首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 309 毫秒
1.
The ability to produce native plants well adapted to the saline conditions without the production of nutrient-rich runoff will be a boon to nurseries hoping to reduce their environmental contamination impact and water use while at the same time producing quality plants to be used in the restoration of saline lands. Sarcocornia fruticosa plants were grown for 8 weeks in plastic containers with a source of sphagnum peat moss and perlite (80:20 v/v) to evaluate the effect of two salinity levels (2.0 (low-salinity treatment) and 7.5 dS m?1 (high-salinity treatment)) on plant growth, nutrient concentration in leachate and water and nutrient uptake efficiency and their losses. Leachate was collected to determine the runoff volume and composition, which included nitrate-nitrogen (NO3N), phosphate-phosphorus (PO43–P) and potassium (K+) concentrations. Plant dry weight (DW) and nutrient content were determined in plants at the beginning and at the end of the experiment to establish the nutrient balance. Increasing salinity levels of irrigation water did not reduce either the plant DW or the water-use efficiency (WUE), but increased the volume of leachate per plant. The nutrient concentrations in leachates without significant differences between salt treatments exceeded the thresholds established by environmental guidelines, leading to a great risk of pollution. Based on nutrient balance, the irrigation with a higher salinity level reduced the plant nutrient uptake efficiency (10%, 18% and 12% for nitrogen (N), phosphorus (P) and potassium (K), respectively) and increased the nutrient losses (6% N, 7% P and 8% K), resulting in the recommendation to grow this species with the low salinity level based on the highest nutrient-use efficiency and the lowest levels of nutrient losses.  相似文献   

2.
In order to study the effect of plant growth promoting rhizobacteria (PGPR), Azolla compost and Azolla biochar on some soil quality indicators and rosemary growth, a greenhouse experiment was conducted in a completely randomized design with six replications. Treatments consisted of T1 (control), T2 (1% Azolla compost), T3 (1% Azolla biochar), T4 (PGPR (P. fluorescens), T5 (1% compost + PGPR) and T6 (1% biochar + PGPR). Rosemary growth parameters and nutrients concentration increased in all treatments compared to control. Treatments increased soil nutrient concentrations, soil microbial respiration (SMR) and microbial biomass C (MBC) but decreased soil metabolic quotient (qCO2) compared to control treatment. A significant enhancement in rosemary growth occurred due to the improved soil quality as a result of organic fertilizers application, particularly by co-application of P. fluorescens and compost or biochar of Azolla.  相似文献   

3.
水肥一体化技术对辣椒干物质积累及养分吸收规律的影响   总被引:3,自引:0,他引:3  
[目的]针对目前设施蔬菜生产中存在的水肥利用率低等问题,研究水肥一体化技术对日光温室辣椒干物质积累及养分吸收规律的影响,为甘肃省设施辣椒的可持续发展生产提供科学依据。[方法]通过田间试验,以常规沟灌冲施肥为对照(T1),研究水肥一体化技术处理(T2)对日光温室辣椒"陇椒3号"干物质积累及养分吸收规律的影响。[结果](1)水肥一体化技术能显著促进了辣椒植株干物质的积累,T2处理干物质积累总量比T1提高了9.21%,果实和根干物质积累分别提高了22.47%和7.29%;提前30d到达干物重第一个平衡期,推迟41d到达第2个平衡期。(2)T2处理N,P2O5,K2O吸收积累总量比T1增加了18.23%,30.73%和19.76%;T2处理果实中N所占比例比T1处理提高了9.73%;P2O5提高了13.70%;K2O提高了13.00%。(3)T2处理比T1氮磷钾利用率分别提高了51.0%;43.3%和71.2%;节水48.9%;增产22.1%;增收3.55万元/hm2。[结论]水肥一体化技术能提高辣椒的干物质和养分积累量,提高果实中的分配比例。  相似文献   

