首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
在崩岗侵蚀研究中,为了高效精准的对高陡崩壁土体侵蚀沉积运移进行准确监测,运用无人机贴近摄影测量技术对崩岗研究区进行数字影像采集,通过运动恢复结构-多视点匹配(Structure From Motion-Multi View Stereo,SFM-MVS)技术,生成点云数据及研究区数字表面模型(Digital Surface Model,DSM),利用ArcMap进行叠加分析监测周期内研究区侵蚀沉积变化。从定位精度、测量精度、重现性分析3个方面对贴近摄影测量技术进行误差及可行性分析。最终验证结果贴近摄影测量技术总平均重投影误差为0.19 mm,侵蚀沉积量总平均绝对误差为0.006 m~3,较传统倾斜摄影测量技术误差降低了了45.45%。高程精度较倾斜摄影测量技术总体提升了162.5%。重复点云数据高程误差的平均值仅为0.36 mm,识别图像及控制点误差均达到毫米级,因此利用无人机贴近摄影测量技术精度满足崩岗高陡崩壁监测需求,该技术可提取崩岗研究区侵蚀地貌特征信息,是较为高效精准的研究侵蚀沉积过程的监测技术。  相似文献   

2.
基于数字高程模型的树木三维体积测量   总被引:6,自引:2,他引:4  
为了实现对树木高精度无损的三维体积测量,该文以三维激光扫描系统采集树木点云数据为依据,并运用数字化测绘成图软件对树木的点云数据建立数字高程模型,通过立体三角网的建立,利用成图软件的土方计算功能计算出树木的体积,并详细介绍了系统的计算原理。本文以试验区选定的20棵树为研究对象,采用该系统对20棵不同高度和体积的油松进行了10次重复试验,并将测量结果与人工测量结果进行了对比分析,试验结果表明与人工测量结果相一致,(标准误差δx=3.54,绝对误差限△=7.002,相对误差限E/%=3.15%,精度可达96.852%,)能够运用于树木体积的测量。  相似文献   

3.
基于WPF的粮仓三维激光测绘系统设计与开发   总被引:2,自引:2,他引:0  
粮仓清仓查库是粮食储藏管理中必不可少的环节,关系国内粮食的宏观调控。该文针对传统的清仓查库方式中效率低,准确率低的问题,在搭建三维激光监测系统的基础上,提出基于三维激光扫描的粮堆快速三维建模与体积计算方法。利用三维激光测距传感器扫描粮堆表面轮廓,获取表面三维点云,再根据Delaunay原则对点云进行三角划分,最终利用微软WPF(windows presentation foundation)技术的3D渲染引擎完成粮堆三维模型的建立,而系统中粮堆体积的快速计算采用方格网算法。利用该系统在实验室搭建的试验粮堆上进行了试验。系统利用处理后的标准点云数据可快速准确地完成粮堆三维模型的建立。通过对试验数据的处理和分析,结果显示利用该系统对粮堆扫描后计算出的体积与真实体积的相对误差的平均值仅为0.318%。验证了该系统中所使用的体积计算方法的准确性与稳定性。该研究为粮仓的清仓查库提供了一种高效准确的方法。  相似文献   

4.
为解决当前果园探测技术难以在恶劣的果园环境中提取果树冠层信息的问题。该研究将毫米波雷达应用于果园冠层探测,搭建了基于毫米波雷达的果园冠层探测系统,利用该系统扫描得到了果园点云,检测和估算得到每棵果树的株高、冠幅和体积参数。针对毫米波雷达在不同距离下产生点云密度不同的问题,该研究提出了一种基于可变轴的椭球模型自适应密度聚类算法,用以提高果树点云识别效果,进而使用Alpha-shape算法和随机抽样一致算法(Random Sample Consensus)对果树进行了表面重建和结构参数的提取。通过与人工测量数据比较,该研究提出的聚类算法可以有效的识别和提取单木冠层点云,代表果树识别精度的 F1 分数为 93.7%;检测到的果树的株高和冠幅的平均相对误差分别为8.7%和8.1%,决定系数分别为0.84和0.92,均方根误差分别为16.39和7.82 cm;使用Alpha-shape算法计算得到平均果树体积为5.6 m3,相比传统几何法测量体积,体积计算准确度提高了59.4%。该研究表明毫米波雷达可以用于果园冠层信息的准确提取,为采集果园冠层信息提供了技术,对农业信息采集和自动化作业技术的发展具有重要意义。  相似文献   

