.mmol/L而显著增加,再增加氮水平,叶片中的Vc含量明显下降;而菠菜叶柄Vc的含量则随供氮水平的提高显著下降。叶片硝酸盐含量随着氮浓度的提高而增加,当供氮水平由4mmol/L增加到8.mmol/L时,叶柄硝酸盐含量显著下降,而氮水平由8.mmol/L提高到20.mmol/L时,叶柄硝酸盐含量则随之升高。供氮浓度从4.mmol/L增加到8.mmol/L,叶片可溶态草酸含量略有下降,再提高供氮水平则明显上升,供氮水平低于12.mmol/L时,叶柄中的可溶态草酸和菠菜叶片和叶柄中的草酸总量则随着氮水平的提高而升高,高于12.mmol/L草酸含量反而降低。由此可见,菠菜在供氮浓度为8mmol/L(N2)时能够获得较高的产量和Vc含量,较低的硝酸盐和草酸含量,表明适宜的供氮水平下可获得高产优质的菠菜。  相似文献   

5.
The phytotoxicity of salts in composted sewage sludge (CSS) was evaluated. Concentrations of sodium (Na+), chloride (Cl?1), calcium (Ca2+), and magnesium (Mg2+) were present at levels that would induce salt stress in plants. Nutrient imbalances were also found that would adversely affect the use of CSS as a growth medium. To further understand the phytotoxic nature of these salts, sodium chloride (NaCl), calcium nitrate [Ca(NO3)2] and magnesium nitrate [Mg(NO3)2] solutions were used to simulate the composition of salts found in CSS in an investigation of radish (Raphanus sativus L.) seed germination. High concentrations of Ca2+ (92.1 mmol.L?1) and Mg2+ (27.4 mmol.L?1) inhibited seed germination to an equal extent as did Na+ (40.6 mmol.L?1). The lower concentration of Ca2+ (10 mmol.L?1), however, significantly relieved the stress caused by NaCl. These results indicated that the composition and total amount of Na+, Cl?1, Ca2+, and Mg2+ in CSS should be carefully monitored before it is used as a soil amendment or growth medium.  相似文献   

6.
The aim of this trial was to study the nutritional behavior generated by modifications in the salt concentration in the nutrient solution used for the fertigation of Cordyline fruticosa var. Red Edge plants. Four treatments were tested: T1 [control, 1.5 dS m?1, 14.3 mmol L?1 sodium chloride (NaCl)]; T2 (2.5 dS m?1, 22.2 mmol L?1 NaCl); T3 (3.5 dS m?1, 32.7 mmol L?1 NaCl); and T4 (4.5 dS m?1, 38.2 mmol L?1 NaCl). There is an accumulation of sodium (Na+) in roots, stem, and petiole when salinity increases, which avoid leaf damages. Potassium (K) concentration increases with the intermediate saline treatments in stems and leaves but decreases when plants are fertigated with T4. Calcium (Ca) accumulates in roots with T3 and T4, in stems with T4, and in petioles and leaves with T3. Magnesium (Mg) concentration is greater in stems, petioles, and leaves of T4, but is greater in roots of T3. Plants fertigated with the three saline treatments extract 1.4 times more Na+ than T1 plants. The greatest K+ extraction is observed in T2, followed by T3, and T4. T2, T3, and T4 plants extracted more Ca2+ than T1 plants. Finally, Mg2+ extractions in T3 are twice as much as they are in T1, while in T4 and T2 are much greater.  相似文献   

