首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In-season diagnosis of crop nitrogen(N) status is crucial for precision N management. Critical N(N_c) dilution curve and N nutrition index(NNI) have been proposed as effective methods to diagnose N status of different crops. The N_c dilution curves have been developed for indica rice in the tropical and temperate zones and japonica rice in the subtropical-temperate zone, but they have not been evaluated for short-season japonica rice in Northeast China. The objectives of this study were to evaluate the previously developed N_c dilution curves for rice in Northeast China and to develop a more suitable N_c dilution curve in this region. A total of17 N rate experiments were conducted in Sanjiang Plain, Heilongjiang Province in Northeast China from 2008 to 2013. The results indicated that none of the two previously developed N_c dilution curves was suitable to diagnose N status of the short-season japonica rice in Northeast China. A new N_c dilution curve was developed and can be described by the equation N_c = 27.7 W~(-0.34) if W ≥ 1 Mg dry matter(DM) ha~(-1) or N_c = 27.7 g kg~(-1) DM if W 1 Mg DM ha~(-1), where W is the aboveground biomass. This new curve was lower than the previous curves. It was validated using a separate dataset, and it could discriminate non-N-limiting and N-limiting nutritional conditions. Additional studies are needed to further evaluate it for diagnosing N status of different rice cultivars in Northeast China and develop efficient non-destructive methods to estimate NNI for practical applications.  相似文献   

2.
Abstract

Dairy farming regions are important contributors of nitrogen (N) to surface waters. We evaluated the N budget and relationships to riverine N exports within the Shibetsu River catchment (SRC) of a dairy farming area in eastern Hokkaido, Japan. Five drainage basins with variable land-cover proportions within the SRC were also evaluated individually. We quantified the net N input (NNI) to the catchment from the difference between the input (atmospheric deposition, chemical fertilizers, N fixation by crops and imported food and feed) and the output (exported food and feed, ΔS liv and ΔS hu, which are the differences between input and output in livestock and human biomass, respectively) using statistical and measured data. Volatilized ammonia (NH3) was assumed to be recycled within the catchment. The riverine export of N was quantified. Agricultural N was a dominant source of N to the SRC. Imported feed was the largest input (38.1?kg?N?ha?1?year?1), accounting for 44% of the total inputs, followed by chemical fertilizers (32.4?kg?N?ha?1?year?1) and N fixation by crops (13.4?kg?N?ha?1?year?1). The exported food and feed was 24.7?kg?N?ha?1?year?1 and the ΔS liv and ΔS hu values were 7.6 and 0.0?kg?N?ha?1?year?1, respectively. As a result, the NNI amounted to 54.6?kg?N?ha?1?year?1. The riverine export of total N from the five drainage basins correlated well with the NNI, accounting for 27% of the NNI. The fate of the missing NNI that was not measured as riverine export could possibly have been denitrified and/or retained within the SRC. A change in the estimate of the deposition rate of volatilized NH3 from 100 to 0% redeposited would have decreased the NNI by 37%, although we believe that most NH3 was likely to have been redeposited. The present study demonstrated that our focus should be on controlling agricultural N to reduce the impact of environmental pollution as well as on evaluating denitrification, N stocks in soil and the fate of NH3 volatilization in the SRC.  相似文献   

3.
The study was conducted at three sites during 2008 and 2009 in the North-East China Plain (NECP). Field experiments consisted of five or six nitrogen (N) fertilization rates (0–350 kg N ha?1). Shoot biomass and N concentration (Nc) of spring maize (Zea mays L.) were determined on six sampling dates during the growing season. Nitrogen application rate had a significant effect on aerial biomass accumulation and Nc. As expected, shoot Nc declined during the growing period. A critical N dilution curve (Nc = 36.5 W ?0.48) was determined in China, which was a little different from those reported for maize in France and Germany. Besides, the N nutrition index (NNI) calculated from this critical N dilution curve was significantly related to relative grain yield, which can be expressed by a linear with plateau model (R2 = 0.66; P < 0.001). NNI can be used as a reliable indicator of the level of N deficiency during the growing season of maize.  相似文献   

