首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Lettuce (Lactuca sativa L., cv. ‘Parris Island’) was grown hydroponically in autumn, winter and spring under five levels of nitrogen (N) fertilization. Plant biomass was highest in spring and lowest in autumn at N rates of 200 and 260 mg L?1, respectively. Increasing N application correlated positively with rates of photosynthesis, transpiration, stomatal carbon dioxide (CO2) conductance and leaf chlorophyll concentration. Photosynthetic rate, stomatal CO2 conductance, and chlorophyll a/b ratio were higher in spring than in autumn or winter. Nitrate concentrations within the leaves increased with increasing N application in all seasons. It is concluded that lettuce growth and yield is higher in spring than in winter or autumn due to enhanced photosynthesis thanks to increasingly favorable photoperiod. Regardless of season, high N rates promote yield but increase leaf nitrate concentrations. Therefore, for the production of healthy produce the recommended N rate should be based not just on yield but also on the nitrate content.  相似文献   

2.
In nodulated young Inga edulis plants, nodule and plant growth, nitrogen (N) in xylem sap and tissues total contents of amino acid, ureide, and nitrate were determined in response to nutrition with nitrate, ammonium, or no mineral N. Additionally, the amount of soluble sugars in the different plant tissues was quantified. It was found that mineral N improved plant growth in height and diameter especially with ammonium. However, nitrate dramatically reduced nodule dry weight on a root dry weight basis and impaired N organic transport by xylem sap. Additionally, a higher amount of amino acids was observed in the roots and nodules of plants fed with mineral N but sugar levels remained constant. Although nitrate inhibited symbiosis, data support the idea that I. edulis is able to use both molecular and mineral nitrogen during the life cycle.  相似文献   

3.
Maize plants, grown for 7 and 21 days on a nutrient solution with NO3 as the sole nitrogen source showed a clear diurnal pattern with respect to the in vivo NRA. Especially in roots dark/light fluctuations of the enzyme activity were high. Also in NO3 uptake, OH efflux and endogenous content of water soluble carbohydrates a diurnal variation was found. The plant age did not significantly affect the daily rhythm.

Because day/night changes of the in vivo root NRA and nitrate uptake were proportional, the relative content of reduced N in the xylem sap of the plants was constant during a day/night interval. At both day 7 and day 21 about 40–50% of the N was transported via the xylem as amino N. As a result of non‐synchronous variation of the specific root and shoot NRA, root reduction capacity showed a great within‐day variation. It varied between 20 and 40% of the whole plant reduction capacity. Since the ratio N‐organic to N‐total in the xylem sap was about 0.5, cycling of organic nitrogen was very likely in these maize plants.  相似文献   

4.
Amaranthus tricolor is a potential accumulator of nitrate but nutrient sufficiency guidelines have not been developed for this vegetable. We investigated whether the shoot stem of A. tricolor is a suitable index for crop nitrate status, and whether freezing the stem, which aids sap extraction, would render it unsuitable for the analysis of nitrate and other nutrients. We grew A. tricolor at two nitrogen (N) rates (100 and 200 mg L?1 as nitrate-N) and established that sap nitrate from both fresh and frozen-thawed stems did not differ but was significantly increased by additional N fertilizer. Shoot growth was correspondingly higher with additional N. Therefore, the stem is a suitable index for crop nitrate. Boron (B), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na) and sulfur (S) were significantly affected by frozen storage but potassium (K), phosphorus (P) and zinc (Zn) were not. A single sufficiency guideline is possible for these nutrients, for use with both fresh and frozen-thawed stem sap.  相似文献   