7.
Chinese fir (Cunninghamia Lanceolata Lamb, Hook) is generally considered a superior timber in southern China and other areas in the world. In the past few decades, aluminum (Al) toxicity has become one of biggest stress factors in the production and growth of Chinese fir, although this species prefers an acidic environment. To date, the selection of indicator species for Al toxicity remains critical in the field, and Al toxicity has not been successfully treated by artificially controlling Chinese fir plantations. To assess the Al toxicity risk, the height of the dominant tree, the concentration of calcium (Ca2+)/Al3+ in soil solution, and the concentration of Ca2+?/?[Ca2+ + iron (Fe3+) + Al3+] in litter leached organic acids were introduced. The results indicated that eight plots had suffered Al toxicity. The threshold of Al toxicity was 37.53 mg kg?1 in soil or 1.39 mmol L?1 in soil solution, a pH of 4.15, a Ca2+?/?(Ca2+ + Fe3+ + Al3+) molar ratio of 0.487, and a Ca2+/Al3+ molar ratio of 1.599. The positive effects of exogenous nutrition (Ca, phosphorus [P], and nitrogen [N]) on the growth of Cunninghamia lanceolata seedlings was also studied in pot experiments based on results in the field. The cation nutrition can lead to detoxification, and the exogenous nutrition thresholds were Ca2+/?Al3+ ≥ 2.8, phosphorus (P)/?Al3+ ≥ 4.4, ammonium (NH4 ?)–nitrogen (N)?/?Al3+ ≥ 4.5. The data presented in this study are very helpful for the understanding of the degree of Al toxicity and have notable significance for the management of Chinese fir plantations.  相似文献   

8.
Abstract

The effects of exogenous NaCl and silicon on ion distribution were investigated in two alfalfa (Medicago sativa. L.) cultivars: the high salt tolerant Zhongmu No. 1 and the low salt tolerant Defor. The cultivars were grown in a hydroponic system with a control (that had neither NaCl nor Si added), a Si treatment (1 mmol L?1 Si), a NaCl treatment (120 mmol L?1 NaCl), and a Si and NaCl treatment (120 mmol L?1 NaCl + 1 mmol L?1 Si). After 15 days of the NaCl and Si treatments, four plants of the cultivars were removed and divided into root, shoot and leaf parts for Na+, K+, Ca2+, Mg2+, Fe3+, Mn2+, Cu2+ and Zn2+ content measurements. Compared with the NaCl treatment, the added Si significantly decreased Na+ content in the roots, but notably increased K+ contents in the shoots and leaves of the high salt tolerant Zhongmu No.1 cultivar. Applying Si to both cultivars under NaCl stress did not significantly affect the Fe3+, Mg2+ and Zn2+ contents in the roots, shoots and leaves of Defor and the roots and shoots of Zhongmu No.1, but increased the Ca2+ content in the roots of Zhongmu No.1 and the Mn2+ contents in the shoots and leaves of both cultivars, while it decreased the Ca2+ and Cu2+ contents of the shoots and leaves of both cultivars under salt stress. Salt stress decreased the K+, Ca2+, Mg2+ and Cu2+ contents in plants, but significantly increased Zn2+ content in the roots, shoots and leaves and Mn2+ content in the shoots of both cultivars when Si was not applied. Thus, salt affects not only the macronutrient distribution but also the micronutrient distribution in alfalfa plants, while silicon could alter the distributions of Na+ and some trophic ions in the roots, shoots and leaves of plants to improve the salt tolerance.  相似文献   

9.
10.
ABSTRACT

This study investigated the effect of liquid fertilizer treatments on growth, flowering, leaf mineral content, and rhizome production during forcing of Curcuma alismatifolia ‘Chiang Mai Pink’ and C. thorelii ‘Chiang Mai Snow’. Plants were irrigated with 200 mL of 1.3 g L?1 of 15 nitrogen (N) -7 phosphorus (P) -14 potassium (K) water soluble fertilizer at 0, 1.3, 2.7, 4.0, 5.3, or 6.6 g L?1 weekly. Days to flower, flower stem length, and leaf length were recorded, the mineral contents in leaves were analyzed, and the number of rhizomes with tuberous roots were recorded at harvest. Flowering of the first inflorescence in both C. alismatifolia ‘Chiang Mai Pink’ and C. thorelii ‘Chiang Mai Snow’ was significantly delayed when plants received 6.6 g L?1 fertilizer as compared to the control plants. The number of rhizomes with more than 4 tuberous roots was highest when plants received 2.7 g L?1 fertilizer. No medium-sized rhizomes with more than seven tuberous roots were produced when ‘Chiang Mai Pink’ plants received 0, 4.0, 5.3, and 6.6 g L?1 fertilizer. Based on the production of rhizomes with four to six tuberous roots, optimum concentration of 15N -7P -14K water soluble fertilizer is 2.7 g L?1 for C. alismatifolia ‘Chiang Mai Pink’ and 1.3 to 4.0 g L?1 for C. thorelii ‘Chiang Mai Snow’. Although high boron content occurred only in the outer part of the second leaf when fertilizer concentrations were increased, leaf-margin burn (LMB) symptoms were not observed in both species and this could not be related to the production of rhizomes.  相似文献   