5.
基于点云采集设备的奶牛体尺指标测量   总被引:4,自引:4,他引:0  
为验证Xtion在奶牛体尺测量上应用的可行性,该文以提高现有体尺指标测量技术的精度、效率及自动化程度为目标,选用Xtion作为采集设备,石膏奶牛模型和真实奶牛作为试验对象,在实验室环境下,采用高精度三维扫描仪扫描奶牛模型作为对比点云数据,以不同距离下Xtion采集的数据作为测试点云数据,通过统计误差定量分析数据精度和密度随采集距离变化的规律,以确定合适的采集距离。养殖场环境下,在小于1.2 m采集距离条件下利用Xtion获取奶牛点云数据,采用Meshlab对点云数据进行可视化和交互测量,定性分析阳光、体表材质等因素对获取点云数据质量的影响,并将交互测量与人工测量结果进行对比分析。结果表明,在遮挡太阳光和采集距离大于0.6小于1.2 m条件下,平均误差小于±5 mm,相对误差小于10%,Xtion作为点云采集设备用于奶牛体尺测量是可行的。  相似文献   

6.
为提高松木表面缺陷检测精确度,保证检测速率,该研究提出一种改进RT-DETR的检测模型RIC-DETR。首先,从木材表面缺陷公开数据集中获取图片,并进行标注及数据增强,构建一个包含13642张图片的表面缺陷数据集;其次,对比VGG11、VGG13、ResNet18和VanillaNet13等网络架构,选用计算复杂度低且检测精度较高的ResNet18作为主干特征提取基准网络;然后,引入反向残差移动模块更新ResNet18中的基本块,扩展模型的感受野,改善层间的特征交互;最后,使用EfficientViT模型中的级联分组注意力机制对反向残差移动模块进行二次创新改进,降低计算资源的消耗,提升模型的表达能力。试验结果表明,RIC-DETR的精确率、召回率、平均精度值分别为95.4%、96%、97.2%,均优于目前主流的YOLO系列模型,对比基准模型RT-DETR,RIC-DETR在保持高精度的情况下,参数量、浮点运算量和内存占用量大幅减少,分别降低了54、57、52个百分点,同时检测速度可达63.5帧/s。RIC-DETR模型具有复杂度低、准确率高、检测速度快的特点,可为松木的表面缺陷检测提供技术支持。  相似文献   

7.
基于RGB-D相机的玉米茎粗测量方法   总被引:1,自引:1,他引:0  
为实现田间玉米茎粗的快速测量,提出了一种基于RGB-D(RGB-Depth)相机的玉米茎粗参数提取方法。以小喇叭口期玉米为观测对象,利用RGB-D相机获取田间玉米的彩色图像和深度图像。首先,根据玉米与背景的颜色差异,对图像进行自动阈值分割,提取图像中感兴趣区域内的信息;利用形态学"开"操作剔除图像中的噪声,得到玉米茎杆的主干。其次,对茎杆主干进行骨架化操作,检测骨架的交叉点和末端点,确定茎杆的待测量部位。然后,对该部位的点云数据进行去噪、聚类、椭圆拟合操作,得到椭圆的长轴和短轴,获得玉米的茎粗。对20株玉米进行测试,结果表明:茎粗长轴的平均测量误差为3.31 mm,标准差为3.01 mm,平均测量相对误差为10.27%,茎粗短轴的平均测量误差为3.33 mm,标准差为2.39 mm,平均测量相对误差为12.71%。该研究可为作物表型参数的快速获取提供参考。  相似文献   

