首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) are grown as grain legumes in rotation with spring wheat (Triticum aestivum L.) on acidic sandy soils of south-western Australia. Yellow lupin can accumulate significantly larger cadmium (Cd) concentrations in grain than narrow-leafed lupin. A glasshouse experiment was undertaken to test whether adding increasing zinc (Zn) levels to soil increased Zn uptake by yellow lupin reducing accumulation of Cd in yellow lupin grain. Two cultivars of yellow lupin (cv. ‘Motiv’ and ‘Teo’) and 1 cultivar of narrow-leafed lupin (cv. ‘Gungurru’) were used. The soil was Zn deficient for grain production of both yellow and narrow-leafed lupin, but had low levels of native soil Cd (total Cd <0.05 mg kg?1) so 1.6 mg Cd pot?1, as a solution of cadmium chloride (CdCl2·H2O), was added and mixed through the soil. Eight Zn levels (0–3.2 mg Zn pot?1), as solutions of zinc sulfate (ZnSO4·7H2O), were added and evenly mixed through the soil. Yellow lupin accumulated 0.16 mg Cd kg?1 in grain when no Zn was applied, which decreased as increasing Zn levels were applied to soil, with ~0.06 mg Cd kg?1 in grain when the largest level of Zn (3.2 mg Zn pot?1) was applied. Low Cd concentrations (<0.016 mg Cd kg?1) were measured in narrow-leafed lupin grain regardless of the Zn treatment. When no Zn was applied, yellow lupin produced ~2.3 times more grain than narrow-leafed lupin, indicating yellow lupin was better at acquiring and using indigenous Zn from soil for grain production. Yellow lupin required about half as much applied Zn as narrow-leafed lupin to produce 90% of the maximum grain yield, ~0.8 mg pot?1 Zn compared with ~1.5 mg Zn pot?1. Zn concentration in whole shoots of young plants (eight leaf growth stage) related to 90% of the maximum grain yield (critical prognostic concentration) was (mg Zn kg?1) 25 for both yellow lupin cultivars and 19 for the narrow-leafed lupin cultivar. Critical Zn concentration in grain related to 90% of maximum grain yield was (mg Zn kg?1) 24 for both yellow lupin cultivars compared with 20 for the narrow-leafed lupin cultivar.  相似文献   

2.
Re-application of zinc (Zn) sulfate for corn (Zea mays L.) production in rotation of wheat-corn has varied effects on yield of crops grown in Zn deficient soils. Therefore, this study was done as split plots in a complete randomized block design (CRBD) where the main plots were control with and without Zn application in wheat (Triticum aestivum L.) production. Sub-plots were of control, without Zn fertilizer, base application of 75 kg per hectare (kg Zn ha?1), 25% and 50% less than base application and as foliar spray in combination with the 4 soil Zn treatments for corn production. Effect of previous Zn application on grain Zn concentration of corn was significant (P < 0.01). Zinc concentrations in treatments of without previous Zn (nil Zn) application and with Zn application were 28.1 and 31.8 mg kg?1, respectively. Soil application of 75 kg ha?1 and foliar application of Zn sulfate gave the highest yield (8853 kg ha?1) showed an increase of 25 percent in compared with nil-Zn. Although re-application of Zn has small effect on yield, but resulted in was the highest grain concentration.  相似文献   

3.
《Journal of plant nutrition》2013,36(4-5):727-741
The yield and zinc (Zn) content response of faba bean (Vicia faba L.), chickpea (Cicer arietinum L.), lentil (Lens culinaris Medik.) and wheat (Triticum aestivum L.) to applications of Zn fertilizer was compared in a glasshouse experiment using two alkaline soils from southwestern Australia. Comparative Zn requirements were determined from yields of 46-day-old dried shoots when no Zn fertilizer was applied, the amount of Zn required to produce the same percentage of the maximum (relative) yield of dried shoots, and the Zn content of dried shoots (Zn concentration multiplied by yield of dried shoots). The concentration of Zn in youngest tissue and in dried shoots was used to determine critical concentrations for Zn in tissue. Faba bean used indigenous soil Zn more effectively than chickpea, followed by wheat and then lentil. The Zn requirement was lowest for faba bean, and increased in the order faba bean < chickpea < wheat < lentil. Zinc concentration in dried youngest tissue and in dried shoots increased with an increase in the amount of added Zn. The critical Zn concentration in the youngest tissue, associated with 90% of the relative yield, was (mg Zn kg?1): 25 for lentil, 18 for faba bean, 17 for chickpea and 12 for wheat; corresponding values for dried whole tops (mg Zn kg?1) were: 30 for lentil, 19 for faba bean, 17 for chickpea, and 20 for wheat. Information on comparative responses of the grain legumes to Zn additions relative to wheat, and critical tissue test values, will aid in the fertilizer management of Zn in cool-season grain legumes in the southwestern Australian farming systems.  相似文献   

