首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this experiment was to investigate the growth and residual‐nitrogen (‐N) effects of different catch‐crop species on a low–N fertility coarse sandy soil. Six legumes (white clover [Trifolium repens L.], red clover [Trifolium pratense L.], Persian clover [Trifolium resupinatum L.], black medic [Medicago lupulina L.], kidney vetch [Anthyllis vulneraria L.], and lupin [Lupinus angustifolius L.]), four nonlegumes (ryegrass [Lolium perenne L.], chicory [Cichorium intybus L.], fodder radish [Raphanus sativus L.], and sorrel [Rumex Acetósa L.]), and one mixture (rye/hairy vetch [Secale cereale L./Vicia villosa L.]) were tested in a field experiment with three replicates in a randomized block design. Four reference treatments without catch crops and with N application (0, 40, 80, and 120 kg N ha–1) to a succeeding spring barley were included in the design. Due to their ability to fix N2, the legume catch crops had a significantly larger aboveground dry‐matter production and N content in the autumn than the nonlegumes. The autumn N uptake of the nonlegumes was 10–13 kg N ha–1 in shoots and approx. 9 kg ha–1 in the roots. The shoot N content of white clover, black medic, red clover, Persian clover, and kidney vetch was 55–67 kg ha–1, and the root N content in white clover and kidney vetch was approx. 25 kg ha–1. The legume catch crops, especially white and red clover, seemed to be valuable N sources for grain production on this soil type and their N fertilizer–replacement values in a following unfertilized spring barley corresponded to 120 and 103 kg N ha–1, respectively. The N fertilizer–replacement values exceeded the N content of shoots and roots.  相似文献   

2.
Abstract

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no‐till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The experimental design was a systematic split‐split plot with fallow, hairy vetch (Vicia villosa Roth), rye (Secale cereale L.), wheat (Triticum aestivum L.), rye+hairy vetch, and wheat+hairy vetch established as main plots and managed for conventional till and no‐till corn (split plots) to provide a range of soil N availability. The split‐split plot treatment was sidedressed with fertilizer N to give five N rates ranging from 0–300 kg N ha‐1 in 75 kg N ha‐1 increments. Soil and corn were sampled throughout the growing season in the 0 kg N ha‐1 check plots and corn grain yields were determined in all plots. Plant‐available N was greater following cover crops that contained hairy vetch, but tillage had no consistent affect on N availability. Corn grain yields were higher following hairy vetch with or without supplemental fertilizer N and averaged 11.6 Mg ha‐1 and 9.9 Mg ha‐1 following cover crops with and without hairy vetch, respectively. All cover crop by tillage treatment combinations responded to fertilizer N rate both years, but the presence of hairy vetch seldom reduced predicted fertilizer N need. Instead, hairy vetch in monoculture or biculture seemed to add to corn yield potential by an average of about 1.7 Mg ha‐1 (averaged over fertilizer N rates). Cover crop N contributions to corn varied considerably, likely due to cover crop N content and C:N ratio, residue management, climate, soil type, and the method used to assess and assign an N credit. The pre‐sidedress soil nitrate test (PSNT) accurately predicted fertilizer N responsive and N nonresponsive cover crop‐corn systems, but inorganic soil N concentrations within the PSNT critical inorganic soil N concentration range were not detected in this study.  相似文献   

3.
Nitrogen (N) release from roll-killed legume cover crops was determined for hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), and a hairy vetch + rye (Secale cereale L.) biculture in an organic corn production system in North Carolina, USA. Cover crops were planted at two locations in fall 2008 and 2009, roll-killed in May, and no-till planted with corn (Zea mays L.). Inorganic soil N and mineral N flux were determined using potassium chloride (KCl) extractions and ion-exchange resin (Plant Root Simulator, PRS) probes at 2-week intervals for 12 weeks and compared to fertilized controls of 0 and 168 kg N ha?1. In 2009, greater plant available N under hairy vetch than under either 0 N control or crimson clover was found, with peak soil N occurring between 4 and 6 weeks after roll kill. Available soil N under crimson clover mulches was less than or equal to 0 N, suggesting net immobilization.  相似文献   

