首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Winter legumes can serve dual purposes in no-tillage cropping systems. They can provide a no-tillage mulch, and supply a considerable quantity of N for thesummer crops. Cotton (Gossypium hirsutum L.) was no-tillage planted into crimson clover (Trifolium incarnatum L.), common vetch (Vicia sativa L.), and fallowed soil for two years to determine the effects of winter legume mulches on growth, yield, and N fertilizer requirements. The legumes were allowed to mature and reseed prior to planting cotton. The winter legumes produced no measurable changes in soil organic matter, N, or bulk density, but water infiltration was more rapid in the legume plots than in the fallowed soil. In the fallow system, 34 kg ha?1 N fertilizer was required for near maximum yields. In the clover plots, yields without N fertilizer were higher than when N (34 and 68 kg ha?1) was applied. In the vetch plots, cotton yields were highest without N fertilizer the first year, but yields were increased with 34 kg ha?1 N the second year because of a poor vetch seed crop and a subsequently poor legume stand. In the clover plots, a 20–30% cotton seedling mortality occurred in one year, but this stand reduction apparently did not affect cotton yields. Winter legume mulches can provide the N needs for no-tillage cotton without causing an excessive and detrimental quantity of N in sandy soils naturally low in soil N (0.04%). Unless the reseeding legume systems are maintained for at least 3 years, the legumes do not, however, provide an economical N source for cotton when N fertilizer requirementsare low (34 kg ha?1 in this study). A possible disadvantage of the system for reseeding legumes is that cotton planting is delayed 4–6 weeks beyond the normal planting date, which can reduce yields in some years.  相似文献   

2.
Abstract

Field experiments were carried out on three representative soils, to evaluate the effect of various starter fertilizers, together with different rates of band placed phosphorus (P), on nutrient uptake and yield of spring barley (Hordeum vulgare L.) and spring wheat (Triticum aestivum L.). The starter fertilizers were placed in the immediate vicinity of the seed, while the band placed P was placed at about 5 cm below the seeds and spaced at 25 cm between alternate seed rows. As starter fertilizer, monoammonium phosphate (MAP), calcium nitrate (CAN), ammonium nitrate (AN) and triple superphosphate (P20) were compared. In both species, effects of starter fertilizer on P uptake were most marked early in the growing season. At GS 13 application of 20 kg P ha?1 as MAP increased the P uptake by 50% in barley and by 35% in wheat, compared to no seed-placed nutrients. For grain, the increase in P content was 8% for both species. The higher P uptake at GS 13 was supported by observations of higher plant vigour in the treatments with either P20 or MAP as starter fertilizer. The use of N only as starter fertilizer did not increase the vigour of the plants. Band placement of P also gave more vigorous plants in spring barley. The grain yield increased on the silty clay loam and on the silt soil when starter fertilizer was applied, especially with the use of MAP. Smaller and non-significant yield differences were found when starter fertilizer was used on the loam soil. No delay or reduction of emergence was observed with starter fertilizer. Therefore, on soils where root growth or nutrient uptake becomes limited during the first weeks after sowing, application of starter fertilizer is recommended in Norway for both spring barley and spring wheat. Crops grown on silty soils seem to have an especially high demand for easily available P given as starter fertilizer.  相似文献   

3.
Abstract

Field studies were conducted to determine the influence of ammonia fertilization on cotton grown in conservation tillage systems. The studies were located on a Decatur silt loam (Rhodic Paleudult) in the Limestone Valley and a Norfolk sandy loam (Typic Paleudult) in the Coastal Plain of Alabama. Winter annual legumes, crimson clover (Trifolium incarnatum L. at the Norfolk site) and hairy vetch (Vicia villosa Roth at the Decatur site) were established as whole plots along with a winter fallow area. Sources of fertilizer differing widely in their NH4+‐N contents were used for split plot treatments applied at time of cotton (Gossypium hirsutum L.) planting. Fertilizer treatments included calcium nitrate, ammonium nitrate, urea, urea with dicyandiamide, and a no N check. The cotton was planted with a strip‐till conservation planter. Nitrogen production by winter legumes was adequate to meet N requirements for cotton on the Decatur silt loam (67 kg N/ha) but not at the Norfolk sandy loam site (101 kg N/ha). Cotton populations were 24% higher in fallow than legume whole plots. Differences in plant growth and N concentrations were highly variable and treatment trends were not found. Seed cotton yields were 4% higher in fallow than legume plots. Maximum populations and yields were achieved with ammonium nitrate in fallow area and urea in legume areas.  相似文献   