4.
Applying lime to ameliorate soil acidity has been observed to induce manganese (Mn) deficiency in canola (Brassica napus L.) crops grown on acid sandy soils near Albany and gravelly acid sands of the Great Southern Districts of southwestern Australia. These soils were often Mn-deficient in patches for wheat (Triticum aestivum L.) production when they were newly cleared for agriculture requiring application of Mn fertilizer to ensure grain yields were not reduced by the deficiency. Since then, these soils have acidified and in the 1990s, canola started to be grown on these soils in rotation with wheat and lupins (Lupinus angustifolius L.). These limed soils may now have become marginal to deficient in Mn for canola production. The effect of liming may change the effectiveness of fertilizer Mn. In addition, the effect of liming on the residual value of Mn fertilizer applied to these soils for canola production is unknown. Therefore, a glasshouse experiment was conducted using Mn deficient sand. Three levels of finely-powdered calcium carbonate were added and incubated in moist soil for 42 days at 22±2°C to produce 3 soils with different pH values [1:5 soil:0.01 M calcium chloride (CaCl2)]: 4.9 (original soil), 6.3, and 7.5. Five Mn levels, as solutions of Mn sulfate, were then added and incubated in moist soil for 0, 50, and 100 days before sowing canola. To estimate the residual value (RV) of incubated Mn for canola production, the effectiveness of the incubated Mn was calculated relative to the effectiveness of Mn applied just before sowing canola (freshly-applied Mn). The RV of the incubated Mn was determined using yield of dried canola shoots, the Mn application level required to produce 90% of the maximum shoot yield, and Mn content in dried shoots (Mn concentration in shoots multiplied by yield of dried shoots). As measured using both yield of dried shoots and Mn content of dried shoots, the residual value of Mn decreased with increasing soil pH and with increasing period of incubation of Mn with moist soil. The critical Mn concentration, for 90% of the total yield of dried canola shoots, was (mg Mn kg?1) ~17 in youngest mature growth (apex and youngest emerged leaf, YMG), and ~22 for the rest of dried shoots. These values were similar to current critical values for un-limed soils suggesting critical Mn concentrations remain the same for limed soils. Plant testing of canola is recommended if soils are to be limed to ameliorate soil acidity. When plant tests indicate a high likelihood of Mn deficiency, foliar Mn sprays need to be applied to that crop to ensure Mn deficiency does not reduce grain production that year, and fertilizer Mn needs to be re-applied to the soil when sowing the next crop to reduce the likelihood of Mn deficiency for subsequent crops.  相似文献   

5.
A field experiment conducted at the Indian Agricultural Research Institute, New Delhi, India showed that oats (Avena sativa L.) responded (grain yield increase) to zinc (Zn) fertilizer and coating of oat seeds with Zn sulfate or Zn oxide is the best practice. Zinc fertilizer applied to soil, deep placement (5 cm below the seed placement) was superior for growth and yield than soil surface (broadcast) application. Delaying Zn application to 25 days after sowing (first irrigation) was inferior to Zn application at sowing. Partial factor productivity (PFP) of applied Zn varied from 700–2,024 kg grain kg Zn?1, agronomic efficiency (AE) varied from 62–428 kg grain increase kg?1 Zn (applied) and physiological efficiency (PE) of Zn varied from 1,822–3,221 kg grain kg?1 Zn (absorbed). The crop recovery efficiency (CRE) varied from 3.1–17.7%. Thus, adequate Zn fertilizer of oats can lead to higher grain yield and higher Zn concentration in grain (improved quality for human nutrition) under Zn deficient soil.  相似文献   