4.
The scarcity of water in the Mediterranean area has frequently led to the use of saline water to irrigate ornamental plants in nurseries. Aloe vera L. Burm, Kalanchoe blossfeldiana Poelln, and Gazania splendens Lem. plants were grown in a greenhouse from the University of Almeria in containers with a mixture of sphagnum peat moss and perlite in order to evaluate the effect of salinity levels on plant growth, water-use efficiency, and nutrient leaching. The experimental design consisted of three salinity treatments, four blocks, and four plants (one plant per container) per treatment-block giving a total of 12 plants per species plus border plants placed around the perimeter of the treatment plants to maintain uniform growing conditions for treatment plants. At the end of the experiment, plant dry weight and water-use efficiency were assessed for each salinity treatment. Leachate was collected weekly and analyzed for concentrations of nitrate-nitrogen, phosphate-phosphorus, potassium, calcium, and magnesium (NO3N, PO43–P, K+, Ca2+ and Mg2+). Increasing salinity levels of irrigation water reduced the plant dry weight in all species and affected the leachates volume and their nutrients concentrations. We suggest the use of low salinity levels in water to improve the growth and to reduce the environmental impacts of nutrient runoff.  相似文献   

5.
Crop productivity and nutrient use are mainly water restricted in semi-arid regions. This study was conducted to find out whether the onion seed crop productivity could be elevated through drip fertigation. The effects of irrigation and fertigation levels on yield, yield components, quality, and nutrient use of onion seed crop (Allium cepa L.) were investigated at Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra, western India on a sandy clay loam soil. Irrigation water applied at evapotranspiration (ETc) levels at 80% (I1), 90% (I2), and 100% (I3), whereas drip fertigation levels at 60%, 80%, 100%, and 120% of recommended dose [120:60:60 nitrogen, phosphorus, potassium (NPK) kg/ha] were investigated. Three-year experiment results showed no significant differences in number of seed per umbel, seed yield per umbel per plant, seed and straw yield per hectare from the comparison between 100% ETc and 90% ETc. In fertigation, 120% and 100% levels gave significantly higher values of yield components and seed yield than the 80% and 60% levels. The quality parameters decreased with decrease in ETc, but increased with increase in fertigation levels. Fertilizer-use efficiency (FUE) was highest in 60% fertigation and then declined with the increase in fertigation levels. Irrigation at 100% ETc and fertigation at 120% resulted in higher nutrient use, but the difference with 90% ETc and 100% fertigation was non-significant. The 90% ETc and 100% fertigation dose (120:60:60 NPK kg/ha) appears a useful practice to increase onion seed productivity under the semi-arid climate of western India.  相似文献   

6.
Abstract

A field experiment was conducted at Research Farm of ICAR-Directorate of Groundnut Research, Junagadh for consecutive three summer seasons of 2013, 2014, and 2015 with the objectives of identifying optimum plant density and nutrient doses under check basin irrigation and drip fertigation for higher productivity and net returns. The treatments were; three plant densities viz., 3,33,333 plants/ha (100% of recommended plant density; P1); 4,16,666 plants/ha (125% of recommended plant density; P2), and 4,99,999 plants/ha (150% of recommended plant density;P3) in main plots, and three nutrient doses viz., 18.75–37.5–22.5 NPK kg ha?1 (75% of recommended nutrient dose; F1), 25-50-30 NPK kg ha?1 (100% of recommended nutrient dose; F2), and 31.25–62.5–37.5 NPK kg ha?1 (125% of recommended nutrient dose; F3) in sub-plots, and replicated thrice. The same sets of treatments were tested under both check basin irrigation and drip fertigation. The data were analyzed using split plot design. Pod yield, haulm yield, and net returns were significantly higher with P3 as compared to P1 under check basin irrigation but only haulm yield was found significantly higher with P3 under drip fertigation. Under check basin irrigation, NH4–N, NO3–N, and available P and K in soil were found in the order P1?>?P2?>?P3 (p?<?0.05) while in case of drip fertigation, differences were significant only for available K which was significantly higher in P1 over both P2 and P3. Under check basin irrigation, F2 i.e., application of 100 percent of recommended nutrient doses, being at par with F3, significantly improved pod yield, haulm yield and net returns over that with F1 however, differences were not significant under drip fertigation. NH4–N, NO3–N and available P and K in soil under both the irrigation systems were in the order F3?>?F2?>?F1 (p?<?0.05).  相似文献   