4.
Abstract

Field experiments were conducted to investigate nitrogen use efficiency and performance of maize (Zea mays L.) cultivars as influenced by calcium carbide (CaC2) and nitrogen (N) rates in a derived Savanna (2016 and 2017). Maize cultivars {SUWAN-I [open pollinated variety (OPV)] and OBA SUPER II (hybrid)}, rates of N (0, 60 and 90?kg ha?1) and CaC2 (0, 30 and 60?kg ha?1), were arranged in split-split plot respectively, fitted into a randomized complete block design in three replicates. N Partial factor productivity (PFPN), Agronomic Use Efficiency (both years) and Apparent recovery of N (2017) increased in the order 60?>?90?>?0?kg N ha?1, except N Internal use efficiency which was in the order 0?>?60?>?90?kg N ha?1 (2017). Grain yield increased with increasing rates of N in both years. OBA SUPER-II had significantly higher grain yield than SUWAN-I (2017). Similar pattern was observed on number of grains per cob, dry cob weight, PFPN and plant height (2017). Conversely in 2016, grain, total and shoot N uptakes were significantly higher in SUWAN-I than OBA SUPER-II. Increasing application of CaC2 increased grain N uptake and number of grains per cob. Number of leaves and stem girth increased in the order of 60?>?0?>?30?kg?CaC2 ha?1. Increased grain yield with N rates could be associated with NHI and N use efficiency. These evidences suggested that hybrid maize performed better than OPV in a derived Savanna.  相似文献   

5.
华北平原夏玉米临界氮稀释曲线的验证   总被引:7,自引:0,他引:7  
The concept of critical N concentration (Nc) has been widely used in agronomy as the basis for diagnosis of crop N status, and allows discrimination between field situations of sub-optimal and supra-optimal N supply. A critical N dilution curve of Nc= 34.0W-0.37, where W is the aboveground biomass (Mg DM ha-1) and Nc the critical N concentration in aboveground dry matter (g kg-1 DM), was developed for spring maize in Europe. Our objectives were to validate whether this European critical N dilution curve was appropriate for summer maize production in the North China Plain (NCP) and to develop a critical N dilution curve especially for summer maize production in this region. In total 231 data points from 16 experiments were used to test the European critical N dilution curve. These observations showed that the European critical N dilution curve was unsuitable for summer maize in the NCP, especially at the early growth stage. From the data obtained, a critical N dilution curve for summer maize in the NCP was described by the equation of Nc = 27.2W-0.27, when aboveground biomass was between 0.64 and 11.17 Mg DM ha-1. Based on this curve, more than 90% of the data for the N deficiency supply treatments had an N nutrition index (NNI) 〈 1 and 92% of the data for the N excess supply treatments had an NNI 〉 1.  相似文献   