6.
Although zinc (Zn) is an essential element for normal plant growth, it is phytotoxic at high concentrations. To identify oil crops that can be cultivated in Zn-contaminated soil for biodiesel production, the ability of Zn tolerance and accumulation of eight oil crops were evaluated under 200–800 mg Zn kg?1 sand substrates (DW) conditions. Results showed that all crops, except sunflower, could grow quite well under 400–800 mg kg?1 Zn stress. Among them, hemp, flax, and rapeseed showed small inhibitions in plant growth and photosynthetic activities, indicating these crops had a strong tolerance to high Zn concentrations and could be cultivated in Zn-contaminated soils. Peanut and soybean exhibited higher Zn concentrations in shoots, higher bio-concentration factor, and higher total Zn uptake, as well as higher biomass. These crops, therefore, are good candidates for the implementation of the new strategy of cultivating biodiesel crops for phytoremediation of Zn-contaminated soils.  相似文献   

7.
采用温室盆栽试验研究了印度芥菜对土壤中锌镉污染的忍耐、积累能力 ,以检验这种植物修复Zn、Cd污染土壤的可能性及其潜力。在加入Zn 5 0 0和 1 0 0 0mgkg- 1 的土壤中 ,印度芥菜生长 66天后 ,叶片中积累Zn的平均浓度分别达 2 80和 662mgkg- 1 ,地上部带走的Zn分别为每盆 2 1 95和 341 2 μg。在加入Cd 2 0 0mgkg- 1 的土壤中生长的印度芥菜 ,叶片中积累Cd浓度为 1 61mgkg- 1 ,地上部带走的Cd为每盆 381 μg。和普通植物相比 ,印度芥菜更能将Zn和Cd从根运输到地上部。Zn 5 0 0mgkg- 1 处理的土壤在种植印度芥菜后其NH4NO3提取的Zn显著高于不种植物的处理 ;土壤添加Cd 2 0 0mgkg- 1 的处理NH4NO3提取的Cd也显著高于不种植物的处理 ,可能的原因是植物根分泌出特殊的分泌物 ,专一性地螯合溶解根系附近的难溶态Zn和Cd,从而提高土壤溶液中的浓度。印度芥菜对Zn、Cd有较强的忍耐和富集能力 ,是Zn、Cd污染土壤修复有潜力的植物。  相似文献   

8.
A greenhouse experiment with soybean grown on sulfur (S) and boron (B) deficient calcareous soil was conducted for two years in northwest India to study the influence of increasing sulfur and boron levels on yield and its attributing characters at different growth stages (55 days, maturity). The treatments included four levels each of soil applied sulfur viz. 0, 6.5, 13.4, 20.1 mg S kg?1 and boron viz. 0, 0.22, 0.44, 0.88 mg B kg?1 at the time of sowing. The highest dry matter yield at 55 days after sowing, DAS (19.3 g pot?1) and maturity (straw yield ?25.2 g pot?1 and grain yield ?7.3 g pot?1) was recorded with B0.44 S13.4 treatment combination. The combined applications of sulfur and boron yielded highest oil content with B0.44S13.4 (21.7%) treatment level. Chlorophyll ‘a’ and ‘b’ increased significantly with successive levels of sulfur and boron addition at 55 DAS. The mean sulfur and boron uptake in straw and grains increased significantly with increasing levels of sulfur and boron up to 13.4 mg kg?1 and 0.44 mg kg?1 and decreased non-significantly thereafter. At both the growth stages, a synergistic interactive effect of combined application of sulfur and boron was observed with B0.44 S13.4 treatment level for sulfur and boron uptake in straw and grains.  相似文献   

9.
The zinc (Zn) requirement of a maize (Zea mays L.) hybrid (‘FHY-396’) and an indigenous variety (‘EV-7004’) was measured at low (22.4 ± 5°C) and high (28.8 ± 5°C) root-zone temperatures (RZT). Four Zn rates (0, 3, 9 and 27 mg kg?1 soil) were applied to a calcareous loam soil in pots for the glasshouse study. Shoot and root dry matter yields were significantly more at the higher RZT. Regardless the RZT, maximum relative shoot dry matter yield in hybrid and variety was produced, respectively, at 9 and 3 mg Zn kg?1 soil. Zinc concentration in roots and shoots of both the cultivars increased with Zn rates and it was significantly more at the higher RZT. Cultivars differed in critical Zn concentration (CZnC) required for maximum shoot dry matter yield. The CZnC ranged from 25 to 39 μg Zn g?1 plant tissue for optimum growth of both the cultivars at low and high RZT.  相似文献   