4.
From 1993 to 2001, a maize-vegetable-wheat rotation was compared using either 1) composts, 2) manure, or 3) synthetic fertilizer for nitrogen nutrient input. From 1993 to 1998, red clover (Trifolium pratense L.) and crimson clover (Trifolium incarnatum L.) were used as an annual winter legume cover crop prior to maize production. From 1999 to 2001, hairy vetch (Vicia villosa Roth.) served as the legume green manure nitrogen (N) source for maize. In this rotation, wheat depended entirely on residual N that remained in the soil after maize and vegetable (pepper and potato) production. Vegetables received either compost, manure, or fertilizer N inputs. Raw dairy manure stimulated the highest overall maize yields of 7,395 kg/ha (approximately 140 bushels per acre). This exceeded the Berks County mean yield of about 107 bushels per acre from 1994 to 2001. When hairy vetch replaced clover as the winter green manure cover crop, maize yields rose in three of the four treatments (approximately 500-1,300 kg/ha, or 10-24 bu/a). Hairy vetch cover cropping also resulted in a 9-25 % increase in wheat yields in the compost treatments compared to clover cover cropping. Hairy vetch cover crops increased both maize and wheat grain protein contents about 16 to 20% compared to the clover cover crop. Compost was superior to conventional synthetic fertilizer and raw dairy manure in 1) building soil nutrient levels, 2) providing residual nutrient support to wheat production, and 3) reducing nutrient losses to ground and surface waters. After 9 years, soil carbon (C) and soil N remained unchanged or declined slightly in the synthetic fertilizer treatment, but increased with use of compost amendments by 16-27% for C and by 13-16% for N. However, with hairy vetch cover crops, N leaching increased 4 times when compared to clover cover crops. September was the highest month for nitrate leaching, combining high rainfall with a lack of active cash crop or cover crop growth to use residual N. Broiler litter leaf compost (BLLC) showed the lowest nitrate leaching of all the nutrient amendments tested (P= 0.05).  相似文献   

5.
A growth chamber experiment was initiated with two field moist, marginal and acidic (pH 5.1–5.2) soils of the Lily series (Typic Hapludults) in order to determine the need for improved legume‐rhizobia symbioses for forage species of current, or potential, use in the renovation of Appalachian hill‐land pastures. One soil was from an abandoned pasture having broomsedge (Andropogon virginicus L.) as the predominant vegetation, whereas the other was from a minimally‐managed pasture dominated by orchardgrass (Dactylis glomerata L.). Treatments included inoculation (or no inoculation) and the addition of aluminum, nil, or lime to provide a range of soil acidities. Both soils contained effective populations of naturalized rhizobia for white clover (Trifolium repens L.) and red clover (Trifolium pratense L.), but low and/or ineffective naturalized populations of rhizobia for alfalfa (Medicago sativa L.), birdsfoot trefoil (Lotus corniculatus L.), bigflower vetch (Vicia grandiflora Scop.), and flatpea (Lathyrus sylvestris L.). Seed inoculation, by lime‐pelleting, was highly beneficial in establishing effective symbioses for all these latter species. The addition of low levels of aluminum or lime (1.5 and 2.0 cmol/kg soil, respectively) had little effect on any of the symbioses, with the exception of those for alfalfa. Thus, an improved legume rhizobia symbiosis would not seem to be a prerequisite for renovating pastures established on chemically similar ultisols with the forage legume species examined in this study, especially if the pasture has at least some history of management.  相似文献   

6.
Abstract

Field studies were conducted to determine the influence of ammonia fertilization on cotton grown in conservation tillage systems. The studies were located on a Decatur silt loam (Rhodic Paleudult) in the Limestone Valley and a Norfolk sandy loam (Typic Paleudult) in the Coastal Plain of Alabama. Winter annual legumes, crimson clover (Trifolium incarnatum L. at the Norfolk site) and hairy vetch (Vicia villosa Roth at the Decatur site) were established as whole plots along with a winter fallow area. Sources of fertilizer differing widely in their NH4+‐N contents were used for split plot treatments applied at time of cotton (Gossypium hirsutum L.) planting. Fertilizer treatments included calcium nitrate, ammonium nitrate, urea, urea with dicyandiamide, and a no N check. The cotton was planted with a strip‐till conservation planter. Nitrogen production by winter legumes was adequate to meet N requirements for cotton on the Decatur silt loam (67 kg N/ha) but not at the Norfolk sandy loam site (101 kg N/ha). Cotton populations were 24% higher in fallow than legume whole plots. Differences in plant growth and N concentrations were highly variable and treatment trends were not found. Seed cotton yields were 4% higher in fallow than legume plots. Maximum populations and yields were achieved with ammonium nitrate in fallow area and urea in legume areas.  相似文献   