6.
Abstract

Nitrous oxide (N2O) emissions were measured and nitrogen (N) budgets were estimated for 2?years in the fertilizer, manure, control and bare plots established in a reed canary grass (Phalaris arundinacea L.) grassland in Southern Hokkaido, Japan. In the manure plot, beef cattle manure with bark was applied at a rate of 43–44?Mg fresh matter (236–310?kg?N)?ha?1?year?1, and a supplement of chemical fertilizer was also added to equalize the application rate of mineral N to that in the fertilizer plots (164–184?kg?N?ha?1?year?1). Grass was harvested twice per year. The total mineral N supply was estimated as the sum of the N deposition, chemical fertilizer application and gross mineralization of manure (GMm), soil (GMs), and root-litter (GMl). GMm, GMs and GMl were estimated by dividing the carbon dioxide production derived from the decomposition of soil organic matter, root-litter and manure by each C?:?N ratio (11.1 for soil, 15.5 for root-litter and 23.5 for manure). The N uptake in aboveground biomass for each growing season was equivalent to or greater than the external mineral N supply, which is composed of N deposition, chemical fertilizer application and GMm. However, there was a positive correlation between the N uptake in aboveground biomass and the total mineral N supply. It was assumed that 58% of the total mineral N supply was taken up by the grass. The N supply rates from soil and root-litter were estimated to be 331–384?kg?N?ha?1?year?1 and 94–165?kg?N?ha?1?year?1, respectively. These results indicated that the GMs and GMl also were significant inputs in the grassland N budget. The cumulative N2O flux for each season showed a significant positive correlation with mineral N surplus, which was calculated as the difference between the total mineral N supply and N uptake in aboveground biomass. The emission factor of N2O to mineral N surplus was estimated to be 1.2%. Furthermore, multiple regression analysis suggested that the N2O emission factor increased with an increase in precipitation. Consequently, soil and root-litter as well as chemical fertilizer and manure were found to be major sources of mineral N supply in the grassland, and an optimum balance between mineral N supply and N uptake is required for reducing N2O emission.  相似文献   

7.
ABSTRACT

Plant density and nitrogen (N) input level have notable effects on root development, distribution in the soil profile, and in turn, N-uptake of winter wheat. Our study objectives were to identify whether a high yield can be maintained with a reduced N input by increasing plant density. Field studies were conducted during four successive seasons (2014–2015, 2015–2016, 2016–2017, and 2017–2018) using a widely planted cultivar, Tainong18. Two regimes of N fertilization (180 kg ha?1 and 240 kg ha?1) and three planting densities (135, 270, and 405 plants per m2) were used. Higher plant density led to increased root length density (RLD) and enhanced N uptake from the whole soil profile. The RLD in the soil profile at 0–1.2 m, 0–0.4 m, and 0.4–0.8 m decreased while in the 0.8–1.2 m layer it increased in response to reduced N input. The combined effects of higher plant density and lower N input resulted in reduced N uptake, a lower nitrogen nutrition index (NNI), unchanged grain yield, and improved N use efficiency. In conclusion, it is possible and sustainable to maintain a high wheat yield with reduced N input by increasing plant density.  相似文献   

8.
This paper deals with the problem of mineral N leaching from arable lands due to the fertilization method. The influence of different doses of compost (50 and 100?Mg ha?1) and N-mineral fertilizer (35-70-140 kg N ha?1) on leaching of Nmin in a lysimetric experiment with winter wheat. The area of our interest represents the main source of drinking water for the city of Brno and its neighborhoods. To demonstrate the effect of compost and mineral nitrogen addition, the lysimetric experiment was established there. Seven variants of the experiment with different fertilization schemes were studied during two vegetation seasons (2013 and 2014), each with three repetitions. The experiment was carried out in plastic experimental containers of 0.3 m diameter and 0.5 m height. Therefore, each lysimeter was the same size and was filled with 25 kg of subsoil and 25 kg of topsoil. The highest leaching of Nmin was detected in the variant C2 where 140 kg N ha?1 was applied, in both vegetation periods (5.97 kg Nmin ha?1 after the first vegetation period and 17.02 kg Nmin ha?1 after the second vegetation period). The positive effect of compost application (individually or in combination with the mineral N) on decrease in mineral N leaching was found during both vegetation period in comparison with variant C2. The highest doses of compost (100?Mg per ha) significantly decreased the concentration of mineral nitrogen in the soil eluate in both periods (3.03 kg Nmin ha?1 and 5.79 kg Nmin ha?1, respectively), by 197% and 293% in comparison with variant C2. There is evidence that the application of compost has a positive effect on the reduction of Nmin leaching.  相似文献   