5.
《Journal of plant nutrition》2013,36(8):1173-1194
The SPAD chlorophyll meter was found to be a reliable, quick, and non-destructive tool used for directly measuring leaf chlorophyll and indirectly assessing the proportional parameter of leaf, and by extension, plant nitrogen (N) status. The meter has been used successfully to assess leaf N in conventional maize crops, but it has not been used with new maize (Zea mays L.) genotypes containing leafy (L) and reduced stature (RS) traits. SPAD meter readings were collected on the uppermost fully developed leaves (before silking) and on the ear leaf (after silking) of field grown maize genotypes with and without the L and RS traits. The experiment was conducted during 1996 and 1997 at two sites in Eastern Canada (Ottawa and Montreal). At each site in each year, a split plot arrangement of two treatment factors was used in a randomized complete block design with four blocks. The main plot treatments were levels of N (0, 85, 170, and 255 kg ha?1), with six maize genotypes as subplot treatments. The hybrids included: (i) leafy reduced-stature, LRS, (ii) non-leafy normal stature, NLNS, (iii) leafy normal stature, (LNS), (iv) non-leafy reduced-stature, NLRS, (v) conventional commercial hybrids, Pioneer 3905 as the hybrid check for late maturity, and (vi) Pioneer 3979, a check for early maturity. The hybrids were chosen on the basis of their contrasting canopies and root architecture. The SPAD meter readings were collected on the same five plant genotypes over time (six times per site per year, except four times for the Ottawa site in 1997). All genotypes showed increasing meter reading values as plants aged until silking. In general, SPAD meter readings increased as N fertilization level increased at each measurement date for both sites and years. In general, LNS and P3905 hybrids showed greater SPAD meter readings than other hybrids at all sampling dates for both sites and growing seasons. Applied N rates were significantly correlated with the SPAD meter readings. More highly significant relationships were found for N fertilizer levels and SPAD meter readings for the hybrids in 1997 than for the hybrids in 1996. For the Montreal site in 1997, LRS, LNS and P3905 hybrids were among those showing the highest r values between N level and SPAD readings. The correlation coefficients between SPAD readings and grain yield were generally lower. However, the NLNS hybrid had a high SPAD-yield correlation at the Macdonald site in 1997.  相似文献   

6.
Abstract

With the aim of refining methods of determining plant N status of cotton, we measured nitrate concentrations in petioles and xylem sap in field experiments over three seasons. Main plots were rotation/tillage treatments which were split for fertilizer N. Petiole nitrate concentration was about 30 g N/kg at appearance of flower buds (squares). Rotation and N rate had highly significant effects on petiole nitrate concentration in every season. There was a linear decline in petiole nitrate with stage of development (measured in day degrees, base 12°C), particularly between 600 and 900 day degrees from sowing.

The relationship between fertilizer N requirement and petiole nitrate concentration was exponential, with greatest precision when high fertilizer rates were required. The relationship between fertilizer N requirement and the rate of decline in petiole nitrate was linear, giving equal precision over the N fertilizer range. Optimum plant N status was represented by a petiole nitrate concentration of 21.5 g N/kg at 750 day degrees from sowing, or by a rate of decline in petiole nitrate of 0.0318 g N/kg/day degree. We conclude that the interpretation of petiole nitrate data could be improved by considering the rate of decline in petiole nitrate around flowering, particularly for sites where only moderate amounts of N are required. Concentrations of nitrate in xylem sap were highly correlated with petiole nitrate, but were more variable. For this reason, we concluded that petiole analysis was the superior diagnostic test.  相似文献   

7.
Apparent nitrogen‐use efficiency of the applied mineral N (NUEmin) in effluent from biodigested plant material (BE; C : Norg ratio 14:1; mineral N–to–total N ratio 0.5:1) and a nitrate‐based inorganic fertilizer (IF), both applied at two rates was investigated in a six‐month pot experiment with Italian ryegrass (Lolium multiflorum Lam.). Dry‐matter (DM) production was 7% lower and total amount of N in aboveground biomass was 8% lower in BE than in IF at 40 d after sowing (DAS), equal at 81 DAS, and higher in BE than in IF at 136 and 172 DAS. NUEmin calculated on the basis of accumulated N in aboveground biomass of ryegrass in fertilized treatments compared to a control without N application was significantly lower in BE than in IF up to the third cut (136 DAS). Total NUEmin, total N recovery, and amount of foliage DM were similar for both fertilizers at the end of the experiment. Root biomass, total DM produced including roots and stubble, the fraction of root N to total plant N, and soil mineral N at 172 DAS were higher for BE than for IF. Mineral N applied with biogas‐reactor effluent was almost as effective as the nitrate‐based mineral fertilizer used for comparison. Within the six‐month experimental period net N mineralization, estimated at 12% of organic N in effluent, was not substantial. Hence, the organic compounds in the effluent were relatively recalcitrant.  相似文献   