4.
氮磷钾肥对紫云英产量及养分积累的影响   总被引:8,自引:2,他引:6  
通过田间试验,研究了NPK肥对紫云英生长、产量及养分积累的影响.结果表明,NPK配施能促进紫云英生长,显著提高产量和养分积累量.NPK处理(施N 75 kg/hm2 、P2O5 60 kg/hm2和K2O 60 kg/hm2)的紫云英茎数、株高和每茎复叶数分别是不施肥处理的3.77、1.81和1.60倍,是施PK处理的2.19、1.23和1.16倍,是施NK处理的2.11、1.16和1.11倍,是施NP处理的1.44、1.19和1.16倍.NPK配施的鲜草产量分别比不施肥、PK配施、NK配施及NP配施处理增加26.47、14.22、7.18和10.74 t/hm2.不同施肥处理都能使紫云英的养分积累量显著提高,其中NPK配施处理的紫云英地上部N、P2O5、K2O和C的积累量最大,分别是不施肥处理的3.66、3.27、2.85和2.80倍.试验结果说明,合理施用N、P、K肥能明显促进紫云英的生长,提高产量和养分积累量,有利于提高紫云英种植效益.  相似文献   

5.
Many producers are using foliar fertilizers on seedling cotton (Gossypium hirsutum L.) with the intent of promoting early vigor and increasing yields. However, the hypothesis that foliar feeding young cotton increases seedling vigor and yield has not been rigorously tested. We conducted 5 studies during 1990 to 1992 to investigate the value of one, two or three foliar applications of 12–48–8 fertilizer to seedling cotton. Two studies also included foliar‐applied urea. Plant height and whole‐plant phosphorous (P) and nitrogen (N) were determined two weeks after each application in two studies. Yield and P and N concentrations were not influenced by foliar fertilizers in any study. Seedling height was not influenced by applications of 12–48–8. A slight early‐season height advantage was observed with foliar‐applied urea at one location. Our results suggest that application of foliar N and P fertilizers to seedling cotton has little agronomic value.  相似文献   

6.
Various factors such as soil moisture at planting, application rate, and composition of the fertilizer materials have contributed to the erratic results from use of starter and “pop-up” fertilizers. Earlier research with ammonium polyphosphate (11–37–0) has shown some beneficial effects on growth and lint yield of cotton (Gossypium hirsutum L.) when the starter was placed in the seed furrow or surface banded at time of planting. The purpose of this research was to determine the effect of starter fertilizer composition and application rates on cotton seedling emergence and early shoot/root growth at low and medium soil moisture regimes at planting. Treatments consisted of a control (0–0–0), 7–21–0, 5–15–0, and 3–9–0 liquid blends applied directly in the seed row at 3, 6, and 9 acre?1 to an Orelia sandy clay loam. The three blends contained 2.4%, 1.4%, and 1.0% by weight organic extract, respectively, and used ammonium orthophosphate as sole source of P. Standard-grade ammonium polyphosphate (11–37–0) was used for comparison at rates of 3 and 6 gal acre?1. The randomized complete block (RCB) experiment was conducted in the greenhouse for 35 days after planting (DAP). All pop-up fertilizers had a definite effect on cotton seedling emergence and early growth. Ammonium polyphosphate caused a marked delay in emergence even at 3 gal acre?1 during the first five days. Pop-up mix 3–9–0, at 6 and 9 gal acre?1, showed significantly less damage than other blends as well as the 11–37–0. At 11 DAP and adequate soil moisture, no difference among blends was observed but blended pop-up fertilizers had significantly greater (P < 0.05) emergence than 11–37–0, which produced only 30% emergence at 6 gal acre?1. Chlorophyll readings were only slightly greater for pop-up blends containing organic acids. Seedlings grown under less soil moisture showed a gradual decrease in plant height as pop-up rates increased whereas no effect was measured at adequate soil moisture. Fertilizer blends failed to increase final dry-matter yields of seedlings at 35 DAP when compared to the control whereas 11–37–0 decreased growth at certain rates. Where adverse effects from pop-up fertilizer treatments occurred, they were magnified by less soil moisture. Further research under field conditions is needed.  相似文献   