8.
彭彦昆  孙晨  刘乐  李阳 《农业工程学报》2022,38(23):266-275
中国是水果消费大国,但在水果产后检测装备方面相对滞后。针对目前在线装置无法采集苹果全表面图像信息且无法精确计算缺陷面积的问题,该研究以表面缺陷面积的快速检测为主要目标,提出苹果全表面图像合成算法,设计了一套苹果外部品质在线检测及分级装置。该研究以苹果为例,基于球模型提出苹果全表面图像合成算法、缺陷面积校正算法精确计算苹果的表面缺陷面积。通过试验验证,对苹果表面图像进行分割合成后,整体的图像的漏检率为0。提出缺陷面积校正算法,可以计算图像中位于任意位置的苹果缺陷真实面积,选取了120个样本进行验证,其中擦伤样本、碰伤样本、痘斑病样本、表面腐败样本各30个。擦伤样本缺陷面积预测值与真实值的决定系数R2为0.9787,标准误差RMSE(Root Mean Squared Error)为3.577 4 mm2,偏角试验中R2为0.975 8,RMSE为3.466 3 mm2。碰伤样本缺陷面积预测值与真实值的R2为0.973 0,RMSE为3.981 9 mm2,偏角试验中R2为0.974 2,RMSE为4.062 4 mm2。痘斑病样本缺陷面积预测值与真实值的R2为0.970 8,RMSE为3.836 6 mm2,偏角试验中R2为0.977 9,RMSE为3.895 3 mm2;表面腐败样本缺陷面积预测值与真实值的R2为0.9812,RMSE为3.178 1 mm2,偏角试验中R2为0.974 8,RMSE为6.304 4 mm2。在整个试验过程中,R2总体上高于0.97,RMSE小于6.304 4 mm2。装置检测苹果的速度为2个/s,评级准确率为95%,检测与苹果评级精度较高,工作较为稳定,实现了苹果外部缺陷的检测与分级评价,为苹果的外部品质检测提供了技术支撑。  相似文献   

9.
苹果、桃等农副产品品质检测与分级图像处理系统的研究   总被引:31,自引:7,他引:24  
通过建立图像数据采集与分析系统及相关的农副产品图像数据库,实现对农副产品品质(表面颜色、形状、缺陷)的准确分级。使用该系统,对100个富士苹果进行质量分级,检测优等果准确率达到96%。对其它农副产品也可以通过建立其样本图像数据库,进行多种信息的综合分析与判断,实现对不同农产品品质的检测与分级。  相似文献   

10.
基于改进SSD的柑橘实时分类检测   总被引:6,自引:6,他引:0  
针对人工分拣柑橘过程中,检测表面缺陷费时费力的问题,该文提出了一种基于改进SSD深度学习模型的柑橘实时分类检测方法。在经改装的自制打蜡机试验台架下采集单幅图像含有多类多个柑橘的样本2 500张,随机选取其中2 000张为训练集,500张为测试集,在数据集中共有正常柑橘19 507个,表皮病变柑橘9 097个,机械损伤柑橘4 327个。该方法通过单阶段检测模型SSD-ResNet18对图片进行计算和预测,并返回图中柑橘的位置与类别,以此实现柑橘的分类检测。以平均精度AP(average precision)的均值m AP(mean average precision)作为精度指标,平均检测时间作为速度指标,在使用不同特征图、不同分辨率和ResNet18、MobileNetV3、ESPNetV2、VoVNet39等4种不同特征提取网络时,进行模型分类检测效果对比试验研究。研究表明,该模型使用C4、C5特征图,768×768像素的分辨率较为合适,特征提取网络ResNet18在检测速度上存在明显优势,最终该模型的m AP达到87.89%,比原SSD的87.55%高出0.34个百分点,平均检测时间为20.27 ms,相较于原SSD的108.83 ms,检测耗时降低了436.90%。该模型可以同时对多类多个柑橘进行实时分类检测,可为自动化生产线上分拣表面缺陷柑橘的识别方面提供技术借鉴。  相似文献   

11.
植物形态伴随着植物生长过程而发生变化,植物的三维重建对研究植物形态对植物生物量估测、植物病害虫害、基因型表达等有着很重要的意义。目前三维重建方法重建出的三维点云多包含植物的形态、颜色等特征,无法反应植物营养状况(如叶绿素含量)、病虫害胁迫等原因造成有机质空间三维分布改变,同时以往手段都需要专门仪器,携带和作业都受到很大限制。多光谱图像能够反应有机质含量等化学值的分布,在近地面遥感、农产品质量无损检测等发面取得了广泛的应用。该文通过采集31张4叶龄油菜的多光谱图像,使用运动恢复结构算法(structure from motion)方法对其进行空间三维重建,得到油菜的三维点云,并对点云中噪声点进行滤除。以控制点和控制长度对所得模型进行评价,得到长度最大偏差在0.1023 cm,RMSE=0.052599,证明该方法重建所得模型具有较好的空间均匀性与准确性,最后计算NDVI指数空间分布。证明所得模型对将来研究植物营养与病虫害胁迫空间分布有着重要意义。  相似文献   