11.
A hydroponic culture was used to study different nitrogen and calcium supply patterns on biomass, nutritive, and safety quality of spinach seven days before harvesting. The results showed that the complete or partial withdrawal of nitrogen (N) and calcium (Ca) nutrient decreased spinach biomass compared to control (CK). At the same time, the withdrawal of N and Ca supply before harvesting increased vitamin C contents and decreased nitrate and oxalate content in edible parts of spinach. The decrease in spinach biomass could be partially compensated by the increase of the nutritive and safety quality of spinach and the reduced use of N and Ca nutrients.  相似文献   

12.
Nutrient solution composition plays an important role in root uptake rate due to interactions among nutrients and internal regulation. Studies to determine the optimum nutrient solution concentration are focused on individual ions, ignoring the adaptation mechanisms triggered by plants when growing in a varying external nutrient concentration. The objective of the present study was to determine the response in growth and tissue ion concentration of lilium cv. ‘Navona’ to nutrient mixtures of varying proportions of nitrogen (N), potassium (K+), and calcium (Ca2+) in solution using mixture experiments methodology in order to determine the optimum concentration. Bulbs of lilium were transplanted in plastic crates and drip-irrigated with the treatment solutions, which consisted of a mixture of N, K+, and Ca2+ whose total concentration was 340 mg L?1 and minimum concentrations of each ion was 34 mg L?1. Chlorophyll concentration (SPAD), shoot fresh weight (FW), leaf FW, and leaf area were measured 60 days after transplanting and ion analysis was performed on shoot tissues from selected treatments. Lilium exhibited a moderate demand for N and K+ (136–170 mg L?1 N and 116–136 mg L?1 K+) and a very low demand for Ca2+ (34–88 mg · L?1). This low demand may be due to the remobilization of the nutrients stored in the bulbs. Integrating the predictions of the models estimated to produce >90% of maximum growth, the optimum nutrient solution should contain Ca2+ at a concentration between 34 and 126 mg · L?1, K+ between 119 and 211 mg · L?1, and N between 92 mg · L?1 and 211 mg · L?1. Increasing external N concentration affected internal N concentration but not internal K+ or Ca2+ concentrations, despite that the increase in external N was associated with a decrease in external K+ and Ca2+. Similar trends were observed for external K+ and Ca2+ concentration. In conclusion, lilium was able to maintain a relatively constant K+ and Ca2+ concentration regardless of the lower concentration in the nutrient solution when N was increased (similar response was observed for K+ and Ca2+) and it has a low Ca2+ demand and moderate N and K+ supply.  相似文献   

13.
The effects of paclobutrazol (PBZ) and putrescine (Put) on antioxidant enzymes activity, proline contents and nutrients uptake were studied on salt tolerant citrus rootstock sour orange. Six-month-old nucellar seedlings grown in pots and subjected to three levels of PBZ and two levels each of salinity and Put for 90 days. Seedlings treated with PBZ or Put alone or in combination had higher anti-oxidant enzymes activities, accumulation of proline and nutrients contents like potassium (K+) and calcium (Ca2+) under both saline and non-saline conditions. Further, application of PBZ or Put alone or in combination also reduced the accumulation of both Na+ and Cl? ions in leaves and roots in NaCl stressed seedlings. A combined application of 250 mg L?1 PBZ and 50 mg L?1 Put proved to be more effective in improving proline and Ca2+ content and restricting accumulation of Na+ ions in leaf tissues.  相似文献   