7.
The long-term effects of plant legume [horse gram (Macrotyloma uniflorum)] biomass incorporations were assessed in terms of carbon dioxide (CO2) emissions, soil quality parameters, and climatically influenced soil parameters in a dryland Alfisol under varying soil fertility conditions. Six selected treatments consisted of off-season legume incorporation (I) and no incorporation?/?fallow (F), each under three varying nitrogen and phosphorus fertilizer levels (viz., N0P0, N25P30, and N50P30). Soil moisture, soil temperature, soil surface carbon dioxide emission, soil dehydrogenases, and microbial biomass carbon (MBC) were monitored at three different crop situations [viz., Kharif period (KP), legume/fallow period (LP), and no crop period (NP)] at 14 different periods of the year. Incorporation practices resulted in greater rates of CO2 emission over fallow conditions during the Kharif and legume periods, whereas the emission rate was greater in fallow soils during the end of the legume and no crop periods. The increased rates of fertilizer doses also significantly increased the soil CO2 flux during the majority of the measurements. Beneficial effects of incorporation practices were observed in terms of high soil moisture (5–11%), low soil temperature (3–7%), and high content of MBC over without incorporations. Correlation studies indicated that the soil property MBC was found to be the greatest significant variable with CO2 emission in all the fertilizer treatments under biomass-incorporated soils. These results indicated the undesirable (in terms of CO2 fluxes) and desirable (soil biological and other parameters) effects of legume biomass incorporation and fertilizer application and their significance in improving soil quality and greenhouse gas (GHG) emissions in dryland Alfisols of semi-arid tropics.  相似文献   

8.
不同施肥措施对洞庭湖区旱地肥力及作物产量的影响   总被引:5,自引:0,他引:5  
应用长期定位试验方法,研究了洞庭湖区非粮食作物棉花-油菜轮作下,农民习惯施肥(TF)、配方施肥(NPK)及有机肥和化肥不同配比模式[有机肥来源氮占配方肥总氮量的50%(50%OM)、30%(30%OM)和10%(10%OM)]的作物产量和土壤养分的变化,以期为相应作物种植制度下的合理施肥提供参考。研究结果表明:在本试验施肥量及有机无机肥配比下,有机肥和化肥配施显著提高了棉花和油菜的产量,且以50%OM处理产量最高,各处理产量的顺序为50%OM30%OM10%OMNPKTFCK(不施肥对照);当有机氮施用量占总氮量的50%时(50%OM处理),棉花和油菜产量分别比NPK处理高24.52%、29.57%,比习惯施肥(TF)处理分别高46.03%和49.07%。同时,施用有机肥各处理作物产量的年际变化均不到20%,明显小于NPK、TF和CK处理,即施用有机肥不仅能促进旱地作物高产,同时也能保证其稳产。有机肥与化肥配施能增加土壤有机质、全氮、碱解氮和速效钾含量,且以50%OM处理效果最好,与试验前比较的增加幅度分别达57.5%、38.2%、65.1%和48.1%;土壤有效磷含量有随施入磷素量的增加而增加趋势;而CK处理土壤有机质和养分含量则均呈逐年下降的趋势。各处理土壤有机质和养分含量(Y)随试验年限(X)的变化均可用方程式Y=a X+b来表示。在洞庭湖区肥力较高的旱地土壤中,合理的有机肥和化肥施用比例对保障非粮作物高产稳产和耕地地力提升尤为重要,且本试验条件下当有机肥来源氮占总施氮量的50%时能获得最佳效果。  相似文献   