10.
Abstract

Recent research has shown the need for an in-depth knowledge of zinc biofortification of cereal and oilseed grains due to its importance to human nutrition. However, little is known about the Zn dynamics in plant–soil system. In this work, we evaluated the effect of soil-applied Zn on the absorption, translocation, and compartmentalization of Zn in rice (Oryza sativa L.) and soybean (Glycine max L. Merrill) plants. The soil used in the greenhouse experiment was fertilized with zinc chloride (ZnCl2) at rates of 0, 1, 2, 4, and 8?mg Zn kg?1. The source of Zn was labeled by 65Zn with specific activity of 185.5 kBq mg?1 Zn. The amount of Zn derived from fertilizer and its use in each plants compartment was determined by direct method in isotopic calculations. Rice and soybean plants presented low efficiency in the absorption from soil-applied Zn. The accumulated Zn in the panicle, pod, and grains was not modified, due to its low translocation in the plant. The Zn uptake in rice plants was from 1.34 to 4.60?mg pot?1 in shoots and just 0.81 to 1.43?mg pot?1 translocated to panicles. Soybean plants presented Zn uptake between 2.36 and 4.68?mg pot?1 in shoots, out of which 0.19 to 0.34?mg.pot?1 and 0.48 to 0.57?mg pot?1 translocated to grains and pods, respectively. The nutrient utilization from fertilizer was low, with mean values of 12 and 8.7% for rice and soybean plants, respectively. Soil-applied Zn showed low capacity for enriching rice panicle and soybean pod or grain probably due low Zn uptake and translocation.  相似文献   

11.
Since the early 1990s canola (oilseed rape, Brassica napus L.) has become a major crop species grown on the predominantly sandy soils of southwestern Australia. Numerous studies have been undertaken to determine the fertilizer requirements of the crop in the region. This paper reports results of a field experiment conducted at three sites on typical acidified (pH [Ca] ~4.6) sandy gravel soils to identify if molybdenum (Mo), manganese (Mn) or boron (B) were deficient for canola grain production. Different levels of each element, separately or as mixtures, were applied as foliar sprays at mid-flowering. Maximum grain yield responses of ~11–20% to applied Mo, as sodium molybdate (39% Mo), were obtained when 40 g Mo/ha was applied. Maximum grain yield responses of ~13–28% to applied Mn were achieved by applying 1000 g ha?1 Mn, as manganese sulfate (24% Mn). A mixture of 40 g Mo ha?1 and 1000 g Mn ha?1 increased grain yields by ~15–38%. Boron, applied as borax (11% B), sprayed individually or in combination with Mo or/and Mn, had no effect on grain yields. None of the foliar spray treatments had any effect on oil concentration in canola grain. The sprays did not cause any visible damage to foliage. Soil acidification has been shown to induce Mo deficiency for cereal crops in the region and both soil acidification and induced Mo deficiency are alleviated by applying sufficient lime to raise pH of top 10 cm soil to 5.5 or greater, and this strategy should also apply to canola. Further research is required to determine the fertilizer Mn requirements for canola grain production in the region.  相似文献   

12.
Abstract

Foliar fertilization with micronutrients and amino acids (AAs) has been used to increase the grain yield and quality of different crops. The aim of the present study was to evaluate the effects of Zn and AAs foliar application on physiological parameters, nutritional status, yield components and grain yield of wheat-soybean intercropping under a no-till management. We used a randomized block experimental design consisting of eight treatments and four replicates. The treatments were five Zn rates (0, 1, 2, 4 and 8?kg ha?1) and 2?L ha?1 of AAs and three additional treatments: a control (without the Zn or AA application), 2?kg ha?1 Zn and 2?kg ha?1 Zn + 1?L AA. The treatments were applied by spraying during the final elongation stage and at the beginning of pre-earing for the wheat and in growth stage V6 for the soybean for two crop years in a Typic Oxisol (860?g kg?1 clay). Zinc foliar fertilization increased the wheat grain Zn concentrations. The Zn rates and AA foliar fertilization in soil with did not affect the physiological parameters, nutrient status or yield components. The AA application at the different concentrations tested changed the soybean grain yield and the leaf N concentration. The results suggest that Zn and amino acids application increases the grains Zn concentration in the wheat, being an important strategy to agronomic biofortification.  相似文献   