7.
Bermudagrass (Cynodon dactylon L.) is a warm season perennial that is well adapted in the southern Great Plains. It is one of the region's most important forage crops used for livestock production, and is commonly grown without legume interseeding. Recent research has investigated ways of improving the quality and quantity of this forage. The objectives of this study were to determine the effect of interseeded legumes and phosphorus (P) fertilizer on bermudagrass pasture forage yield and crude protein content. One experiment was initiated in 1993 in eastern Oklahoma in an established bermudagrass pasture. Red clover (Trifolium pratense L.), ladino clover (Trifolium repens L.), and two varieties of alfalfa (Medicago sativah), ’alfagraze’ and'common’, were interseeded by hand into an established stand of bermudagrass. The effect of P on forage yield and crude protein was evaluated using a 30‐kg P ha‐1 rate applied at establishment versus no applied P. Forage yield was collected three times throughout the growing season each year from 1994 through 1997. When both alfalfa varieties were interseeded into a bermudagrass pasture without applying additional P fertilizer, forage yields for the legume‐grass mixtures decreased below those obtained from the monoculture bermudagrass in the first year of the stand. The alfalfa variety ‘alfagraze’ interseeded into established bermudagrass decreased total forage yield over the entire 4‐yr study. Interseeded red clover and ladino clover increased crude protein of the forage compared with monoculture bermudagrass the first two years of the study, with red clover continuing to increase crude protein in the fourth year. However, when 30 kg P ha‐1 was applied to the bermudagrass prior to establishment of the legumes, no change in yield or protein was observed for both alfalfa varieties’ interseeding treatments versus the unfertilized mixtures. Although forage yield may not be increased, interseeding legumes into established bermudagrass could provide an efficient way to improve pasture crude protein without the use of inorganic fertilizers. However, if alfalfa ('common’ or ‘alfagraze') is interseeded, additional P may need to be applied at legume establishment to prevent possible yield decreases.  相似文献   

8.
Maintaining and/or conserving organic carbon (C) and nitrogen (N) concentrations in the soil using management practices can improve its fertility and productivity and help to reduce global warming by sequestration of atmospheric CO2 and N2. We examined the influence of 6 years of tillage (no-till, NT; chisel plowing, CP; and moldboard plowing, MP), cover crop (hairy vetch (Vicia villosa Roth.) vs. winter weeds), and N fertilization (0, 90, and 180 kg N ha−1) on soil organic C and N concentrations in a Norfolk sandy loam (fine-loamy, siliceous, thermic, Typic Kandiudults) under tomato (Lycopersicon esculentum Mill.) and silage corn (Zea mays L.). In a second experiment, we compared the effects of 7 years of non-legume (rye (Secale cereale L.)) and legume (hairy vetch and crimson clover (Trifolium incarnatum L.)) cover crops and N fertilization (HN (90 kg N ha−1 for tomato and 80 kg N ha−1 for eggplant)) and FN (180 kg N ha−1 for tomato and 160 kg N ha−1 for eggplant)) on soil organic C and N in a Greenville fine sandy loam (fine-loamy, kaolinitic, thermic, Rhodic Kandiudults) under tomato and eggplant (Solanum melogena L.). Both experiments were conducted from 1994 to 2000 in Fort Valley, GA. Carbon concentration in cover crops ranged from 704 kg ha−1 in hairy vetch to 3704 kg ha−1 in rye in 1999 and N concentration ranged from 77 kg ha−1 in rye in 1996 to 299 kg ha−1 in crimson clover in 1997. With or without N fertilization, concentrations of soil organic C and N were greater in NT with hairy vetch than in MP with or without hairy vetch (23.5–24.9 vs. 19.9–21.4 Mg ha−1 and 1.92–2.05 vs. 1.58–1.76 Mg ha−1, respectively). Concentrations of organic C and N were also greater with rye, hairy vetch, crimson clover, and FN than with the control without a cover crop or N fertilization (17.5–18.4 vs. 16.5 Mg ha−1 and 1.33–1.43 vs. 1.31 Mg ha−1, respectively). From 1994 to 1999, concentrations of soil organic C and N decreased by 8–16% in NT and 15–25% in CP and MP. From 1994 to 2000, concentrations of organic C and N decreased by 1% with hairy vetch and crimson clover, 2–6% with HN and FN, and 6–18% with the control. With rye, organic C and N increased by 3–4%. Soil organic C and N concentrations can be conserved and/or maintained by reducing their loss through mineralization and erosion, and by sequestering atmospheric CO2 and N2 in the soil using NT with cover crops and N fertilization. These changes in soil management improved soil quality and productivity. Non-legume (rye) was better than legumes (hairy vetch and crimson clover) and N fertilization in increasing concentrations of soil organic C and N.  相似文献   