14.
The effects of calcium and humic acid on seed germination, growth and macro- and micro-nutrient contents of tomato (Lycopersicon esculentum L.) seedlings in saline soil conditions were evaluated. Different levels of humic acid (0, 500, 1000 and 2000 mg kg?1) and calcium (0, 100, 200 and 400 mg kg?1) were applied to growth media treated with 50 mg NaCl kg?1 before sowing seeds. Seed germination, hypocotyl length, cotyledon width and length, root size, shoot length, leaf number, shoot and root fresh weights, and shoot and root dry weights of the plant seedlings were determined. Macro- and micro-nutrient (N, P, K, Ca, Mg, S, Cu, Fe, Mn and Zn) contents of shoot and root of seedlings were also measured. Humic acid applied to the plant growth medium at 1000 mg kg?1 concentration increased seedling growth and nutrient contents of plants. Humic acid not only increased macro-nutrient contents, but also enhanced micro-nutrient contents of plant organs. However, high levels of humic acid arrested plant growth or decreased nutrient contents. Levels of 100 and 200 mg kg?1 Ca2+ application significantly increased N, Ca and S contents of shoot, and N and K contents of root.  相似文献   

15.
The effects of salt stress(200 mmol L‐1) and calcium (Ca) on the lipid composition and function of plasma membrane and tonoplast vesicles isolated from the roots of barley seedlings (Hordeum vulgare L. Jian 4) have been investigated. Nine days of exposure to 200 mmol L‐1 NaCl resulted in a significant increase in the electrolyte leakage and Na+/K+ ratio in the roots, sheaths, and leaves of barley. The index ofunsaturated fatty acids (IUFA) in plasma membrane (PM) and tonoplast (TP) vesicles, and the levels of galactolipid in TP increased (p<0.01). The contents of phospholipids in PM decreased (p<0.05). In contrast to salt treatment, supplement of Ca2+(17.5 mmol L‐1) obviously increased the phospholipids content, and significantly decreased the levels of galactolipids and IUFA in PM and TP vesicles. The results showed that the alleviating effect of Ca2+ on NaCl induced injury in barley seedlings may be related to the changes of membrane lipid composition including phospholipids, galactolipids, and their fatty acids.  相似文献   

16.
Some poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) cultivars are susceptible to bract calcium (Ca) deficiency in developing bracts. In this study, we evaluated the efficacy of foliar uptake of Ca from milk-based products plus calcium chloride (CaCl2) as a potential Ca source. Weekly foliar applications of 237 mL L?1 whole milk, 80 mL L?1 powdered milk, 30 mL L?1 condensed milk, 0.94 g L?1 CaCl2, or distilled water (used as a control) were applied to runoff of ‘Prestige Red’ for four weeks. The four largest bracts with petioles on three different inflorescences and three leaves with petioles below the transitional leaf per inflorescence were collected per pot. None of the treatments affected bract or leaf Ca concentration. Powdered milk treatments resulted in a higher concentration of zinc (Zn) in bracts and aluminum (Al) in bracts and leaves. White residue remained on the bracts and leaves after treatment with powdered milk, which would reduce marketability.  相似文献   

17.
ABSTRACT

The present work was aimed at determining the limits of tolerance to sodium chloride (NaCl) of a halophyte, Beta macrocarpa Guss (wild Swiss chard). Five week-old plants were cultivated with a nutritive solution to which was added 0, 100, 200, and 300 mM NaCl. Plants were harvested after four weeks of treatment. The growth (fresh and dry weight, leaf surface area, and leaf number), water contents, and the mineral composition (meq · g?1 DW) of roots and leaves (reduced nitrogen (N), K+, Ca2 +, Na+, Cl?) were determined on individual plants. Results show that Beta macrocarpa can tolerate up to 200 mM NaCl. A significant decrease in biomass production (to 50% of control) was observed only for 300 mM NaCl. In the latter treatment, leaf mean surface area was 25% of control. The shoot-to-root ratio was not changed. Leaf hydration was not modified by salt treatment. This ability of the plant to maintain the hydric equilibrium of its leaves seemed associated with an efficient intracellular compartmentalization of Na+ and Cl? ions. Salt treatment had little effect on N content (80% of control), but decreased significantly K+ and Ca2 + contents. These three essential elements could be limiting for growth of leaves and roots of plants challenged by NaCl.  相似文献   