7.
This trial was carried out to study the evolution of the nutrient parameters of the nutrient solution applied to tomato plants (Lycopersicum sculentum Mill. Forteza) cultivated in Mediterranean greenhouse conditions under different fertigation management models. The dynamic model is based on soil water content, which was measured by tensiometers, and on soil solutions obtained with suction cups (porous ceramic cup water samplers). The local traditional method consists of following technical recommendations, and the classical model requires the estimation of Crop Factor (Kc) and knowing the nutrient extraction. Nutrient solution and water applied are functions of the fertigation management criteria. The water used for fertigation was classified as C4-S3 according to the Riverside classification system. The cultivation period lasted from 15 August to 20 April. The nutrient parameters studied in nutrient and soil solution were pH, electrical conductivity (EC), nitrate (NO3 ?), phosphate (H2PO4 ?), potassium (K+), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), and chloride (Cl?). The pH shows similar trends under the different treatments. Electrical conductivity is in the range of 2.8–4.5 dS m?1. Chloride, sodium, magnesium, and sulfate are exclusively modified by the salt concentration in the irrigation water, so it can be assumed that the three treatments vary equally. Nitrate, potassium, phosphate, and calcium are modified depending on each fertigation management method. Soil solution is modified by the nutrient solution applied. Dynamic management allows low nutrient concentration in the nutrient solution to be maintained and keeps soil nutrient concentration low, reducing fertilizer losses and therefore aquifer contamination.  相似文献   

8.
ABSTRACT

In the scheduling of nutrient supply programs, analysis of plant nutrient status has been found to be useful to prevent the deficiency or toxic effects of nutrients in any horticultural crop. So the present study was framed to assess the foliage nutrient content and vegetative growth under different irrigation and fertigation combination modules. Recently apple (Malus ×domestica) orchards in the state Himachal Pradesh of India have converted from the traditional royal delicious orchard at 6 × 6 m spacing with rainfed/basin irrigation to early spur varieties on dwarfing rootstock with drip irrigation, both with or without fertigation. An experimental field trial was started at the end of 2018 in a ‘Super Chief’/MM106 orchard at an experimental farm of the department of Soil Science & Water Management, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan (HP). A factorial experiment with 16 treatment combinations of 4 irrigation levels viz. I1 – drip irrigation at 100% ETc, I2 – drip irrigation at 80% ETc, I3 – drip irrigation at 60% ETc, I4 – conventional irrigation, and four fertigation levels viz. F0 – No fertilizer application (absolute control), F1 – 100% of AD (NPK), F2 – 75% of AD (NPK) and F3 – 50% of AD (NPK) were replicated thrice with 3 plants in each replication. Vegetative growth parameters and leaf nutrient contents were affected by both fertilization and water rate. Irrigation and nutrient levels and their interactions exhibited significant effect on leaf N (3.10%), P (0.28%), K (1.77%), and S (0.44%) contents. Significantly maximum contents were observed in the irrigation level I1 (DI at 100% ETc). Among fertigation level, F1 [100% AD (NPK)] recorded highest contents of leaf N (3.17%), P (0.29%), K (1.80%), S (0.46%). Interaction I1F1 registered maximum leaf N (3.36%), P (0.36%), K (1.92%) and S (0.63%).

With an increase in the water volume and an increasing dose of NPK, vegetative growth parameters, i.e., tree height, plant spread, tree volume, trunk girth, and annual extension growth were noted to increase proportionately. Treatment DI at 100% ETc (I1), increased the tree height by 9.41, plant spread (EW by 32.0, NS by 16.3), tree volume by 61.36, trunk girth by 8.05, and annual extension growth by 14.22% over conventional irrigation (I4). Drip fertigated trees with F1 [100% AD (NPK)] reported the highest growth parameters. The results of two years apple trial suggested a positive effect of fertigation on enhanced effectiveness of fertilization and improved foliage nutrient content and vegetative growth.  相似文献   