9.
《Journal of plant nutrition》2013,36(6):1335-1343
Abstract

Many alternative management systems have been evaluated for corn (Zea mays L.), soybeans (Glycine max L.), and wheat (Triticum aestivum L.) production, however, most have involved rotations from one year to the next. Legume interseeding systems which employ canopy reduction in corn have not been thoroughly evaluated. One such study was initiated in 1994 at the Panhandle Research Station near Goodwell, OK, on a Richfield clay loam soil, to evaluate five legume species interseeded into established corn: yellow sweet clover (Melilotus officinalis L.), subterranean clover (Trifolium subterraneum L.), alfalfa (Medicago sativa L.), arrowleaf clover (Trifolium vesiculosum L.), and crimson clover (Trifolium incarnatum L.). In addition, the effect of removing the corn canopy above the ear (canopy reduction) at physiological maturity was evaluated. Canopy reduction increased light interception beneath the corn thus enhancing legume growth in late summer, early fall, and early spring the following year prior to planting. Forage growth from legumes incorporated prior to planting were expected to lower the amount of inorganic nitrogen (N) fertilizer needed for corn production. Crimson clover appeared to be more shade tolerant than the other species, and interseeding this species resulted in the highest corn grain yields when no N was applied. In the last two years, interseeding crimson clover at physiological maturity, followed by canopy reduction resulted in a 1.32 Mg ha?1 increase in yield compared to conventionally grown corn with no N applied. In 1999, interseeded legumes (except subterranean clover) in conjunction with the application of 56 kg N ha?1 and crimson clover interseeded without the addition of fertilizer N (with and without canopy reduction) resulted in grain N uptake levels equal to the 112 kg N ha?1 treatment.  相似文献   

10.

Seed production of timothy ( Phleum pratense L.) in mixed crops with alsike ( Trifolium hybridum L.), white ( T. repens L.) or red ( T. pratense L.) clover was evaluated in an organic cash crop system. No fertilizer was applied except for household compost in the sowing year. While the first year crops of the alsike clover/timothy and red clover/timothy leys were harvested for clover seed, the first year crop of the white clover/timothy ley and all second year crops were harvested for timothy seed. The botanical composition of the alsike clover/timothy crop averaged 89/11 in the first ley year, and 8/92 in the second year. The corresponding yields averaged 443 kg ha -1 clover seed and 849 kg ha -1 timothy seed, respectively. Second year seed yields of timothy from mixtures with red and white clover were, in turn, 7% higher and 44% lower than from the corresponding mixture with alsike clover. First year seed yields of alsike clover from the alsike clover/timothy combination, and first year yields of timothy from the timothy/white clover combination were mostly rejected because of insufficient purity. In contrast, first year seed yields of red clover from the red clover/ timothy combination, and second year yields of timothy from all combinations, never failed to met the international requirement of maximum 1% contamination of one particular species in certified seed.  相似文献   

11.
Winter legumes can serve dual purposes in no-tillage cropping systems. They can provide a no-tillage mulch, and supply a considerable quantity of N for thesummer crops. Cotton (Gossypium hirsutum L.) was no-tillage planted into crimson clover (Trifolium incarnatum L.), common vetch (Vicia sativa L.), and fallowed soil for two years to determine the effects of winter legume mulches on growth, yield, and N fertilizer requirements. The legumes were allowed to mature and reseed prior to planting cotton. The winter legumes produced no measurable changes in soil organic matter, N, or bulk density, but water infiltration was more rapid in the legume plots than in the fallowed soil. In the fallow system, 34 kg ha?1 N fertilizer was required for near maximum yields. In the clover plots, yields without N fertilizer were higher than when N (34 and 68 kg ha?1) was applied. In the vetch plots, cotton yields were highest without N fertilizer the first year, but yields were increased with 34 kg ha?1 N the second year because of a poor vetch seed crop and a subsequently poor legume stand. In the clover plots, a 20–30% cotton seedling mortality occurred in one year, but this stand reduction apparently did not affect cotton yields. Winter legume mulches can provide the N needs for no-tillage cotton without causing an excessive and detrimental quantity of N in sandy soils naturally low in soil N (0.04%). Unless the reseeding legume systems are maintained for at least 3 years, the legumes do not, however, provide an economical N source for cotton when N fertilizer requirementsare low (34 kg ha?1 in this study). A possible disadvantage of the system for reseeding legumes is that cotton planting is delayed 4–6 weeks beyond the normal planting date, which can reduce yields in some years.  相似文献   