9.
红壤双季稻田土壤活性碳、氮周年变化及影响因素   总被引:5,自引:1,他引:4  
【目的】 研究红壤稻田土壤活性碳、氮含量及其周年变化和影响因素,为弄清红壤双季稻田土壤活性碳、氮季节变化规律,提高土壤养分利用效率提供理论依据。 【方法】 以红壤稻田长期定位试验 (1990年开始) 为对象,选择不施肥 (CK)、单施NPK化肥 (NPK) 和有机物 (紫云英、稻草) + NPK化肥 (NPKM) 三个施肥处理,在早稻、晚稻、休闲期取0—20 cm 土样,动态监测稻田土壤几种重要活性碳、氮成分,包括无机态氮 (NH4+-N、NO3–-N),可溶性有机碳、氮 (DOC、DON) 和微生物生物量碳、氮 (MBC、MBN) 的周年动态变化。 【结果】 稻田土壤NH4+-N含量在早稻期间呈下降状态,晚稻期间变化较平缓,休闲期呈先上升后下降的趋势。土壤无机氮主要以NH4+-N形式存在,其含量范围为14.9~31.6 mg/kg,其休闲期含量略低于生育期 (P > 0.05);周年土壤NO 3–-N含量 (< 3 mg/kg) 远小于NH4+-N含量,与NH4+-N含量呈现此消彼长的趋势 (P < 0.01)。稻田土壤DOC、DON周年变化趋势相似 ( P < 0.01),在生育期呈下降状态,休闲期呈先上升后下降趋势,休闲期土壤DOC、DON含量略低于生育期 ( P > 0.05)。休闲期土壤MBC、MBN含量分别为463~701 mg/kg、31.1~52.4 mg/kg,比生育期分别提高25.4%~36.9%和62.8%~125.9%。总体来看,稻田休闲期土壤活性碳 (DOC+MBC)、氮 (NH 4+-N+NO3–-N+DON+MBN) 含量高于生育期含量,较生育期增幅分别为10.8%~19.6%、10.3%~34.8%。不同施肥处理结果表明,仅施用化肥 (NPK处理) 对活性碳、氮影响较小 (P > 0.05),有机物还田能显著提高水稻生育期和休闲期的土壤活性碳、氮含量 ( P < 0.05),NPKM与CK相比活性碳、氮在水稻生育期分别提高53.8%和81.2%,而在休闲期分别提高了43.5%和63.2%。相关性分析结果表明,稻田休闲期土壤NH 4+-N、DOC、DON含量不仅与土壤SOC、TN含量密切相关 (P < 0.05 或 P < 0.01),还受温度、水分含量等环境因子影响,如休闲期土壤NH 4+-N含量与5 cm处土壤温度呈极显著负相关关系 (P < 0.01),而土壤NO 3–-N含量与该土层温度呈显著正相关关系 (P < 0.05),土壤DOC和DON与土壤含水量呈显著正相关关系 ( P < 0.05)。 【结论】 长期化肥配施紫云英及秸秆还田能显著提高稻田土壤周年活性碳、氮含量,其活性含量与土壤有机碳、全氮含量呈显著正相关关系;休闲期稻田能维持较高的活性碳、氮含量,且比水稻生育期有一定程度增加。休闲期土壤无机氮含量变化主要受土壤温度影响,土壤可溶性碳、氮含量变化主要受土壤含水量的影响。   相似文献   