12.
为了测试利用激光散斑技术区分梨的缺陷与果梗/花萼的可行性,建立了激光散斑图像采集系统,对皇冠梨缺陷(腐烂)部位以及完好部位(花萼/果梗,无缺陷部位)分别进行了激光散斑图像的采集。利用Fujii方法(Fujii’s method)和加权广义差分方法(weighted generalized differences,WGD)对512幅散斑图像进行分析,对得到的Fujii和WGD结果图进行灰度共生矩阵特征提取,分别提取了角二阶矩、熵、惯性矩和相关性相应的均值及标准差,共计16组特征量。利用ROC曲线(receiver operator characteristic curve,ROC)进行特征量选取,结合约登指数测试单一特征量的分类效果,并利用二元logistic回归方法对所选特征量两两组合进行分析,结果显示基于WGD方法得到的角二阶矩均值与相关性标准差相结合在区分缺陷时效果最好,建模和预测准确率均达到了97.5%。试验的结果表明利用激光散斑图像方法对梨缺陷与果梗/花萼进行识别是可行的。  相似文献   

13.
葡萄树为多年蔓生植物,其形态结构复杂且受人工修剪及架势的影响。获取葡萄树地上部植株及器官的形态结构及纹理数据,有助于建立3D可视化模型以表征该植株的品种遗传特征、受环境、架式和人工修剪等因素的影响。该文针对葡萄树形态结构数据获取工作量大、效率低、依靠单一手段所获取数据缺乏完整性等特点,提出一种高效的葡萄树地上部形态结构数据获取方法,首先对葡萄树进行拓扑结构解析和数字化表达实现复杂结构的显示表达;然后针对目标植株进行葡萄树三维形态数据采集,包括植株拓扑结构三维数字化数据采集、品种一致性与差异性分析的DUS(植物新品种特异性(distinctness)、一致性(uniformity)和稳定性(stability)的栽培鉴定试验或室内分析测试)数据采集,器官的形态参数测量,三维扫描与纹理数据采集,目标植株的栽培环境及人工管理措施等信息的采集。结果表明,基于所获取形态结构数据结合植物参数化建模方法重建的葡萄树器官与植株几何模型具有较高的真实感。在葡萄树形态结构数据获取方法的基础上,对植物地上部形态结构数据获取标准化流程进行探讨,以期为其他植物主要器官与植株的形态结构数据获取提供方法参考。  相似文献   

14.
机器视觉技术在黄花梨尺寸和果面缺陷检测中的应用   总被引:39,自引:11,他引:28  
为提高出口水果品质,对黄花梨进行了机器视觉技术检测外形尺寸与表现状况的试验研究。通过确定图像处理窗口、利用Sobel算子和Hilditch细化边缘;确定形心点找出代表果径,试验检测结果表明,预测果径值与实际尺寸的相关系数可达0.96。对检测果面缺陷,提出利用红(R)、绿(G)色彩分量在坏损与非坏损交界处的突变,求出可疑点,再经区域增长定出整个受损面,试验对比表明该算法是精确的  相似文献   

15.
基于序列图像三维重建的稻种品种识别   总被引:3,自引:2,他引:1  
利用机器视觉技术识别稻种表面形态,从而识别种子纯度,可以为种子品质确定提供一种快速精确的技术方法。该文应用序列图像聚焦测度法进行了稻种三维重建,在稻种的品种识别中,将三维特征作为识别依据,相对传统方法仅采用二维图像特征作为识别手段,具有稻种形态测量参数值更精确,外观特征及缺陷表达更全面的优势。该方法通过分析显微镜平台获取的多幅不同对焦距离的图像序列,计算聚焦测度和焦点深度值。结合序列图像聚焦测度法与表面纹理重现,实现稻种形态表面三维重建。通过构造BP神经网络模型,利用测量所得三维立体特征值进行稻种的品种识别,筛选适合稻种检测的BP神经网络算法。试验结果表明,序列图像方法应用于稻种三维重建,其测量精度可达到5μm,将测量所得的三维特征值作为参数进行5个稻种的品种识别,识别率在90%以上。该研究可为农作物品种识别中三维形态及纹理特征的研究提供参考。  相似文献   