12.
This experiment was conducted on a clay loam Cambisol and set out to determine the effects of combining catch crops, variable fertilisation levels, and straw management on the productivity of a spring barley-catch crop agrosystem, on the enrichment of soil with organic matter and nitrogen (N), and on soil mineral N control. Research was carried out in a spring barley (Hordeum vulgare L.) crop without catch crops, with undersown red clover (Trifolium pratense L.), and with post-crop white mustard (Sinapis alba L.). The barley was unfertilised, fertilised at moderate rates or at high rates. Straw was managed by either removing it from the field or chopping and spreading it. The quantity of organic matter and N incorporated into the soil depended on the fertilisation level of the barley crop. Soil mineral N stocks in the spring were reduced when straw was used together with red clover. When white mustard mass was incorporated alone in the autumn during ploughing, soil mineral N was reduced in the spring; however, when it was incorporated with straw, the effect was the opposite. Soil mineral N content is controllable when organic matter components are combined according to their decomposition rates, masses, and incorporation times.  相似文献   

13.
Leguminous pre-crops are an important source of green manure in organic crop rotations for improving soil fertility and achieving high yields of cereals. We aimed to study the potential of various leguminous species, other than the traditionally cultivated red clover (Trifolium pratense L.), as green manure pre-crops for subsequent cereals. The use of different legume species enables to exploit advantages of specific legumes in organic cereal production. In order to test the legumes as pre-crops for cereals, we carried out trials located in the temperate climate zone of northeast Europe (58°44′59.41″ N, 26°24′54.02″ E). We sowed the following perennial legumes as pre-crops: red clover, alsike clover (Trifolium hybridum L.) and Washington lupine (Lupinus polyphyllus Lindl.), biennial white sweet clover (Melilotus albus Medik.) and annual Alexandria clover (Trifolium alexandrinum L.), and crimson clover (Trifolium incarnatum L.). Timothy (Phleum pratense L.) was used as a control. The leguminous pre-crops were followed by three spring cereals (barley, oat and spring wheat) and two winter cereals (rye and winter wheat). We tested the first-year after-effect (all cereals) and second-year after-effect (only barley and oat) of pre-crops on the grain yield of cereals. Perennial and biennial legume species produced the highest dry matter yield and contained the highest amount of nutrients, especially nitrogen, compared to annual species. All subsequent cereals produced significant extra yields after each leguminous pre-crop in the following two years, although the effect was smaller in the second year. The most suitable pre-crops for spring cereals were red and alsike clover followed by lupine, whereas the best pre-crops for winter cereals were sweet clover and annual clovers. Our results show the potential of various leguminous pre-crop species as valuable sources of green manure in organic crop rotation.  相似文献   

14.
Kura clover (Trifolium ambiguum M. Bieb.) is a rhizomatous perennial legume that is native to Caucasia, is extremely persistent in North America, but its performance has not been adequately evaluated in Europe. The objective of this research was to compare forage yield and nutritive value of Kura clover to lucerne (Medicago sativa L.), red clover (Trifolium pretense L.) and white clover (Trifolium repens L.) at two locations in Poland. All clover stands thinned markedly by spring of the second production year because of infection by Sclerotinia crown and stem rot, but lucerne stands remained dense and this legume produced the highest total yield over 3 or 4 production years. Kura clover yields of 7.2–8.3?Mg?ha?1 were second to lucerne by the third production year but long-term performance was diminished by stand thinning. Kura clover and white clover had lower fiber concentrations and greater protein concentrations and forage digestibility than red clover and lucerne. Kura clover can be a source of high-quality forage in Europe, but cannot be recommended for use in areas with known Sclerotinia trifoliorum presence until resistance to this pathogen is developed.  相似文献   