18.
In 2006–2007 small radish was cultivated in a pot experiment. Foliar applications were applied twice with solutions of the following compounds: 1) control (water); 2) urea; 3) urea+molybdenum (Mo), 4) urea+Mo+benzyladenine (BA); 5) urea+Mo+BA+sucrose; 6) urea+Mo+BA+sucrose+salicylic acid (SA), 7) BA; 8) SA; and 9) sucrose. The above solutions contained following concentrations of compounds: urea 20 g dm?3, sucrose 10 g dm?3, Mo 1 mg dm?3, BA 5 mg dm?3 and SA 10 mg dm?3. In comparison with the control, spraying plants with the solution of urea+Mo+BA+sucrose and SA only caused an increase in leaf mass of one plant. Foliar applications did not have any effect on the yield of edible roots. When compared with the control, the use of sucrose resulted in a decreased content of nitrate (V) in leaves, while the application of urea+Mo+BA+sucrose led to elevated content of nitrate (V) in roots. In case of spraying plants with solutions containing urea (combinations no. 2–6) there was a tendency to increase ammonium (NH4 +) and nitrogen (N)-total content in leaves and roots, and increase in N uptake by leaves and by the whole plant but not by the radish roots. In combinations 7–9 we noted a decline in the level of ascorbic acid, and in combinations 2–6 there was a decrease in the content of soluble sugars in roots. In comparison with the control, an increase was observed in combinations 2 and 3, while in combinations 7–9 a decrease in the content of free amino acids in roots was observed. None of the combinations with foliar application caused any significant changes in the content of assimilative pigments in radish leaves and concentration of nitrate (III), dry matter in leaves and roots, the content of phenolic compounds, content of potassium (K), magnesium (Mg), calcium (Ca) extracted with 2% acetic acid in roots as well as free radical activity of radish roots.  相似文献   

19.
ABSTRACT

Orchard efficiency (OE) is one of the indices of evaluating the sustainability in production behavior of citrus orchards. A wide range of soil properties broadly categorized into particle size distribution, water soluble and exchangeable cations, and soil available nutrients were investigated in relation to efficiency of Nagpur mandarin (Citrus reticulata Blanco) orchards established on smectite rich three soil orders (Entisols, Inceptisols, and Vertisols) representing 18 locations of central India. The soil properties, viz., free calcium carbonate (CaCO3), clay content, water soluble- and exchangeable-calcium (Ca2 +), available nitrogen (N), phosphorus (P), and zinc (Zn) contributed significantly towards variation in OE. The threshold limit of these limiting soil properties was further established using multivariate quadratic regression models as: 132.1 g kg? 1 free CaCO3, 418.1 g kg? 1 clay, 149.9 mg L? 1 water soluble Ca2 +, 25.9 cmol(p+) kg? 1 exchangeable Ca2 +, 114.6 mg kg? 1 available N, 12.8 mg kg? 1 available P, and 0.96 mg kg? 1 available Zn in relation to optimum OE of 82.1%. These reference values were very close to those obtained from best fit models, and could be effectively utilized in addressing soil related production constraints for precision-aided citriculture.  相似文献   

20.
ABSTRACT

One month old rice calli were exposed to 0, 50, and 100 mol m?3 sodium chloride (NaCl) in the liquid LS basal medium supplemented with 2.5 mg L?1 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.5 mg L?1 kinetin. Callus relative growth rate (RGR; fresh) of both cultivars indicated a progressive decrease; however, callus dry weight increased as the NaCl level increased in the culture medium. Salinity stress increased the callus sodium (Na+), manganese (Mn2+), and magnesium (Mg2+) contents while potassium (K+), calcium (Ca2+), and iron (Fe2+) contents decreased. ‘Basmati-385’ showed less reduction in callus RGR, K+, and Ca2+ contents and a larger increase in callus dry weight, Na+, Mn2+, and Mg2+ contents as compared to ‘Basmati-Karnal’. However, the reverse was true for Fe2+ contents. K+/Na+ and Ca2+/Na+ ratios generally decreased under salt stress. Overall, reduction in callus relative growth rate was found to be inversely correlated with decrease in K+, Ca2+, and Fe2+ uptake and directly correlated with increased Na+ and Mg2+ concentration in callus tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号