8.
Xylem sap plays a major role in long‐distance transport of water, nutrients, and metabolites. However, there is little information on the behavior of metabolites in mineral‐deficient xylem sap. For this reason, the time‐dependent changes in selected metabolites (amino acids, organic acids, and soluble sugars) from tomato xylem sap in response to nitrogen (N), phosphorus (P), or potassium (K)‐deficient condition were investigated. Tomato plants (Solanum lycopersicum L.) were grown hydroponically in liquid culture under three different mineral regimes: N‐deficient [0.5 mM Ca(NO3)2 and 0.5 mM KNO3], P‐deficient (0.05 mM KH2PO4), and K‐deficient (0.5 mM KNO3), respectively. Xylem sap was collected at 10:00 am after 1, 5, 15, and 30 d, and the selected metabolites were analyzed with liquid chromatography. All N, P, or K deficiencies led to a substantial increase in metabolites in the xylem sap. The predominant amino acid in the xylem sap was glutamine and, interestingly, all mineral deficiencies resulted in a substantial amount of γ‐aminobutyric acid (GABA). Additionally, organic acids (citrate and malate) and soluble sugars were strongly increased in all mineral deficiencies, and, in particular, the level of shikimate was greatly affected by N deficiency. Based on these data, it is necessary to clearly elucidate an unknown event taking place in xylem loading in a variety of environmental impacts, and we are now studying to expand our knowledge on metabolic and proteomic responses using GC‐MS and LC‐MS.  相似文献   

9.
Long-term effects of biological and conventional farming on earthworm populations In a long-term trial the earthworm populations of two biological farming systems, two conventional systems and one control treatment were compared. The experimental site contained a Luvisol from loess under arable land. The earthworms were investigated by handsorting three times in 1990 and 1991 after beetroot and winterwheat. The main differences within the treatments were fertilization and plant-protection management. All treatments received the same crop-rotation and a similar soil cultivation. The input of organic matter was similar in the three organically manured treatments. Significantly higher earthworm biomass, earthworm densities and presence of anecic species were found in the biological plots than in the conventional and control plots in spring and autumn of 1991. The control plot (no fertilizer during 12 years) had a similar earthworm-population as the conventional treatments. Apparently, plant protection seems to be the main factor responsible for the differences between the treatments. Nicodrilus longus, N. nocturnus, N. caliginosus and Allolobophora rosea were the dominant earthworm species in all treatments.  相似文献   

10.
Nitrogen (N) status of vegetable crops is often monitored by analysis of dried plant tissues. However, dry tissue analysis often causes a significant delay between sampling and analysis. This study was conducted to examine the accuracy of a portable nitrate meter for determining petiole sap nitrate (NO3) contents, and the relationship between NO3‐N concentration in fresh petiole sap and in dried petiole tissue of broccoli grown in southern Arizona during the 1993–94 and 1994–95 winter growing seasons. Experiments were factorial combinations of three irrigation rates and four N rates, both ranging from deficient to excessive. Petioles were sampled throughout each season, and split for sap and dry tissue analysis. A linear correlation was obtained between the two measurements in both seasons, with no consistent effect due to irrigation treatment or crop maturity. The regression coefficients did not differ among seasons. Therefore, a combined regression equation: Y=343+0.047X (r2 = 0.799) was derived, in which Y=NO3‐N (mg/L) in fresh petiole sap, and X=NO3‐N (mg/kg) in dried petioles. These results suggest that the sap test can be a valuable and rapid technique to predict N needs of broccoli. Differences between the two methods are likely due to interferences in fresh petiole sap and slight differences in pools of extracted NO3.  相似文献   