10.
It is widely believed that starter fertilizer applications and fungicide treatments, either separate or in combination, can lead to increased plant stands and yields in cool, wet growing seasons. Over a three year period, tests were conducted to evaluate the efficacy of these treatments on cotton (Gossypium hirsutum L.). Two methods of starter application and two fungicide treatments were evaluated over two planting dates. Seedling stand counts and lint yield were measured. Our results show that on a North Carolina coastal plain soil there were no interactions between the treatments. A placement of starter fertilizer 5 cm to the side and 5 cm below the seed showed to have more consistent results in increasing plant stand and yield over a banded application. Fungicide treatments were not effective in increasing plant stands and increased yield in only one year over the untreated check. Yield was positively influenced by earlier planting dates and stand was found to increase in one year with an earlier planting date. Our results suggest that starter fertilizer applications can increase yield and plant stand in good years, but there is no interaction between starter fertilizers, fungicide treatments, and planting date on well‐drained coastal plain soils.  相似文献   

11.
Imbalanced fertilizer use with intensive cropping has threatened the sustainability of agroecosystems, especially on acid soils. An understanding of the long-term effects of fertilizers and amendments on soil health is essential for sustaining high crop yields. The effects of application of fertilizers, and amendments for 46 years on soil properties and maize yield in an acid Alfisol were investigated in this study. Ten fertilizer treatments comprising different amounts of NPK fertilizers, farmyard manure (FYM) and lime, and one control, were replicated three times in a randomized block design. At 0–15 cm soil depth, bulk density was least (1.20 t/m3), porosity (49.8%) and water holding capacity (61.7%) were greatest in 100% NPK + FYM, corresponding to the largest organic carbon content (13.93 g/kg). Microbial biomass C and dehydrogenase activity in 100% NPK + FYM were 42% and 13.7% greater than 100% NPK, respectively. Available nutrients were significantly more with 100% NPK + FYM and 100% NPK + lime than control and other fertilizer treatments. At 15–30 cm depth, the effect of various treatments was comparable to the surface layer. Grain yield declined by 55% and 53% in 100% NPK(-S) and 100% NP, respectively, compared with 100% NPK, whereas 100% N as urea alone eventually led to crop failure. Soil porosity recorded the greatest positive correlation (r = .933**), whereas bulk density recorded a negative significant correlation (r = −.942**) with grain yield. The results suggest that integrated use of FYM/lime with chemical fertilizers is a sustainable practice in terms of crop yield and soil health, whereas continuous application of urea alone is detrimental to the soil health.  相似文献   

12.
稻草覆盖对坡地红壤培肥及作物增产的效果   总被引:8,自引:1,他引:7  
研究了坡地红壤连续5年采用稻草覆盖措施对土壤肥力和作物产量的影响。结果表明,“稻草+化肥氮磷”(“Straw+NP”)处理的土壤有机碳和全氮、磷分别比不施肥(CK)的提高42.9%和17.4%、44.2%,有机碳和全氮的增幅约是纯化肥(NPK)处理的2倍。与CK和NPK处理的相比,“Straw+NP”处理能明显提高微生物生物量碳、氮、磷和溶解性有机碳、氮以及Olsen-P含量,差异达到显著(P<0.05)或极显著(P<0.01)水平。在等养分施用量的条件下,“Straw+NP”处理能显著提高油菜和甘薯的产量。因此,稻草易地覆盖是一种有效培肥坡地红壤和增加作物产量的途径。  相似文献   

13.
添加生物炭对酸性红壤中玉米生长和氮素利用率的影响   总被引:3,自引:0,他引:3  
Biochar added to soil can improve crop growth through both direct and indirect effects, particularly in acidic, highly weathered soils in subtropical and tropical regions. However, the mechanisms of biochar improving crop growth are not well understood. The objectives of this study were i) to determine the crop responses to biochar addition and ii) to understand the effect of biochar addition on N use efficiency. Seven acidic red soils varying in texture, p H, and soil nutrient were taken from southern China and subjected to four treatments: zero biochar and fertilizer as a control(CK), 10 g kg-1biochar(BC), NPK fertilizers(NPK), and 10 g kg-1biochar plus NPK fertilizers(BC+NPK).15N-labeled fertilizer was used as a tracer to assess N use efficiency. After a 46-d pot experiment,biochar addition increased soil p H and available P, and decreased soil exchangable Al3+, but did not impact soil availabe N and cation exchange capacity(P 〉 0.05). The N use efficiency and N retained in the soil were not significantly affected by biochar application except for the soil with the lowest available P(3.81 mg kg-1) and highest exchanageable Al3+(4.54 cmol kg-1). Greater maize biomass was observed in all soils amended with biochar compared to soils without biochar(BC vs. CK, BC+NPK vs. NPK). This agronomic effect was negatively related to the concentration of soil exchangeable Al3+(P 〈 0.1). The results of this study implied that the liming effect of biochar improved plant growth through alleviating Al toxicity and P deficiency, especially in poor acidic red soils.  相似文献   