15.
Abstract

Tillage, cropping system, and cover crops have seasonal and long‐term effects on the nitrogen (N) cycle and total soil organic carbon (C), which in turn affects soil quality. This study evaluated the effects of crop, cover crop, and tillage practices on inorganic N levels and total soil N, the timing of inorganic N release from hairy vetch and soybean, and the capacity for C sequestration. Cropping systems included continuous corn (Zea mays L.) and stalk residue, continuous corn and hairy vetch (Vicia villosa Roth), continuous soybeans (Glycine max L.) plus residue, and two corn/soybean rotations in corn alternate years with hairy vetch and ammonium nitrate (0, 85, and 170 kg N ha?1). Subplot treatments were moldboard plow and no tillage. Legumes coupled with no tillage reduced the N fertilizer requirement of corn, increased plant‐available N, and augmented total soil C and N stores.  相似文献   

16.
为充分利用苏南冬闲稻田发展适宜绿肥作物种植,在大田试验条件下,研究了毛叶苕子(Vicia villosa Roth)、 光叶苕子(Vicia villosa var.)、 紫云英(Astragalus sinicus L.)和肥田萝卜(Raphanus sativus L.)4种绿肥作物的生长、 营养特性,比较分析了绿肥作物翻压前不同处理间耕层土壤无机氮含量与构成的差异。结果表明,在绿肥作物翻压期,4种绿肥作物均达到较高生物量和养分累积量,鲜重、 干重分别为24.8 30.7 t/hm2和3.6 4.2 t/hm2,不同绿肥作物间无显著差异。 4种绿肥作物的吸氮量为69.8 136.4 kg/hm2,毛叶苕子最高,肥田萝卜最低。吸磷量为7.1~11.3 kg/hm2,肥田萝卜最高,紫云英最低。吸钾量为117.6~151.3 kg/hm2,毛叶苕子最高,光叶苕子最低。与对照冬闲相比,种植绿肥作物不同程度地降低了耕层土壤无机氮含量(平均降低38.9 kg/hm2),其中硝态氮含量下降明显,铵态氮含量均较对照土壤有增加趋势(平均提高6.5 kg/hm2),毛叶苕子和光叶苕子处理铵态氮含量增加显著。4种绿肥作物均适合苏南冬闲稻田种植,能潜在降低无机氮的损失风险和为后季水稻作物生长提供养分。  相似文献   

17.
Abstract

Field studies were conducted for four to seven years on two soils, Tangi silt loam (Typic Fragiudalf, fine‐silty, mixed, thermic) and Dexter loam (Ultic Hapludalf, fine‐silty, mixed, thermic), to determine the effects of phosphorus (P) applications on growth and nitrogen (N) content of white clover (Trifolium repens L.) and subterranean clover (Trifolium subterranum L.) and on ammonium (NH4 +)‐ and nitrate (NO3 )‐N, total N, and organic carbon (C) levels in the soils at the end of the study. Phosphorus applications consistently and significantly increased forage yields and led to significantly higher N yields by the clovers. Increases in plant yields and N2‐fixation, however, were not reflected in higher soil N and C levels. On Tangi soil, NH4 +‐ and NO3 ‐N levels were lowest where no P was applied but no statistically significant differences (P < 0.05) were found among P rates above 20 kg/ha. On the Dexter soils, no significant differences were found at any P application level. Significant differences due to higher clover yields at increasing P rates were not found in total N or organic C . levels in either soil. Greenhouse evaluations showed no differences in bermuda‐grass yield, N concentration, or total N recovery despite increasing subclover yields in the field during the previous seven years. Harvesting nearly all above ground clover growth caused plant roots to be the major N and C contributor to the soil. It is possible that root production was not increased in proportion to forage production as P applications increased. Perhaps increased microbial activities and some leaching losses also minimized accumulations of N and C released by clover roots.  相似文献   