11.
With respect to the important effects of nitrogen (N) on plant growth and fruit production, a five-year experiment was performed to evaluate the effects of different sources of N fertilization including chemical and organic on the quantity and quality of citrus fruit. Using five-year old trees, different types of fertilization including ammonium sulfate, urea coated with sulfur, ammonium nitrate and manure were tested using seven treatments in five replicates from 2002 to 2007. Different plant quantitative and qualitative parameters were determined. The most effective strategy on fruit yield production was the use of urea coated with sulfur and manure with 92.46 kg ha?1 fruit yield followed by ammonium sulfate and manure (87.06 kg ha?1) and ammonium sulfate (86.43 kg ha?1). The combination of mineral and organic fertilization may be the most suitable fertilization strategy for citrus production.  相似文献   

12.
氮素对温室番茄果实发育及其氮吸收量的影响   总被引:4,自引:1,他引:3  
李海平  郭荣  李灵芝  曹阳 《核农学报》2010,24(2):365-369
为了探索华北地区连栋温室栽培条件下番茄水培适宜的氮素管理方法,试验设4个处理:N5(扭送素浓度5mmol/L)、N10、N15和N30。其他营养元素的浓度是根据华南农业大学番茄营养液配方配制。比较不同处理间番茄每克鲜果实形成干物质的量、果实鲜重与其直径的关系、植株积累的生物量、产量和氮吸收量等。试验结果表明,在一定范围内,随营养液中氮素浓度越大,果实中每克鲜物质形成的干物质越多。处理N5、N10和N15中,每克鲜果实形成的干物质量分别是0.0733g、0.0804g和0.1316g。继续增加营养液中氮素浓度,每克鲜果实形成的干物质量却降低了,处理N30仅为0.0913g。其他几个指标显示相同的趋势。4个处理中植株的总干重依次为189.1、293.9、734.1和488.2g/m2。产量依次为3.68、6.55、15.50和11.01kg/m2。果实每克干物质的氮吸收量分别是0.0231g、0.0237g、0.0242g和0.0235g。果实鲜重与其直径成幂指数关系,氮素浓度对果实鲜重与其直径的关系影响不大。因此,番茄水培适宜的氮素浓度为15mmol/L。  相似文献   

13.
有机、无机肥料氮在水稻-土壤系统中的转化与分配   总被引:4,自引:3,他引:4  
在农业生产中,氮肥是决定作物产量的一个重要因素.有关氮肥的施肥方法和增产效果,长期以来已有很多报道,但是,对于有机态氮肥,如绿肥以及有机、无机肥结合施用以后,肥料氮素和土壤氮素在作物—土壤系统中的转化和分配动态研究较少.有机肥和绿肥是我国农业生产中的主要肥源.解放以后,全国开始普遍施用化肥,当前有机、无机肥结合施用已是我国施肥方法中的主要特点.  相似文献   

14.
An experiment was conducted to identify the main nitrogenous compound transported in the xylem sap of soybean plants nodulated with Rhizobium fredii. Soybean (Glycine max L. Merr.) cultivars, wild type Bragg (nod+, fix+) and its nitrate tolerant, hypernodulating mutant ntsll16 (nod++, fix+) were used for this experiment. These soybean plants were inoculated with a slowgrowing rhizobium, Bradyrhizobium japonicum USDAllO or fast-growing rhizobia consisting of a mixture of R. fredii USDA191, USDA193, and USDA-194 and grown in a phytotron under natural light and controlled temperature conditions. Xylem sap was collected from Bragg and ntsll16 plants at the flowering and pod elongation stages. Acetylene reduction activity per plant or per nodule weight was not different between soybean lines and inoculums. The composition of the nitrogenous compounds in the xylem sap was compared between the symbionts, with B. japonicum and R. fredii. At the flowering stage, ureide-N and amide-N accounted for 53 to 70% and 20 to 27% respectively of the total N in the sap collected from the plants inoculated either with B. japonicum or R. fredii. At the pod elongation stage, ureide-N and amide-N accounted for 74 to 85%, and 7 to 19% of total sap N. With the growth of the soybean plants, the ratio of ureide-N in the xylem sap increased. These results suggest that in the case of wild soybean and the hypernodulating mutant line nodulated by R. fredii, ureide is transported as the main nitrogenous compound of fixed nitrogen in the xylem sap in the same way as in plants nodulated with B. japonicum.  相似文献   