14.
Low organic matter, poor fertility and erosion are common features of rain‐fed Alfisols in southern India. Build‐up of organic matter is crucial to maintain sustainable production on these soils. The possibility of on‐farm generation of legume biomass [horsegram; Macrotyloma uniflorum (Lam.) Verdc.] by using off‐season rainfall was examined in two field experiments involving sorghum and sunflower from 1994 to 2003. The effects of this incorporation were assessed on crop yields and soil properties for 10 years together with fertilizer application. Horsegram biomass ranging from 3.03–4.28 t ha?1 year?1 (fresh weight) was produced and incorporated in situ under different levels of fertilizer application. Annual incorporation improved the soil properties and fertility status of the soil, which resulted in improved yields of test crops. With biomass incorporation, mean organic carbon content improved by 24% over fallow. Microbial biomass carbon improved by 28% at site I. Long‐term biomass incorporation and fertilizer application resulted in the build‐up of soil nutrients compared with the fallow plots. Application of N and P alone resulted in a negative balance of soil K. A time‐scale analysis of yields showed that incorporation together with fertilizer application maintained a stable yield trend over a 10‐year period in sorghum, whereas fertilizer application alone showed a declining trend. At the end of 10 years of incorporation, the increase in grain yield because of incorporation was 28 and 18%, respectively, in sorghum and sunflower over fallow when no fertilizers were applied to rainy season crops. The incorporation effect was even larger in plots receiving fertilizer. The growing and incorporation of a post‐rainy season legume crop is a low‐cost simple practice that even small and marginal farmers can adopt in semi‐arid regions of the country. Widespread adoption of this practice, at least in alternate years, can restore the productivity of degraded soils and improve crop yields.  相似文献   

15.
Crop response to fertilization and liming was investigated in field and pot trials on sandy loam Dystric Albeluvisols (pH 4.2–4.3). Treatments in the field trial were: 1, no fertilizer; 2, PK; 3, NK; 4, NP; 5, NPK; 6, lime; 7, lime+PK; 8, lime+NK; 9, lime+NP; 10, lime+NPK. In the pot trial, they were: 1, no fertilizer; 2, N; 3, P; 4, K; 5, NP; 6, NK; 7, PK; and 8, NPK applied to unlimed and limed soils. All treatments were in four replicates. Crops sensitive to soil acidity (winter wheat, fodder beet, spring barley and clover-timothy ley) and the less acid-sensitive winter rye, potatoes, oats and lupins and oats mixture were sown in the field trial. In the pot trial, the acid-sensitive spring barley and red clover, and the less acid-sensitive oats and lupin-oats served as the test crops. Combined application of fertilizers (NPK) increased yields of crops sensitive to soil acidity in plots receiving lime by 23%, and those of crops less sensitive to soil acidity by 18% in comparison to crops grown on unlimed soils. The results of pot experiments corroborated the field results. When N was applied alone, crop yields were always higher than those recorded for P or K treatments on both the unlimed and limed treatments. N application proved to be a prerequisite for high crop yields in the soils investigated. Thus, the efficiency of P and K fertilizers increased in the order NK<NP<NPK, with the effects being accentuated more in the limed than in the unlimed treatments. The results demonstrated the importance of multi-nutrient (NPK) fertilization in combination with liming for enhancement of high crop productivity in the unlimed soil investigated. N applied alone in combination with liming produced relatively good yields; hence, where resources are limited for the purchase of P and K fertilizers, applying N and lime can be a viable option in the short term.  相似文献   