16.
基于数字图像处理的苹果表面缺陷分类方法   总被引:9,自引:4,他引:9  
为了实现苹果分级完全自动化,研究了苹果表面缺陷图像分类方法。提取了苹果表面缺陷图像区域的特征参数。根据表面缺陷特征,同时考虑缺陷形状的投影畸变,提出了一种苹果表面缺陷分类方法。分类方法利用二叉树将一个复杂的多模式分类问题分解为多级的、相对简单的二类模式分类问题,并采用人工神经网络与阈值判别相结合的方法,将苹果表面缺陷分为碰压伤、刺伤、裂果、病虫果和虫伤。试验表明:该分类方法能将苹果表面缺陷进行分类。  相似文献   

17.
水果直径和缺陷面积的机器视觉检测   总被引:14,自引:4,他引:14  
黄花梨是中国的一种重要水果,果径和果面缺陷面积是黄花梨分级的两项关键指标。通过研究黄花梨的分光反射特性,研制了一套适合黄花梨品质检测的机器视觉系统。为了适应实际生产中水果方向的随机性和水果外形的不规则性的要求,使水果尺寸检测的方法有更好的适应性,设计了一种利用水果的最小外接矩形(MER)法求最大横径的方法,并进行了试验验证,得出了表示实际最大横径与预测最大横径的关系的回归方程式,两者的相关系数为0.9962。分析了黄花梨缺陷区域的R、G、B各分量灰度的变化特点,利用R分量灰度和G分量灰度在缺陷区域和完好区域交界处有明显突变这一特点,采用梯度算法求得了可疑缺陷点,然后再用区域生长法,找出了缺陷点像素的最大连通集及所有的缺陷区域;采用像素点变换法,实现了根据三维物体的二维投影图像恢复物体表面的真实几何面积的设想,大大降低了缺陷面积计算的误差;另外,还提出了一种新的面积修正方法,即用实际缺陷面积等于经像素点变换后的缺陷面积减去缺陷区域周长的一半加上1个像素点的面积来进行修正,进一步提高了缺陷面积计算的精度,而且该修正方法同样适用于其它图像面积的计算  相似文献   

18.
基于Micro-CT的黄瓜苗坨夹取破损检测及取苗参数优化   总被引:2,自引:1,他引:1  
为了减小自动移栽时取苗爪夹取苗坨的破损,利用X射线Micro-CT对处于夹取状态的黄瓜苗坨进行检测,用阈值分割方法将根系和孔隙从断层图片中分割提取并三维重构。在垂直和水平方向将苗坨划分成6等份,对根系和孔隙的体积和分布密度进行统计,得出夹取过程中根系未发生显著位移,根系的作用是将基质缠绕包裹住,防止苗坨散坨;孔隙的体积和分布密度变化非常显著,新生孔隙的聚集和裂缝的形成是导致苗坨破损的主要原因。苗坨中夹针收缩移动的区域、夹针的顶端部位和苗坨的顶部是破损的主要部位,用这3个区域孔隙体积的增加量作为评价苗坨破损量的指标,对圆形和扁形2种夹针,在夹针直径为2、2.5和3 mm,夹取初始角为7°、9°和11°时进行扫描试验,得出在夹针收缩量为5 mm时,减小夹针直径和增大夹持初始角可以减小苗坨破损量,相同夹取条件下圆针夹取苗坨的破损量小于扁针;在夹取力等于苗坨屈服点的抗压力7.31 N时,圆针和扁针的收缩量分别为4.75和4.26 mm,此时孔隙体积的增加量分别为843.7和786.1 mm~3,扁针夹取苗坨的破损量小于圆针。以苗坨质量损失25%作为考核指标,在自动取苗机构上进行试验,结果表明,在夹针直径为2 mm,夹取力和夹取初始角分别为7.31 N和11°时,苗坨的破损率为6.3%,小于其他参数的试验结果,与Micro-CT扫描分析的结论一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号