13.
ABSTRACT

Zinc (Zn) deficiency is a global nutritional problem in crops grown in calcareous soils. However, plant analysis criteria, a good tool for interpreting crop Zn requirement, is scarcely reported in literature for onion (Allium cepa L.). In a greenhouse experiment, Zn requirement, critical concentrations in diagnostic parts and genotypic variation were assessed using four onion cultivars (‘Swat-1’, ‘Phulkara,’ ‘Sariab Red,’ and ‘Chilton-89’) grown in a Zn-deficient (AB-DTPA extractable, 0.44 Zn mg kg?1), calcareous soil of Gujranwala series (Typic Hapludalf). Five rates of Zn, ranging from 0 to 16 mg Zn kg?1 soil, were applied as zinc sulphate (ZnSO4·7H2O) along with adequate basal fertilization of nitrogen (N), phosphorus (P), potassium (K), and boron (B). Four onion seedlings were transplanted in each pot. Whole shoots of two plants and recently matured leaves of other two plants were sampled. Zinc application significantly increased dry bulb yield and maximum yield was produced with 8 mg Zn kg?1. Application of higher rates did not improve yield further. The cultivars differed significantly in Zn efficiency and cv. ‘Swat-1’ was most Zn-efficient. Fertilizer requirement for near-maximum dry bulb yield was 2.5 mg Zn kg?1. Plant tissue critical Zn concentrations were 30 mg kg?1 in young whole shoots, 25 mg kg?1 in matured leaves, 16 mg kg?1 in tops and 14 mg Zn kg?1 in bulb. Zinc content in mature bulb also appeared to be a good indicator of soil Zn availability status.  相似文献   

14.
A field study conducted for two years (2006 and 2007) at the Research Farm of the Indian Agricultural Research Institute, New Delhi, India showed that zinc (Zn) fertilization increased yield attributes, grain and straw yield, enhanced Zn concentrations and its uptake and improved kernel quality before and after cooking in basmati rice ‘Pusa Sugandh 5’. A 2% Zn-coating with zinc sulfate (ZnSO4·7H2O) was found to be the best but a 2% Zn-coating with zinc oxide (ZnO) was very close to it in terms of grain and straw yield and Zn concentrations in basmati rice grain and straw under Zn stress conditions. Partial factor productivity (PFP) of applied Zn varied from 984–3,387 kg grain kg Zn?1, agronomic efficiency (AE) varied from 212–311 kg grain kg?1 Zn (applied) and physiological efficiency (PE) of Zn varied from 6,384–17,077 kg grain kg?1 Zn (absorbed). Thus, adequate Zn fertilization of basmati rice can lead to higher grain yield and Zn-denser grains with improved cooking quality in basmati rices under Zn stress soil conditions.  相似文献   

15.
Zinc (Zn) has emerged as the plant nutrient limiting rice growth in several parts of the world. About 50% of world soils are deficient in Zn and this is also true for India. An analysis of 0.233 million samples taken from different states showed that 47% of Indian soils are deficient in Zn. In India, Zn deficiency is widespread, especially in the rice–wheat cropping system belt of North India, which has high pH calcareous soils. Zinc is also now recognized as the fifth leading health risk factor is developing Asian countries, where rice is the staple food and Zn nutrition of humans and animals has recently received considerable attention. However, no reports are available on the effect of Zn fertilization on kernel quality of aromatic rices. The present study was therefore undertaken to study the effect of Zn fertilization on yield attributes, grain, and straw yield, Zn concentrations in grain and straw, Zn uptake, Zn use indices and kernel qualities of the aromatic rices. A field study at the Indian Agricultural Research Institute, New Delhi, India showed that Pusa Sugandh 4 (‘PS 4’) is a better than the earlier developed aromatic rice variety Pusa Basmati 1 (‘PB 1’) in terms of grain yield (4.08 tonnes ha?1), kernel quality, zinc (Zn) concentrations in grain and Zn uptake (1,396.9 g ha?1), recovery efficiency (5.2%), agronomic efficiency (122.7 kg grain increase kg?1 Zn applied), partial factor productivity (1,064.7 kg grain kg?1 Zn applied) and physiological efficiency (39,625 kg grain kg?1 Zn uptake) of applied Zn. From the grain yield (4.64 tonnes ha?1) viewpoint an application of 5 kg Zn ha?1 was found sufficient for the aromatic rices grown on ustochrepts of north Indian rice-wheat cropping system belt. Application of 7.5 kg Zn ha?1 increased Zn concentrations in the grain (37.0 mg kg?1 DM) and straw (117.3 mg kg?1 DM) of aromatic rices studied and this is important from the human and animal nutrition viewpoint under Indian conditions.  相似文献   