9.
ABSTRACT

Identification of the combination of tillage and N fertilization practices that reduce agricultural Nitrous oxide (N2O) emissions while maintaining productivity is strongly required in the Indian subcontinent. This study investigated the effects of tillage in combination with different levels of nitrogen fertilizer on N2O emissions from a rice paddy for two consecutive seasons (2013–2014 and 2014–2015). The experiment consisted of two tillage practices, i.e., conventional (CT) and reduced tillage (RT), and four levels of nitrogen fertilizer, i.e., 0 kg N ha–1 (F1), 45 kg N ha–1 (F2), 60 kg N ha–1 (F3) and 75 kg N ha–1 (F4). Both tillage and fertilizer rate significantly affected cumulative N2O emissions (p < 0.05). Fertilizer at 45 and 60 kg N ha–1 in RT resulted in higher N2O emissions over than did the CT. Compared with the recommended level of 60 kg N ha?1, a 25% reduction in the fertilizer to 45 kg N ha?1 in both CT and RT increased nitrogen use efficiency (NUE) and maintained grain yield, resulting in the lowest yield-scaled N2O-N emission. The application of 45 kg N ha?1 reduced the cumulative emission by 6.08% and 6% in CT and RT practices, respectively, without compromising productivity.  相似文献   

10.
Yield, dry matter production, nitrogen (N) uptake and nitrogen use efficiency (NUE) of Bangladesh Rice Research Institute (BRRI) dhan29 were investigated during two consecutive dry (Boro) seasons of 2009–10 and 2010–11. The experiments were set up in a randomized complete block design with three replication having six nitrogen (N) levels of 0, 40, 80 120, 160 and 200 kg ha?1. Nitrogen fertilization increased yield characters, dry matter production and N uptake. The economic optimum rate of N was 166 and 155 kg ha–1 in first and second year, respectively, with corresponding yield of 7.1 and 6.5 t ha?1. NUEs were higher in the first year, decreased with increasing N rates in most cases. Gross return over fertilizer reached the highest Tk 692 in 2009–10 and Tk 489 in 2010–11 with 160 kg N ha–1. The results suggest that BRRI dhan29 should receive an average of 160 kg N ha?1 for economic optimum yield.  相似文献   

11.
The intensive winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) cropping systems in the North China Plain (NCP) rely on the heavy use of mineral nitrogen (N) fertilizers. As the fertigated area of wheat and maize in the NCP has grown rapidly during recent years, developing N management strategies is required for sustainable wheat and maize production. Field experiments were conducted in Hebei Province during three consecutive growth seasons in 2012–2015 to assess the influence of different N fertigation rates on N uptake, yield, and nitrogen use efficiency [NUE: recovery efficiency (REN) and agronomic efficiency (AEN)]. Five levels of N application, 0 (FN0), 40 (FN40%), 70 (FN70%), 100 (FN100%), and 130% (FN130%) of the farmer practice rate (FP: 250 kg N ha?1 and 205.5 kg N ha?1 for wheat and maize, respectively), corresponding to 0, 182.2, 318.9, 455.5, and 592.2 kg N ha?1 y?1, respectively, were tested. Nitrogen in the form of urea was dissolved in irrigation water and split into six and four applications for wheat and maize, respectively. In addition, the treatment “drip irrigation + 100% N conventional broadcasting” (DN100%) was also conducted. All treatments were arranged in a randomized complete block design with three replications. The results revealed the significant influence of both N fertigation rate and N application method on grain yield and NUE. Compared to DN100%, FN100% significantly increased the 3‐year averaged N recovery efficiency (REN) by 0.09 kg kg?1 and 0.04 kg kg?1, and the 3‐year averaged N agronomic efficiency (AEN) by 2.43 kg kg?1 and 1.62 kg kg?1 for wheat and maize, respectively. Among N fertigation rates, there was no significant increase in grain yield in response to N applied at a greater rate than 70% of FP due to excess N accumulation in vegetative tissues. Compared to FN70%, FN100%, and FN130%, FN40% increased the REN by 0.17–0.57 kg kg?1 and 0.03–0.34 kg kg?1and the AEN by 4.60–27.56 kg kg?1 and 2.40–10.62 kg kg?1 for wheat and maize, respectively. Based on a linear‐response relationship between the N fertigation rate and grain yield over three rotational periods it can be concluded that recommended N rates under drip fertigation with optimum split applications can be reduced to 46% (114.6 kg N ha?1) and 58% (116.6 kg N ha?1) of FP for wheat and maize, respectively, without negatively affecting grain yield, thereby increasing NUE.  相似文献   