15.
The interaction of iron (Fe) nutrition and nitrogen (N2) fixation was examined in peanuts grown in the field for two growing seasons. The treatments were: a) inoculated with Rhizobium, not fertilized with N, b) uninoculated, fertilized with N, and c) uninoculated not fertilized with N. These treatments were tested with or without Fe chelate application. Inoculated peanuts produced up to 42% higher N yield than the uninoculated, non‐fertilized plants. Moderately chlorotic peanuts fertilized with Fe did not increase significantly their yield but had bigger nodules than peanuts not fertilized with Fe. There were no interactions between Fe and N treatments, indicating that both nutrients were important for growth and for N2 fixation. Remedy of Fe chlorosis on calcareous soils with FeEDDHA will not reduce N2 fixation.  相似文献   

16.
Abstract

Thirteen‐year‐old ‘d'Anjou’ pear trees, Pyrus communis L., were fertilized with 3 rates of ammonium nitrate or 2 rates of calcium nitrate in late autumn from 1978 to 1980. In 1981, mid‐terminal and fruiting‐spur leaves and fruit peel and flesh were sampled for mineral analysis of N, P, K, Ca, Mg, B, Cu, Fe, Mn, and Zn. The level of N increased in the above tissues as rate of N fertilizer was increased. In most cases, the levels of N, P, K, Mg, Cu, and Mn in the fruiting spur leaves and fruit were greater in the ammonium nitrate‐treated trees than with calcium nitrate fertilizer. Calcium was higher in the fruit peel and flesh of trees treated with the low rate of calcium nitrate than with the highest rate of ammonium nitrate fertilizer while Ca in the fruiting spur leaves was lower in the calcium nitrate‐fertilized trees.  相似文献   

17.
有机水稻品种产量、品质和氮素吸收利用的关系   总被引:3,自引:0,他引:3  
Due to the relatively late start of organic rice (Oryza sativa L.) research in China, there is a still lack of systematic research on rice varieties, organic fertilizer management practices, and especially the mechanisms of nitrogen (N) uptake and utilization. Three rice varieties, Nanjing 5055, Nanjing 9108, and Nanjing 46, were grown at organic farming (OF) with three organic fertilizer levels (103.2, 160.8, and 218.4 kg N ha-1) and conventional farming (CF) with regular chemical fertilizers. Rice grain yields, yield components, and quality, dry matter accumulation, and plant N were measured at different growth stages during the 2012 and 2013 growing seasons. Compared with CF, OF had a significantly reduced yield. Nanjing 9108 showed significant reductions in number of panicles per unit area and the percentage of filled grains, and had the lowest yield. The effects of fertilizer type and application rate on dry matter accumulation during the main growth periods were significant for all varieties. The N content and uptake of organically grown rice were lower compared with that of rice under CF. The N recovery efficiency and N agronomic efficiency were significantly lower, whereas N physiological efficiency and N partial factor productivity were greater under OF than under CF. Under OF, the processing quality showed a slight but insignificant decline, protein content and gel consistency increased, and amylose content decreased compared with those under CF. Correlation analysis showed that under OF, grain yield was significantly correlated with N uptake. The medium organic fertilizer level (160.8 kg N ha-1) was found to be the optimum fertilizer treatment, and Nanjing 46 appeared to be the best variety for organic rice cultivation. To increase rice grain yields and reduce the potential risk of non-point source pollution in organic agriculture, further research is needed to improve the N use efficiency in organic rice cultivation.  相似文献   