16.
The use of green manures contributes to sustainable soil and nutrient management in agriculture; however, the responses of soil microbial communities to different fertilization regimes at the regional scale are uncertain. A study was undertaken across multiple sites and years in Hunan, Jiangxi, Anhui, Henan, Hubei, and Fujian provinces of South China to investigate the effects of green manuring on the structure and function of soil bacterial communities in rice-green manure cropping systems. The study included four treatments:winter fallow with no chemical fertilizer as a control (NF), milk vetch as green manure without chemical fertilizer (GM), winter fallow and chemical fertilizer (CF), and a combination of chemical fertilizer and milk vetch (GMCF). Significant differences were found in the responses of soil microbial communities at different sites, with sampling sites explaining 72.33% (F=36.59, P=0.001) of the community composition variation. The bacterial communities in the soils from Anhui, Henan, and Hubei were broadly similar, while those from Hunan were distinctly different from other locations. The analysis of Weighted UniFrac distances showed that milk vetch changed soil microbial communities compared with winter fallow. Proteobacteria and Chloroflexi predominated in these paddy soils; however, the application of green manures increased the relative abundance of Actinobacteria. There was evidence showing that the functional microbes which play important roles in the cycling of soil carbon, nitrogen (N), and sulfur (S) changed after several years of milk vetch utilization (linear discriminant analysis score > 2). The abundance of methane-oxidizing bacteria and S-reducing bacteria increased, and microbes involved in N fixation, nitrification, and denitrification also increased in some provinces. We concluded that the application of milk vetch changed the bacterial community structure and affected the functional groups related to nutrient transformation in soils at a regional scale.  相似文献   

17.
长期施氮、磷、钾化肥对玉米产量及土壤肥力的影响   总被引:53,自引:3,他引:53  
以1990年建立的国家褐潮土土壤肥力与肥料效益长期监测基地(北京昌平站)的长期肥料定位试验为研究平台,研究了不同施肥制度对玉米产量和土壤肥力的影响。结果表明,长期均衡地施NPK肥或NPK与有机肥配施,可以显著提高玉米产量和土壤有机质、全氮、全磷、速效氮、速效磷、速效钾等肥力指标,并能提高土壤微量元素的含量;而不均衡施肥(N、NK、NP、PK)导致相应的营养元素的耗竭。相关分析表明,在褐潮土上增施磷肥和有机肥对提高玉米产量具有重要的作用。  相似文献   

18.
Fertilization is required for optimum plant growth, particularly in unfertile soils, while optimizing nutrient use efficiency is an alternative to reduce inorganic fertilizer needs and reduce environmental problems caused by nutrient leaching. This study investigated soil properties and cowpea yield responses to biochars (BCs) made from different feedstocks, baby corn peel biochar (BC1), branches of mango tree biochar (BC2), and rice husk biochar (BC3), applied in combination with nitrogen-phosphorus-potassium (NPK) fertilizers. The experiment was conducted in a greenhouse, using an acid sandy soil (Arenosol) that was submitted for 70 d to the following eight treatments:i) control; ii) full dose of NPK (a commercial compound fertilizer (12-24-12 of N-P2O5-K2O) + urea (46% N)); iii) BC1 + half dose of NPK; iv) BC1 + full dose of NPK; v) BC2 + half dose of NPK; vi) BC2 + full dose of NPK; vii) BC3 + half dose of NPK; and viii) BC3 + full dose of NPK. All biochars were applied at a rate of 0.9% (weight/weight), and each type of biochar was combined with half and full doses of NPK fertilizers. Soil pH increased significantly (P < 0.05) in treatments with BC1 and BC2, while cation exchange capacity (CEC) and available P were higher in the treatments with BC1; BC1 and BC2 also induced higher activity of enzymes related to the P cycle and higher cowpea yield. Similar soil properties and cowpea yield parameters were obtained with the full and half doses of NPK fertilizers for each type of biochar used. In conclusion, biochars in the combination with NPK fertilizers improved soil chemistry and enzymatic activities, allowing reduced fertilizer application and food production costs in the acid soil studied.  相似文献   