9.
Ion control of nutrient solutions to control nitrogen (N), phosphorus (P), and potassium (K) was developed for Superior (medium-to-early maturing) and Atlantic (mid-late) potato cultivars grown in closed hydroponic systems in which solutions were replenished and recirculated. Results were compared with conventional nutrient solution management strategies. In the “solution replacement” treatment, nutrient solutions were completely replaced each week. In the “electrical conductivity (EC) control” treatment, water use by potato plants was compensated by adding ground water to achieve the original volume (water replenishment) and the diluted EC of the solution was adjusted to the target levels using stock solution. In “ion control” treatment, ammonium dihydrogen phosphate (NH4H2PO4) and potassium nitrate (KNO3) were added to the EC-controlled nutrient solution. The amounts increased with plant age in both cultivars. The concentrations of nitrate (NO3), P, and K in the ion control nutrient solution could be maintained at target levels. In water replenishment, recycling of nutrient solution resulted in a progressive decrease in EC and an increase in pH. Root activity increased by 93% and 59% in the Superior and Atlantic cultivars, respectively, compared with the nutrient solution replacement. These changes decreased photosynthesis, plant growth, water use, and thus tuber growth in the Superior cultivar. Decreased growth of shoots and tubers occurred without affecting photosynthesis in the Atlantic cultivar. Although there were no significant differences in root activity, photosynthesis, or plant growth between the ion control treatment and the EC control treatment, increased tuber growth was observed in the ion control treatment, possibly as a result of the constant supply of nutrients. High tuber growth and the capability to maintain solution nutrient concentration in the ion control treatment are highly desirable for closed hydroponic systems.  相似文献   

10.
The improvement of water and nutrient efficiency leads to a production model that is more sustainable with less water, fewer fertilizer inputs, and less environmental damages. High-technology fertigation equipment permits high precision in the nutrient solution application. Besides, the field measurement of soil water content by tensiometers and the extraction of soil solutions by suction cups allow a dynamic methodology management in agreement with real crop requirements. This trial was carried out to compare this dynamic fertigation management method (using tensiometers and suction cups) for tomato crops (Lycopersicum sculentum Mill. Forteza) under Mediterranean greenhouse conditions with other methods: the local traditional model, based only on technical consulting, and the classical model, by means of estimation of Kc and nutrient extractions references. The parameters studied were tomato yield, water, and fertilizer amounts applied during the cultivation as well as water- and fertilizer-use efficiency. The water used to prepare the nutrient solution was classified as C4-S3 following the Riverside classification system. Plants were grown from 15 August to 20 April. The results show that the supply of fertilizers during the cultivation has been significantly lower with classical and dynamic models. Dynamic method shows greater efficiencies for all the elements, except for potassium, and also decreases the water consumption, not affecting total yield.  相似文献   

11.
Rosmarinus officinalis L. (rosemary), is a medicinal and aromatic species used in the cosmetics and food processing industries. The present study aimed to evaluate the biomass production, content, yield and chemical composition of the essential oil of rosemary in cultivation out of soil with different concentrations of nutrient solution in both harvests. The cultivation of rosemary was conducted in a protected system off the ground, with concentrations of nutrient solutions of 1, 2, 3, 4 and 5 dS.m?1 for fertigation with collections of leaves 100 and 160 days after planting. Nutrient solution concentration influences phytomass production and the content and yield of essential oil of rosemary, though not its chemical composition. The collection time does not interfere in the content of essential oil; however, does interfere in the chemical composition; the production of phytomass and the yield of oil per plant are higher in collections at 160 days after planting.  相似文献   

12.
ABSTRACT

Preliminary norms for foliar tissue were developed for laurustine (Viburnum tinus L.), tobir (Pittosporum tobira Thumb.) and strawberry tree (Arbutus unedo L.) for its use in the diagnosis and recommendation integrated system (DRIS). These norms were generated from high quality plants grown in hydroponic cultures. The values were those of foliar tissues from two growing assays where the total (N) and (NO3 ?/NH4 +) ratio were optimized. These norms were applied to perform DRIS in plants grown in a mix of white peat and vermiculite (75:25 v:v). Nutrient reference levels obtained from hydroponic cultures were appropriate to be used as DRIS norms for these species, because DRIS indexes reflected the nutritive status of these species grown in a fertigated system. These results suggest the need to broaden the range of reference values to include the fertigation reference levels. DRIS detects the nutrient limitations as a consequence of the nutrient imbalance caused by the pH and nutrient concentration in the substrate solution. Therefore, DRIS is an adequate method of diagnosis and can be used to adjust the nutrient solution composition and to improve the nutritional status for these species.  相似文献   