16.
Canola (oil seed rape, Brassica napus L.) is now a major crop grown on the predominantly sandy soils in southwestern Australia and knowledge about the phosphorus (P) requirements of the crop in the region is limited. The results of 22 experiments done in the region are reported to determine the relationships between absolute seed (grain) yield response to applied P and (1) soil test P (Colwell sodium bicarbonate procedure) and (2) concentration of P measured in dried shoots at the rosette growth stage. Large grain yield responses to applied P occurred when Colwell soil test P values for the top 10 cm of soil were < 20 mg/kg soil and when concentrations of P in dried shoots were < 3.6 g/kg. The fertilizer P requirements for optimal economic return for canola grain production in the region varied from 10–35 kg P/ha. The 9 different canola cultivars used in the experiments from 1987–2005 had no major effect on the relationship between absolute grain yield response to applied P and soil test P. Application of fertilizer P mostly had no significant effects on either oil or protein concentrations in grain.  相似文献   

17.
Soil testing was conducted during 1985–2005 in 11 paddocks on sandy duplex soils on Newdegate Research Station, average annual rainfall of 377 mm, with about 70% falling in the May–October growing season, in the Mediterranean-type climate of southwestern Australia. The study was undertaken to determine lime and fertilizer requirements of eight crop species grown in rotation with one another (one crop each year in the typical May–October growing season, comprising wheat, Triticum aestivum L.; barley, Hordeum vulgare L.; oats, Avena sativa L.; lupin, Lupinus angustifolius L.; canola, Brassica napus L.; chickpea, Cicer arietinum L.; field pea, Pisum sativum L.; and subterranean clover-based pasture, Trifolium subterraneum L. All crops were sown using no-till. The study demonstrated that plant testing was required in conjunction with soil testing to confirm decisions based on soil testing and to assess management decisions for elements not covered by soil testing. Pasture dry-matter production seldom exceeds 2 t ha?1 during the growing season in the region, but clover pasture is valued as a break crop for diseases and pests of grain crops and to facilitate control of herbicide-resistant weeds for cropping. Pastures had negligible impact on soil-test values. By contrast, grain crops typically produce more dry matter than pasture (4–8 t ha?1) and consistently significantly resulted in soil pH, soil-test potassium (K), and organic carbon (C) of soil decreasing through time. Fertilizer phosphorus (P) was not applied to pasture but was applied while sowing most grain crops from 1985 to 1996, a common practice at the time, and soil-test P significantly increased through time in these years. Thereafter fertilizer P was only applied when soil-test P was less than the critical value for that soil and grain crop species resulting, in little P being applied in these years, and soil-test P significantly declined through time. Plant testing indicated P was adequate when soil testing indicated no fertilizer P was required. The soils only started to become K deficient in the mid-1990s because of the removal of indigenous soil K in grain, and fertilizer K was applied when soil-test K was less than the 50 mg kg?1 critical value determined for wheat and canola. Plant testing indicated K was adequate when soil testing indicated no fertilizer K was required, and it indicated K was adequate after fertilizer K was applied, showing K levels applied were adequate for grain production. Plant testing indicated nitrogen (N), sulfur (S), calcium (Ca), magnesium (Mg), copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), and boron (B) were adequate for grain production. Electrical conductivity (EC) of soil was very variable but EC values indicated soil salinity was unlikely to reduce grain yields of all the crop species grown. We conclude soil testing for pH is reliable for indicating paddocks requiring lime to ameliorate soil acidity and to monitor progress of liming. Soil testing proved reliable for determining when fertilizer P and K needed to be applied. Research has shown that for the low rainfall cropping areas of southwestern Australia laboratories need to measure and report soil pH, soil-test P, and soil-test K every 1–3 years and the P-buffering index (estimating P sorption of soil), organic C, and electrical conductivity every 3–5 years.  相似文献   