19.
A long‐term fertilizer experiment, over 27 years, studied the effect of mineral fertilizers and organic manures on potassium (K) balances and K release properties in maize‐wheat‐cowpea (fodder) cropping system on a Typic Ustochrept. The treatments consisted of control, 100% nitrogen (100% N), 100% nitrogen and phosphorus (100% NP), 50% nitrogen, phosphorus, and potassium (50% NPK), 100% nitrogen, phosphorus, and potassium (100% NPK), 150% nitrogen, phosphorus, and potassium (150% NPK), and 100% NPK+farmyard manure (100% NPK+FYM). Nutrients N, P, and K in 100% NPK treatment were applied at N: 120 kg ha—1, P: 26 kg ha—1, and K: 33 kg ha—1 each to maize and wheat crops and N: 20 kg ha—1, P: 17 kg ha—1, and K: 17 kg ha—1 to cowpea (fodder). In all the fertilizer and manure treatments removal of K in the crop exceeded K additions and the total soil K balance was negative. The neutral 1 N ammonium acetate‐extractable K in the surface soil (0—15 cm) ranged from 0.19 to 0.39 cmol kg—1 in various treatments after 27 crop cycles. The highest and lowest values were obtained in 100% NPK+FYM and 100% NP treatments, respectively. Non‐exchangeable K was also depleted more in the treatments without K fertilization (control, 100% N, and 100% NP). Parabolic diffusion equation could describe the reaction rates in CaCl2 solutions. Release rate constants (b) of non‐exchangeable K for different depth of soil profile showed the variations among the treatments indicating that long‐term cropping with different rates of fertilizers and manures influenced the rate of K release from non‐exchangeable fraction of soil. The b values were lowest in 100% NP and highest in 100% NPK+FYM treatment in the surface soil. In the sub‐surface soil layers (15—30 and 30—45 cm) also the higher release rates were obtained in the treatments supplied with K than without K fertilization indicating that the sub‐soils were also stressed for K in these treatments.  相似文献   

20.
Abstract

Up to 50% of nitrogen (N) fertilizer can remain in soil after crop harvest in dryland farming. Understanding the fate of this residual fertilizer N in soil is important for evaluating its overall use efficiency and environmental effect. Nitrogen-15 (15N)-labeled urea (165 kg N ha?1) was applied to winter wheat (Triticum aestivum L.) growing in three different fertilized soils (no fertilizer, No-F; inorganic nitrogen, phosphorus and potassium fertilization, NPK; and manure plus inorganic NPK fertilization, MNPK) from a long-term trial (19 years) on the south of the Loess Plateau, China. The fate of residual fertilizer N in soils over summer fallow and the second winter wheat growing season was examined. The amount of the residual fertilizer N was highest in the No-F soil (116 kg ha?1), and next was NPK soil (60 kg ha?1), then the MNPK soil (43 kg ha?1) after the first winter wheat harvest. The residual fertilizer N in the No-F soil was mainly in mineral form (43% of the residual 15N), and for the NPK and MNPK soils, it was mainly in organic form. The loss rate of residual 15N in No-F soil over summer fallow was as high as 48%, and significantly (P < 0.05) higher than that in the NPK soil (22%) and MNPK soil (19%). The residual 15N use efficiency (RNUE) by the second winter wheat was 13% in the No-F soil, 6% in the NPK soil and 8% in the MNPK soil. These were equivalent to 9.0, 2.0 and 2.2% of applied 15N. The total 15N recovery (15N uptake by crops and residual in 0–100 cm soil layer) in the MNPK and NPK soils (84.5% and 86.6%, respectively) were both significantly higher than that in the No-F soil (59%) after two growing seasons. The 15N uptake by wheat in two growing seasons was higher in the MNPK soil than in NPK soil. Therefore, we conclude that a high proportion of the residual 15N was lost during the summer fallow under different land management in dryland farming, and that long-term combined application of manure with inorganic fertilizer could increase the fertilizer N uptake and decrease N loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号