18.
Nitrogen Assimilation in Roots and the Transport of Nitrogen Compounds in the Bleeding Sap of Roots in relation to Manganese Nutrition. The assimilation of nitrogen in the roots of 27 days old pumpkin plants was examined in relation to manganese nutrition. The transport of nitrogen compounds in the xylem was determined in roots and in the bleeding sap of roots using nitrate as the N-source. The maximum NO3 content in the roots was observed in the Mn treatment which resulted in the highest shoot yields (0.05 ppm Mn). The bleeding sap of this treatment was lowest in nitrate concentration, but showed the highest rate of transport of organic nitrogen compounds. In experiments with 15N in the nutrient solution the isotope was found in the roots in organic and in inorganic compounds. The composition of the fraction of free amino acids differed between roots and xylem sap. In the bleeding sap glutamine was especially dominant. In the roots the amino acid composition depended on the extent of Mn-supply. Lowest glutamine concentrations were found in the xylem sap from the treatment with maximum shoot yields. A numerical difference was found in the xylem sap between organic N (N(org)) and the amino acid nitrogen. This difference which account for more than 50 % of the organically bound nitrogen is suggested to be made up in part by low molecular weight peptides, amino sugars and other compounds. In Mn deficiency a general reduction in the intensity of nitrogen metabolism was found. With Mn toxicity the N assimilation activity was more intensive than for the low Mn supply. Simultaneously, however, the transport of organic N compounds from the root was lower.  相似文献   

19.
Comparative physiological studies on iron (Fe) chlorosis of Vicia faba L. and Helianthus annuus L. were carried out. High internal Fe contents in Vicia cotyledons (16–37 μg) were completely used for plant growth and Fe chlorosis was not inducible by the application of nitrate (with or without bicarbonate). In Helianthus, low quantities of Fe in the seeds (4 μg) were insufficient for normal growth and without Fe in the nutrient solution, Fe chlorosis was obtained in all treatments. This chlorosis was an absolute Fe deficiency. Also, the treatment with 1 μM Fe in the nutrient solution and nitrate (with or without bicarbonate) led to severe chlorotic symptoms associated with low leaf Fe concentrations and high Fe concentrations in the roots. In contrast, Helianthus grown with NH4NO3 and 1 μM Fe had green leaves and high leaf Fe concentrations. However, with NO3 supply (with or without bicarbonate), Fe translocation from the roots to the upper plant parts was restricted and leaves were chlorotic. Chlorotic and green sunflower leaves may have the same Fe concentrations, leaf Fe concentration being dependent on Fe translocation into the leaf at the various pH levels in the nutrient solution. At low external pH levels (controlled conditions) more Fe was translocated into the leaf leading to similar leaf Fe concentrations with higher chlorophyll concentrations (NH4NO3) and with lower chlorophyll concentrations (NO3). This indicates a lower utilization of leaf Fe of NO3 grown sunflower plants. Utilization of Fe in faba bean leaves is presumably higher than in sunflower leaves. In Vicia xylem sap pH was not affected by nitrate. In contrast, the xylem sap pH in Helianthus was permanently increased by about 0.4 pH units when fed with nitrate (with or without bicarbonate) compared with NH4NO3 nutrition. The xylem sap pH is indicative of leaf apoplast pH. From our earlier work (Mengel et al., 1994; Kosegarten und Englisch, 1994) we therefore suppose that in Helianthus, Fe immobilization occurs in the leaf apoplast due to high pH levels when grown with nitrate (with or without bicarbonate).  相似文献   

20.
施肥对大白菜中氮同位素及硝酸盐含量的影响   总被引:2,自引:2,他引:0  
研究不同肥料配施处理对土壤和大白菜中稳定性氮同位素丰度(δ15 N‰)及硝酸盐含量的影响.结果表明,随着有机肥比例的降低,大白菜中δ15 N和硝酸盐含量分别呈现逐渐降低和增加的趋势,对照大白菜中δ15 N和硝酸盐含量分别为+9.355‰和1459mg/kg;纯有机肥(100%-O)和纯化肥(100%-C)处理大白菜中δ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号