12.
Forage pearl millet (Pennisetum americanum var. Nutrifeed) is a new forage crop in Iran. A field experiment was conducted at the University of Tehran to evaluate the response of pearl millet to four nitrogen (N) levels (0, 75, 150, and 225 kg N ha?1) and four irrigation regimes (40%, 60%, 80%, and 100% of available soil water abbreviated to I40, I60, I80 and I100, respectively) during 2006–2007. Total dry matter production reached a maximum of 24.4 and 23.5 t ha?1at I40 and I60 at N225, respectively. Nitrogen use efficiency decreased by adding more fertilizer and minimum nitrogen use efficiency was recorded at N225 over all irrigation regimes. At N225, water use efficiency reached the maximum of 3.57 and 4.10 kg m?3 in I80 and I100, respectively. Pearl millet forage could be produced in the regions where water is scarce and additional N fertilizer could increase total dry matter and water use efficiency.  相似文献   

13.
Determining a critical nitrogen dilution curve for sugarcane   总被引:1,自引:0,他引:1  
Adequate measurements of the nitrogen (N) concentration in the aboveground biomass of sugarcane throughout the growth cycle can be obtained using the critical N dilution curve (CNDC) concept, which provides an N‐nutrition index (NNI). The aim of this work was to determine the CNDC value for Brazilian sugarcane variety SP81‐3250, establish the critical concentration of N, and determine the NNI in the aboveground biomass throughout the cane plant and first ratoon crop cycles. The study was performed in three experimental areas located in São Paulo, Brazil, during the crop cycles of 2005/2006 (18‐month cane plant) and 2006/2007 (first ratoon). The plant cane crop was fertilized with treatments of 40, 80, or 120 kg N ha–1 and a control treatment without N. After the plant cane harvest, rates of 0, 50, 100, or 150 kg N ha–1 were applied to the control plot and the 120 kg N ha–1–treatment plot in a split‐plot experimental design with four repetitions. Throughout both sugarcane cycles, measurements of aboveground biomass were used to determine the dry‐mass (DM) production and N concentration for each treatment. CNDC varied between the growth cycles, with a higher N concentration observed in the initial stages of the first ratoon and a lower N dilution observed throughout the plant cane cycle. The NNI value indicated excessive N storage in the initial stages and limiting concentrations at the end of the growth cycle. CNDC and NNI allow for the identification of the N‐nutrition variation rate and the period in which the nutrient concentration limits the production of aboveground biomass. The equations for the critical N (Ncr) level obtained in this study for plant cane (Ncr = 19.0 DM–0.369) and ratoons (Ncr = 20.3 DM–0.469) can potentially be used as N‐nutritional diagnostic parameters for sugarcane N nutrition.  相似文献   

14.
Inhibition of nitrification as a mitigation tool to abate nitrogen (N) losses and improve N use efficiency (NUE) is a promising technology. Nitrification inhibitor (dicyandiamide, DCD) was evaluated in two consecutive wheat-maize rotations (2015–2017), with two different N fertilizer levels applied in wheat (160, 220 kg N ha?1) and maize (180, 280 kg N ha?1). More NH4+-N contents (101% and 102% in wheat and 74% and 73% in maize) and less NO3-N contents (37% and 43% in wheat and 46% and 57% in maize) were observed at both N levels treated with DCD compared to without DCD. Higher pH, lower EC and reduced NO3-N accumulation were the other benefits of DCD. The NO3-N accumulation within the 0–200 cm soil profile was significantly less at both N levels with DCD (66 mg kg?1 and 121 mg kg?1) compared to without DCD (96 mg kg?1 and 169 mg kg?1). Application of DCD also improved the growth and yield in both crops. Increase in NUE from 38% to 49% in wheat and 27% to 33% in maize with DCD at higher N level was also observed. Overall, the effectiveness of DCD in retarding the nitrification process was higher in wheat than maize.  相似文献   

