首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
基于定向天线WSN射频信号传播试验   总被引:1,自引:0,他引:1       下载免费PDF全文
为解决水稻田中无线传感器网络(WSN)的规划与部署问题,基于无线射频信号的传播特性,研究了水稻田间WSN射频信号与影响因素间的关系,并对全向天线和定向天线在水稻田的通信性能进行了对比分析.试验选取WSN的载波频率为915MHz,分析WSN射频信号受天线高度、天线类型和通信距离等因素联合作用下在水稻田的衰减情况,建立了915 MHz无线射频信号接收强度与环境传播因子及通信距离间的线性模型,并进行数据拟合,拟合曲线的R2最低为0.882、最高为0.934,验证了WSN射频信号衰减程度与通信距离的一致性,为WSN在水稻田的节点部署和天线类型选择提供指导和依据.  相似文献   

2.
针对当前农业大棚的智能化、信息化、网络化需求,构建了一种互联型的农业大棚智能测控系统。系统前端由WSN负责大棚环境参数的采集和控制,利用Zigbee技术进行组网。网关产生本地控制策略以及与管理平台服务器进行信息交互,重点阐述了传感器节点和网关的设计。通过实地应用测得,该系统的WSN网络通信稳定,传感各节点参数采集精确,满足工程设计需求。  相似文献   

3.
针对基于农田应用的WSN路由问题,结合WSN层次型路由算法特点,充分考虑传感器节点剩余能量和传输能耗,设计了一种基于蚁群优化的分层路由算法。仿真结果表明:算法实现了簇头多跳路由性能的改善,均衡了网络整体能量消耗,延长了网络生存时间。  相似文献   

4.
针对DRNG算法中出现的当节点天线为全向天线时形成的网络拓扑复杂度过大的问题,对DRNG算法进行了改进,在保证原算法网络优化性能的基础上,减少了需要确定的邻居节点个数,缩小了确定邻居节点时中间节点的搜索范围,提高了DRNG算法的执行效率,节省了节点的能量消耗.  相似文献   

5.
针对DRNG算法中出现的当节点天线为全向天线时形成的网络拓扑复杂度过大的问题,对DRNG算法进行了改进,在保证原算法网络优化性能的基础上,减少了需要确定的邻居节点个数,缩小了确定邻居节点时中间节点的搜索范围,提高了DRNG算法的执行效率,节省了节点的能量消耗.  相似文献   

6.
【目的】将UAV(Unmanned aerial vehicle)引入传统的WSN(Wireless sensor network)中,可给静态WSN系统带来移动性和灵活性。通过将UAV-WSN结合起来应用于农田信息监测,有效地扩展单个WSN的覆盖面积,增强网络的鲁棒性,解决静态WSN在恶劣的自然环境中被划分成无法有效通信的独立子网所带来的农田监测信息采集失败的问题。【方法】选择3个物理位置独立的地块构建分簇的WSN网络,将UAV-WSN结合起来,系统中的传感器节点采用休眠-唤醒-工作-休眠的工作周期,利用UAV上的移动采集节点与UAV飞行轨迹经过的地面上的独立子网交互并采集农田信息,通过移动节点携带的3G网络将农田信息传输到农田监测数据中心。【结果】地块间距离超过100 m、UAV飞行高度维持在10 m时,UAV-WSN网络能够较好地完成农田信息采集任务,UAV WSN的通信质量明显优于静态WSN的通信质量,地块1、2和3的平均链路消耗分别降低了约10%、27%和14%,平均丢包率降低了约24%、68%和29%。【结论】UAV-WSN结构的网络通信扩展了静态WSN的传输距离、提高了WSN系统的能量效率、延长了系统的生命周期,可以为大面积的平原或山地环境下的农田信息采集提供参考。  相似文献   

7.
[目的]将UAV(Unmanned aerial vehicle)引入传统的WSN(Wireless sensor network)中,可给静态WSN系统带来移动性和灵活性.通过将UAV-WSN结合起来应用于农田信息监测,有效地扩展单个WSN的覆盖面积,增强网络的鲁棒性,解决静态WSN在恶劣的自然环境中被划分成无法有效通信的独立子网所带来的农田监测信息采集失败的问题.[方法]选择3个物理位置独立的地块构建分簇的WSN网络,将UAV-WSN结合起来,系统中的传感器节点采用休眠-唤醒-工作-休眠的工作周期,利用UAV上的移动采集节点与UAV飞行轨迹经过的地面上的独立子网交互并采集农田信息,通过移动节点携带的3G网络将农田信息传输到农田监测数据中心.[结果]地块间距离超过100 m、UAV飞行高度维持在10 m时,UAV-WSN网络能够较好地完成农田信息采集任务,UAV-WSN的通信质量明显优于静态WSN的通信质量,地块1、2和3的平均链路消耗分别降低了约10%、27%和14%,平均丢包率降低了约24%、68%和29%.[结论]UAV-WSN结构的网络通信扩展了静态WSN的传输距离、提高了WSN系统的能量效率、延长了系统的生命周期,可以为大面积的平原或山地环境下的农田信息采集提供参考.  相似文献   

8.
基于ZigBee无线物联网通讯技术,研制了太阳能墒情采集模块.由太阳能墒情采集模块组成的无线传感器网络(WSN)网关节点,即"点控机"及"站控机",分布在被测区域,负责采集葡萄园各层土壤的温湿度.网关节点自行组网,透明通讯协议将信息发送到远端PC机,实现信息的实时动态显示及存储.系统通过单节点设备测试及网络测试证明,网关节点布置在20~120m传输距离内,系统运行稳定可靠.  相似文献   

9.
针对传统温室环境监控存在的地域、距离限制以及监控系统布线冗杂、数据时延性等问题,设计基于无线传感器网络(WSN)和可编程控制器(PLC)的温室监控系统。首先以CC2530芯片为核心,搭建了基于ZigBee的星型拓扑无线传感器网络。然后设计WSN与PLC的通信协议,实现环境检测数据的实时动态传输。最后,提出PLC现场控制的温湿度模糊控制策略,以应对温室控制的强非线性。该系统传感网络组网灵活,温室数据实时远程发布,为物联网和PLC现场控制系统融合提供了一种有效途径。  相似文献   

10.
6LoWPAN无线传感网络利用IPv6在IEEE802.15.4链路上的无缝连接,实现WSN和Internet主干网之间的点对点通信。以6LoWPAN无线传感网络在农业温室大棚环境监测中的应用为例,构建6LoWPAN无线传感网络监测系统的总体方案,给出了6LoWPAN节点和6LoWPAN网关的软硬件设计,并对该系统进行了测试。测试结果表明,6LoWPAN无线传感网络系统实现了WSN与外部IPv6网络的直接互联和数据交互,完成了对温室大棚环境的实时监测,结果稳定高效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号