18.
Our study analyzed the effect of foliar tissues and seed tissue for determining the micronutrient status of a crop. Zinc (Zn) requirements of onion (Allium cepa L.) leaves and seeds were estimated from yield response curves based on field experiment conducted on a Zn-deficient calcareous soil. Three onion cultivars, i.e., ‘Swat-1’, ‘Phulkara’, and ‘Sariab Red’ were grown by applying 0, 2, 4, 8, and 16 kg Zn ha?1. Zinc application significantly increased seed yield of all the three cultivars of onion. The order of seed yield response to Zn fertilization was: ‘Swat-1’ < ‘Phulkara’ < ‘Sariab Red’. Fertilizer Zn requirement for near-maximum seed yield was 2 kg Zn ha?1. Zinc concentration in mature onion seed also appeared to be a good indicator of soil Zn availability status. Critical Zn concentration in seed was 18 mg Zn kg?1, and in matured leaves was 21 mg kg?1.  相似文献   

19.
Abstract

Zinc (Zn) deficiency is a widespread micronutrient disorder in crops grown in calcareous soils; therefore, we conducted a nutrient indexing of farmer‐grown rainfed wheat (Triticum aestivum, cv. Pak‐81) in 1.82 Mha Potohar plateau of Pakistan by sampling up to 30 cm tall whole shoots and associated soils. The crop was Zn deficient in more than 80% of the sampled fields, and a good agreement existed between plant Zn concentration and surface soil AB‐DTPA Zn content (r=0.52; p≤0.01). Contour maps of the sampled areas, prepared by geostatistical analysis techniques and computer graphics, delineated areas of Zn deficiency and, thus, would help focus future research and development. In two field experiments on rainfed wheat grown in alkaline Zn‐deficient Typic Haplustalfs (AB‐DTPA Zn, 0.49–0.52 mg kg?1), soil‐applied Zn increased grain yield up to 12% over control. Fertilizer requirement for near‐maximum wheat grain yield was 2.0 kg Zn ha?1, with a VCR of 4∶1. Zinc content in mature grain was a good indicator of soil Zn availability status, and plant tissue critical Zn concentration ranges appear to be 16–20 mg kg?1 in young whole shoots, 12–16 mg kg?1 in flag leaves, and 20–24 mg Zn kg?1 in mature grains.  相似文献   

20.
A two-year field study was conducted to determine the effect of two zinc (Zn) levels [0 and 10 kg zinc sulfate (ZnSO4) ha?1] in respect with four potassium (K) levels (0, 20, 40 and 60 kg K2O ha?1) on growth, yield and quality of forage sorghum. The soil of the experimental field was loamy sand (Inceptisol), carrying 70, 08, 77, and 0.51 mg nitrogen (N), phosphorus (P), K, and Zn kg?1 soil, respectively. Increasing K levels significantly improved most of the growth, yield, and quality attributes gradually irrespective of the Zn levels. Zinc applied at 10 kg ZnSO4 ha?1 proved significantly better than no zinc application at various K application rates. The benefit of zinc application increased progressively with increasing K rates for most of the parameters studied, indicating significant response of the crop to positive K × Zn interaction in plants in respect with K and Zn application to the soil. Accordingly, 60 kg K2O ha?1 applied with10 kg ZnSO4 ha?1 boosted most of the attributes maximally. It resulted in about 20–40% increase in growth attributes, 25% increase in fresh matter yield, 36–38% increase in dry matter yield, and 38% increase in protein yield compared to the comparable K level applied without zinc. It also enhanced N uptake by 38%, P uptake by 5–19%, K uptake by 40–42%, and Zn uptake by 114–144%. Across the K rates, application of 10 kg ZnSO4 surpassed no zinc application by 30–35% in N uptake, by 8–15% in P uptake, by 33–36% in K uptake, by 120–140% in Zn uptake, by 19–21% in fresh matter yield, by 29–31% in dry matter yield, and by 30–34% in protein yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号