18.
A major constraint to the renovation of forage legume‐based pastures on acidic soils of the Appalachian hill‐lands is thought to be the absence of effective rhizobia. A growth chamber experiment was done with aluminum (Al) toxic, low pH (≥ 4.2) soils from four series (Berks, Lily, Tate, and Westmoreland) that were planted with alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.), white clover (Trifolium repens L.), or birdsfoot trefoil (Lotus corniculatus L.). These soils, without lime addition, were previously shown not to contain effective, naturalized populations of rhizobia for these plant species. However, a non‐toxic, pH 6.8, Watauga soil was shown to have such rhizobia but only for alfalfa. In the present study, these five soils were reexamined after liming to pH 5.5 for effective, naturalized populations of rhizobia and the efficacy of soil inoculation with commercially available rhizobia. In addition to effective, naturalized R. meliloti for alfalfa in the Watauga soil, similar populations of R. trifolii for red clover, and R. lotus for birdsfoot trefoil, were now found. Such rhizobia were also found for alfalfa in the Lily soil and for red clover in the Lily and Tate soil. Thus, liming allowed the expression of effectiveness of natural rhizobia that otherwise would not have been detected in soil pot experiments without lime. Inoculation of the toxic soils after lime addition with commercial rhizobia was effective in about half of the soil‐plant combinations that did not contain populations of effective, naturalized rhizobia. Asymbiotic shoot growth of all the plant species was significantly (P ≤ 0.05) correlated with soil pH over a range of 5.5–6.6. These results indicate that, in the absence of effective, naturalized populations of rhizobia, improvement of rhizobial inocula could increase forage production by ~34% for some species on some of the toxic soils, even after the pH of the soils is increased to ≥ 5.5.  相似文献   

19.
Abstract

A greenhouse study using lignite overburden surface soil from a lignite mine in northwest Louisiana was conducted to determine the yield response and nodulation of inoculated and non‐inoculated white clover (Trifolium repens L.) to P (0, 40, and 80 kg/ha) and Mo (0, 90, and 180 g/ha) fertilization. Results manifested a highly significant response of inoculated white clover to a single application of P and Mo. Application of P at the rate of 40 and 80 kg/ha increased the dry matter yield (DMY) of white clover by 164% and 154%, while Mo fertilization at the rate of 90 and 180 g/ha increased the dry matter yield (DMY) by 21% and 37%, respectively, over the control. The yield of white clover was also significantly affected by Rhizobium inoculation. Yield was increased from 2.1 to 2.5 Mg/ha which is equivalent to a 19% yield improvement over the non‐inoculated plants.

Nodule formation (NF), likewise, was significantly favored by P and Mo fertilization. Results also revealed that Rhizobium inoculation had remarkably improved the nodule count of white clover. Nodule count was increased from 0.4 to 5.5 or 1375% improvement between the inoculated and non‐inoculated plants. The non‐inoculated white clover also responded significantly to P fertilization, but not to Mo addition. Nodule formation, however, was not observed from the non‐inoculated white clover except at the highest rate of P and Mo additions. Increasing P supply significantly increased the concentrations of P, S, Na, and Ca but decreased the concentration of K in the clover. Mo additions resulted in increased concentrations of P and Ca. No significant P‐Mo interaction effects were observed on the nutrient concentration of white clover.  相似文献   

20.
Abstract

Field and greenhouse studies were conducted to identify starter fertilizers which would enhance cotton seedling survival, growth, and yield in legume residues. Field studies were initiated in the fall of 1982 on a Norfolk sandy loam (Typic Paleudult) in the Upper Coastal Plain of Alabama. Winter annual legumes, crimson clover (Trifolium incarnatum L.) and hairy vetch (Vicia villosa Roth) were established as whole plots along with a winter fallow area. Split plot treatments consisted of O, N, P, K, NP, NK, and NPK starter fertilizers. The cotton (Gossypium hirsutum L.) was planted with a conservation tillage planting unit with in‐row subsoilers. The starter fertilizers were applied deep (8 to 10 inches) in the subsoil track. Greenhouse studies were also conducted with soil from whole plot areas top dressed with corresponding legume tissue at a rate of .9 g tissue/500 g soil. Seedlings in the greenhouse were rated for disease and emergence, and dry weights were recorded.

Cotton populations in field studies were lower in legume mulched than fallow soils in 1984. Application of starter fertilizers generally increased harvest populations, particularly the NK combination. In 1983, cotton growth was greater in vetch than other soils, but responses to starter fertilizers varied with analyses and years. Seed cotton yields were consistently high with P starter, although P did not always improve cotton stands and growth. When averaged across years and cover crops, yields were 3151, 3031, 2865, 2790, 2753, 2741, 2512, and 2364 for P, NP, P, NP, K, NPK, N and O, starter treatments respectively.

Greenhouse studies indicated that starter fertilizer improved cotton emergence in legume soils, but decreased emergence in fallow soils. Disease ratings of emerged seedlings were more severe when starter fertilizer was used than when it was not used. Thus, starter fertilizer increased emergence and survival, despite high disease ratings. Cotton seedling growth generally increased when poor emergence reduced cotton seedling competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号