15.
Studies on N balance due to N inputs and outputs and soil N retention to measure cropping system performance and environmental sustainability are limited due to the complexity of measurements of some parameters. We measured N balance based on N inputs and outputs and soil N retention under dryland agroecosystem affected by cropping system and N fertilization from 2006 to 2011 in the northern Great Plains, USA. Cropping systems were conventional tillage barley (Hordeum vulgaris L.)–fallow (CTB‐F), no‐tillage barley–fallow (NTB‐F), no‐tillage barley–pea (Pisum sativum L.) (NTB‐P), and no‐tillage continuous barley (NTCB). In these cropping systems, N was applied to barley at four rates (0, 40, 80, and 120 kg N ha?1), but not to pea and fallow. Total N input due to N fertilization, pea N fixation, soil N mineralization, atmospheric N deposition, nonsymbiotic N fixation, and crop seed N and total N output due to grain N removal, denitrification, volatilization, N leaching, gaseous N (NOx) emissions, surface runoff, and plant senescence were 28–37% greater with NTB‐P and NTCB than CTB‐F and NTB‐F. Total N input and output also increased with increased N rate. Nitrogen accumulation rate at the 0–120 cm soil depth ranged from –32 kg N ha?1 y?1 for CTB‐F to 40 kg N ha?1 y?1 for NTB‐P and from –22 kg N ha?1 y?1 for N rates of 0 kg N ha?1 to 45 kg N ha?1 y?1 for 120 kg N ha?1. Nitrogen balance ranged from 1 kg N ha?1 y?1 for NTB‐P to 74 kg N ha?1 y?1 for CTB‐F. Because of increased grain N removal but reduced N loss to the environment and N fertilizer requirement as well as efficient N cycling, NTB‐P with 40 kg N ha?1 may enhance agronomic performance and environmental sustainability while reducing N inputs compared to other management practices.  相似文献   

16.
Abstract

Soybean [Glycine max (L.) Merr.] responses to seed inoculation with rhizobium are inconsistent in sites with inoculation history. Field trials were conducted in South-central region of Paraná State (Southern Brazil) aiming to evaluate yield response to inoculation in areas with history of inoculation at a regional-scale (21 trials, 1999/2000 to 2014/2015), and identify nodulation, plant dry weight and nitrogen (N) components underpinning yield formation (10 trials, 2015/2016 and 2016/2017). Seed yield varied from 1853 to 5352?kg ha?1 (first dataset), characterizing a wide range of environmental conditions across seasons. Response to inoculation was inconsistent at regional-scale, with a similar seed yield of inoculated (3286?kg ha?1) and non-inoculated (3298?kg ha?1) soybean. Lack of differences were also observed in all the variables analyzed of second dataset. Research efforts should be applied aiming to identify rhizobia persistence in the soil and its efficacy at N fixation after continuous cropping without inoculation.  相似文献   

17.
Nitrogen (N) dilution curves, a pivotal tool for N nutrition diagnosis, have been developed using different winter wheat (Triticum aestivum L.) tissues. However, few studies have attempted to establish critical nitrogen (Nc) dilution curves based on the leaf area ratio (LAR) to improve the monitoring accuracy of N status. In this study, three field experiments using eight N treatments and four wheat varieties were conducted in Jiangsu Province of China from 2013 to 2016. The empirical relationship of LAR with shoot biomass (expressed as dry matter) was developed under different N conditions. The results showed that LAR was a reliable index, which reduced the effects of wheat varieties and years compared with the traditional indicators. The N nutrition index (NNI) based on the LAR approach (NNI-LAR) produced equivalent results to that based on shoot biomass. Moreover, the NNI-LAR better predicted accumulated N deficit and best estimated the relative yield compared with the other two indicator-based NNI models. Therefore, the LAR-based approach improved the prediction accuracy of Nc, accumulated N deficit, and relative yield, and it would be an optimal choice to conveniently diagnose the N status of winter wheat under field conditions.  相似文献   