13.
Abstract

This trial was carried out to establish an appropriate nutrient solution for Aglaonema commutatum and to investigate the nutritional effects generated by modifications in the solution. Six treatments were tested: control (T0; pH 6.5, E.C. 1.5 dS m?1, 6 mmol L?1 NO3 ?‐N, and 6 mmol L?1 K+); high nitrogen (N) level (T1; 9 mmol L?1 6:3 NO3 ?–NH4 +); N form (T2; 6 mmol L?1 N‐NH4 +); high K+ level (T3; 12 mmol L?1 K+); high electrical conductivity (T4; E.C. 4 dS m?1, 25 mmol L?1 NaCl), and basic pH (T5; pH 8). At the end of the cultivation, leaf, shoot, and root dry weights and elemental concentrations were determined. Nutrient contents and total plant uptake were calculated from the dry weights and nutrient concentrations. Plant K+ uptake increased with application of K+ or basic nutrient solution. The uptake and transport of calcium (Ca) were enhanced by the use of NO3 ?‐N and inhibited by the presence of other cations in the medium (NH4 +, K+, Na+) and by basic pH. Magnesium (Mg) uptake increased with NO3 ?‐N application and with pH. Sodium (Na) uptake was the highest in the saline treatment (T4), followed by the basic pH treatment. Sodium accumulation was detected in the roots (natrophobic plant), where the plant generated a physiological barrier to avoid damage. Dry weight did not differ significantly (p<0.05) among treatments except in the NaCl treatment. These results may help in the formulation of nutrient solutions that take into account the ionic composition of irrigation water and the physiological requirements of plants.  相似文献   

14.
北方夏玉米滴灌施肥一体化技术应用效果   总被引:4,自引:0,他引:4  
为有效提高夏玉米水肥利用效率,通过田间试验对滴灌施肥一体化高效调控与利用技术进行系统的探究。结果表明,与常规漫灌(T1)相比,采用滴灌施肥一体化技术(T2和T3)可显著提高夏玉米大喇叭口期至灌浆期的叶面积指数;显著促进吐丝期至成熟期的干物质积累;在产量构成因素方面显著增加穗粗和穗粒数,并在一定程度上降低玉米穗的秃顶长度,进而显著提高夏玉米的产量。与T1相比,T2和T3增产5.32%~6.13%;水分利用效率提高36.10%~39.42%;氮、磷、钾肥利用率分别提高37.56%~35.29%、23.09%~30.30%、106.21%~121.51%。此外,采用滴灌施肥一体化技术可显著提高夏玉米生产经济效益。与T1相比,T2和T3可有效降低投产比,收益率平均提高4.71个百分点。在化肥用量较常规灌溉模式减少20%条件下,采用滴灌施肥一体化技术既能显著提高夏玉米产量,又能提高经济效益,是适宜在潮土区推广的一种高效节本增收的灌溉模式。  相似文献   

15.
There is lack of information available concerning the effect of humic substances (HS) applied via fertigation on plant growth in sandy soils. Therefore, a field experiment was carried out at El‐Saff district (20 km southwest of Cairo), Egypt, to investigate the role of HS fertigation on water retention of a sandy soil, yield and quality of broccoli (Broccoli oleracea L.) as well as on soil nutrient concentration retained after harvest. The experiment consisted of six fertigation treatments (50%, 75%, and 100% of the recommended NPK‐fertilizer rate for broccoli combined with and without HS application at 120 L ha–1) in a complete randomized block design with three replicates. Humic substances affected spatial water distribution and improved water retention in the root zone. Furthermore, application of HS increased total marketable yield and head diameter of broccoli as well as quality parameters (i.e., total soluble solids, protein, and vitamin C). Higher nutrient concentrations were found in the broccoli heads and concentrations of plant‐available nutrients in soil after harvesting were also higher, indicating an improvement in soil fertility. In conclusion, HS fertigation can be judged as an interesting option to improve soil water and nutrient status leading to better plant growth.  相似文献   

16.
The response of three-month-old rooted cuttings of the olive cultivars ‘Picual’ and ‘Koroneiki’ grown in black plastic bags containing perlite as a substrate to excess manganese (Mn) (640 μM) was studied. The rooted cuttings were irrigated with 50% modified Hoagland nutrient solution. At the end of the experimental period, which lasted 130 days, the total fresh and dry weights, as well as the shoot elongation of ‘Picual’ plants were significantly reduced under excess Mn (640 μM), compared to the control plants (2 μM), whereas the growth of ‘Koroneiki’ plants was similar in both Mn treatments. The tolerance index, which is derived from the ratios between the plant growth data of different treatments and the control one, of ‘Picual’ plants to excess Mn was about half of this of ‘Koroneiki’ plants. In both cultivars, the concentrations of Mn in various plant parts (root, basal stem, top stem, basal leaves, top leaves) were significantly increased as Mn concentration in the nutrient solution increased. Furthermore, in the 640 μM Mn treatment, 2 to 2.5-fold greater Mn concentrations were recorded in almost all plant parts of ‘Koroneiki’, than those of ‘Picual’. Similar results were recorded with regard to the total Mn content per plant (‘Koroneiki’ absorbed much more Mn from the nutrient solution than ‘Picual’). On the other hand, excess Mn negatively affected the absorption of iron (Fe), calcium (Ca), magnesium (Mg), phosphorus (P), zinc (Zn), and boron (B), depending on the olive cultivar. In both cultivars, while the Mn use efficiency was significantly decreased under excess Mn conditions, the nutrient use efficiencies of P, Ca, and Fe were significantly increased, compared to the control plants (2 μM Mn). It was also found that excess Mn resulted in a significant increase of stomatal conductance and transpiration rate of both cultivars, whereas the photosynthetic rate was significantly increased only in ‘Koroneiki’. In ‘Picual’, similar photosynthetic rates were recorded in both Mn treatments. The measurement of the various chlorophyll fluorescence parameters, Fv/Fm and Fv/F0 ratios, revealed that the functional integrity of photosystem II (PSII) of photosynthesis was not affected due to excess Mn, irrespectively of the cultivar. In conclusion, although ‘Koroneiki’ tissues had much higher Mn concentrations than those of ‘Picual’, the parameters related to the growth and photosynthetic performance of plants indicates that the internal tolerance of ‘Koroneiki’ tissues to excess Mn was higher than this of ‘Picual’.  相似文献   

17.
水肥一体化技术对不同生态区果园苹果生产的影响   总被引:11,自引:0,他引:11  
为探究水肥一体化技术对陕西省不同生态区苹果生产的影响,分别选取渭北旱塬区和关中平原区典型‘红富士’苹果园,研究了相同肥料用量的NPK传统施肥[NPK(C)]、NPK水肥[NPK(F)]和肥料用量减半的NPK水肥[1/2NPK(F)]对苹果产量、品质、肥料利用效率、果实养分吸收和果园经济效益的影响。结果表明,因不同生态区环境条件和果园自身土壤和肥力等存在差异,水肥一体化技术对苹果生产的影响也不同。渭北旱塬区果园,与NPK(C)相比,NPK(F)处理苹果增产13.0%,果实硬度增加10.6%,糖酸比提高19.1%,化肥偏生产力(PFP)由18.2 kg·kg?1提高至36.3 kg·kg?1,果实N、P和K养分吸收量分别增加36.0%、75.3%和44.8%;1/2NPK(F)处理对苹果生产的影响基本不显著。关中平原区果园,与NPK(C)相比,1/2NPK(F)使苹果增产26.2%,糖酸比提高16.9%,PFP从27.2 kg·kg?1提高至68.7 kg·kg?1,果实N、P和K养分吸收量分别增加41.8%、98.9%和58.9%;然而,NPK(F)处理苹果仅增产14.1%,果实养分吸收无显著增加,品质亦无明显改善。经济收益方面,在相同肥料用量下,采用水肥一体化技术可使渭北旱塬区和关中平原区果园分别增收1.55万元·hm?2和3.65万元·hm?2;当肥料用量减半时,收益增加分别为0.21万元·hm?2和7.28万元·hm?2。总体而言,在陕西渭北旱塬区和关中平原区果园采用水肥一体化技术均能显著提高苹果产量和改善品质,但其效果存在明显差异,实践中需因地制宜,根据果园实际情况,采用适宜的水肥用量以求达到高产、高效和优质的目标。  相似文献   