18.
We investigated the effect of increasing soil temperature and nitrogen on greenhouse gas (GHG) emissions [carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)] from a desert steppe soil in Inner Mongolia, China. Two temperature levels (heating versus no heating) and two nitrogen (N) fertilizer application levels (0 and 100?kg?N?ha?1?year?1) were examined in a complete randomized design with six replications. The GHG surface fluxes and their concentrations in soil (0 to 50?cm) were collected bi-weekly from June 2006 to November 2007. Carbon dioxide and N2O emissions were not affected by heating or N treatment, but compared with other seasons, CO2 was higher in summer [average of 29.6 versus 8.6?mg carbon (C) m?2?h?1 over all other seasons] and N2O was lower in winter (average of 2.6 versus 4.0?mg?N?m?2?h?1 over all other seasons). Desert steppe soil is a CH4 sink with the highest rate of consumption occurring in summer. Heating decreased CH4 consumption only in the summer. Increasing surface soil temperature by 1.3°C or applying 100?kg?ha?1?year?1 N fertilizer had no effect on the overall GHG emissions. Seasonal variability in GHG emission reflected changes in temperature and soil moisture content. At an average CH4 consumption rate of 31.65?µg?C?m?2?h?1, the 30.73 million ha of desert steppe soil in Inner Mongolia can consume (sequestrate) about 85?×?106?kg CH4-C, an offset equivalent to 711?×?106?kg CO2-C emissions annually. Thus, desert steppe soil should be considered an important CH4 sink and its potential in reducing GHG emission and mitigating climate change warrants further investigation.  相似文献   

19.
ABSTRACT

The study was aimed to determine the appropriate nitrogen (N) rate to combine with liming for enhanced maize yield and nitrogen use efficiency (NUE). Two maize varieties [Ikom White (IKW) and Obatanpa-98 (Oba-98)], two lime rates (0 kg ha?1 and 500 kg ha?1) and three N rates (0, 90 and 180 kg ha?1) were used. The treatments were laid as a split-split plot in a randomized complete block design with three replications. The growth attributes, photosynthetically active radiation (PAR), harvest index, dry matter, and grain yield increased (P ≤ 0.05) with increases in N rates, especially in plots amended with lime. Oba-98 was better yielding (2.12 versus (vs) 1.88 t ha?1) and absorbed more (P ≤ 0.05) radiation (442.06 vs 409.54 μmol m?2s?1) than IKW. The efficiency indices and partial factor productivity were best optimized at the 90 kg ha?1 N rate with Oba-98 having higher values than IKW. Therefore, liming (500 kg ha?1) plus N at 180 kg ha?1produced the best yield of the hybrid maize, Oba-98.  相似文献   

20.
Abstract

Recommendations for the use of preplant N in alfalfa establishment are controversial. Growth chamber experiments were conducted to examine the effect of preplant N and soil temperature on yield and N accumulation of alfalfa (Medicago sativa L.). Alfalfa was grown in river sand at three day/night soil temperatures (18/12°C, 24/16°C, and 27/21°C), and at five levels of preplant N (0, 10, 20, 40, 80 kg ha?1). At 18/12°C, 40 kg ha?1 preplant N resulted in a 69% increase in shoot dry matter yield. Dry matter and N accumulation rates were greatest at 40 and 80 kg ha?1. Preplant N effects on dry matter and N accumulation at 18/12°C were expressed primarily between the early bud and early flowering stages. Assessment of soil temperature and soil N availability is necessary to determine the potential for a yield response of alfalfa to preplant N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号