18.
肥水管理新技术—肥灌   总被引:3,自引:0,他引:3  
肥灌(Fertigation)就是通过灌溉系统为植物提供营养物质的过程。Fertigation以微灌系统为基础,典型的微灌系统由水源、首部枢纽、输配水管网、灌水器以及流量、压力控制部件和量测仪表等组成。Fertigation所用的肥料应全是水溶性的化合物或液体肥料。Fertigation能够减少水分和养分损失,降低总需水量,提高养分利用率。  相似文献   

19.
In constructed wetlands (CWs) with horizontal sub-surface flow, nutrient removal, especially phosphorus, is limited because the root biomass fills the pore spaces of the substrate (usually gravel), directing wastewater flow to deeper wetland media; plants are not regularly harvested; the litter formed by decomposing vegetation remains on the surface of the substrate and thus does not interact with the wastewater; and the substrate media often used provide only limited adsorption. Effective nutrient removal including rootzone oxidation, adsorption and plant uptake therefore requires sufficient interaction of wastewater with the treatment media. We assessed the feasibility of biological nutrient removal from wastewater using substrate-free CWs with horizontal flow, planted with two tropical macrophytes namely, Cyperus papyrus and Miscanthidium violaceum. The objectives were to evaluate the system treatment efficiency under semi-natural conditions, and to assess microbial and plant biomass contributions to nutrient removal in the CWs. Results showed high removal efficiencies for biochemical oxygen demand, ammonium-nitrogen (NH4–N) and phosphorus (P) fractions in papyrus-based CWs (68.6–86.5%) compared to Miscanthidium (46.7–61.1%) and unplanted controls (31.6–54.3%). Ammonium oxidizing bacteria in CW root–mats (108–109 cells/gram dry weight) and residual nitrite and nitrate concentrations in the water phase indicated active system nitrification. Papyrus showed higher biomass production and nutrient uptake, contributing 28.5% and 11.2%, respectively, of the total N and P removed by the system compared to 15% N and 9.3% P removed by Miscanthidium plants. Compared to literature values, nitrification, plant uptake and the overall system treatment efficiency were high, indicating a high potential of this system for biological nutrient removal from wastewaters in the tropics.  相似文献   

20.
水肥调控技术及其功能性肥料研究进展   总被引:3,自引:1,他引:2  
综述水肥调控的有关技术,以及以高吸水性树脂 (super absorbent polymer,SAP) 为保水、缓/控释材料制备保水型缓/控释肥料的研究进展,为今后此类肥料的开发、应用提供依据。水分和养分是限制我国旱地农业可持续发展的主要因子,以肥调水,以水促肥,充分发挥水肥的协同效应是提高水肥利用率的关键。目前,水肥调控 (耦合) 技术的实施主要通过农艺措施和施肥灌溉技术来完成。近年来,随着SAP性能的不断改善和使用的普及,人们对SAP在吸水保水的同时,对土壤肥料养分的保持和缓释作用开始给予了重视,以SAP为保水、缓释材料的保水型缓/控释肥料的研究成为水肥调控研究的热点。SAP与一般聚合物不同之处是它具有高度亲水性,聚合物的骨架是一个适度交联的网状结构,进入树脂分子内的养分离子或分子可以以各种结合形式被暂时固定而延缓了养分的释放。土壤中可溶性盐对SAP吸水性能有重要影响,但尿素分子影响甚小。保水型缓/控释肥料可通过养分负载、复混或包膜等工艺制备。保水型缓/控释肥料是水肥调控 (耦合) 技术、化学制剂保水节水技术和肥料缓/控释技术的综合运用和物化的载体,兼具吸水、保水和养分缓/控释功能,实现水肥在同一时空条件下的一体化调控,同时提高水分和肥料的利用效率,在农业、林业、环境修复、生态工程等领域具有广阔的应用前景。未来工作是进一步寻求合适的SAP制造原料和工艺,降低成本;应用分子设计,改善SAP的结构,提高生物降解性,控制盐分的不利影响,提高肥料的吸水、保水和对养分的缓释性能;加强养分释放机理和不同于普通缓/控释肥料评价方法的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号