首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Callistemon is an Australian species used as ornamental plant in Mediterranean regions. The objective of this research was to analyse the ability of Callistemon to overcome water deficit in terms of adjusting its physiology and morphology. Potted Callistemon laevis Anon plants were grown in controlled environment and subjected to drought stress by reducing irrigation water by 40% compared to the control (irrigated to container capacity). The drought stress produced the smallest plants throughout the experiment. After three months of drought, the leaf area, number of leaves and root volume decreased, while root/shoot ratio and root density increased. The higher root hydraulic resistance in stressed plants caused decreases in leaf and stem water potentials resulting in lower stomatal conductance and indicating that water flow through the roots is a factor that strongly influences shoot water relations. The water stress affected transpiration (63% reduction compared with the control). The consistent decrease in gs suggested an adaptative efficient stomatal control of transpiration by this species, resulting in a higher intrinsic water use efficiency (Pn/gs) in drought conditions, increasing as the experimental time progressed. This was accompanied by an improvement in water use efficiency of production to maintain the leaf water status. In addition, water stress induced an active osmotic adjustment and led to decreases in leaf tissue elasticity in order to maintain turgor. Therefore, the water deficit produced changes in plant water relations, gas exchange and growth in an adaptation process which could promote the faster establishment of this species in gardens or landscaping projects in Mediterranean conditions.  相似文献   

2.
Phillyrea angustifolia is a native Mediterranean species, which has recently been considered suitable for landscaping purposes. We hypothesize that hardening plants in the nursery could increase their tolerance of drought after transplanting. The effects of paclobutrazol (PBZ) and different irrigation regimes applied to seedlings planted in 4.5-L plastic pots were investigated. PBZ was applied as a substrate drench at 0 mL L−1 (untreated control), 30 mL L−1 and 40 mL L−1 per plant and three drip irrigation treatments were used: I100, plants watered at water-holding capacity, I60, plants watered to 60% of I100, and I40, plants watered to 40% of I100. Plants were pot-grown in an unheated greenhouse near the Mediterranean coast of SE Spain. A reduction in plant height and stem diameter was observed one month after being drenched by PBZ. The irrigation regime significantly affected plant height after three months of cultivation and did not affect stem diameter during the nursery period. Significant interaction between the irrigation regime and PBZ dose was evident for plant height during the nursery period. I100 and untreated PBZ plants had the lowest stomata density. PBZ doses significantly reduced canopy weight and leaf area compared with the control. I60 plants showed the greatest leaf area and canopy dry weight, and the highest root length, dry weight, volume and number of forks. Both I60 and I40 treatments showed an equally high water use efficiency (WUE) (calculated as the total plant dry matter divided by the total amount of water supplied by the irrigation treatments). In general, PBZ induced a suite of morphological adaptations (increased root-to-shoot ratio and stomata density, decreased leaf area reduction, fine roots, etc.) that might allow the plants to tolerate drought after transplanting.  相似文献   

3.
Summary

The effect of irrigation and air humidity on the water relations and root and shoot growth of Rhamnus alaternus L. during the nursery phase was considered to evaluate the resulting degree of hardening obtained by these treatments. R. alaternus seedlings were pot-grown in two greenhouses of equal characteristics. In one of these greenhouses air humidity was controlled using a dehumidifying system, while in the other one the environmental conditions were not artificially modified. In each greenhouse, two irrigation treatments were used. Thus, four different treatments were applied during the nursery phase (January-May): 1) control air humidity + control irrigation; 2) control air humidity + deficit irrigation; 3) low air humidity + control irrigation; 4) low air humidity + deficit irrigation. In May, plants of all treatments were transplanted and grown in good environmental and irrigation conditions for one month (17 May–20 June), after which they received no irrigation until the end of the experiment (14 July). Low air humidity and water deficit reduced all shoot growth parameters during the nursery phase, however the root growth was not significantly affected by air humidity and even increased under the water deficit. The reduction in leaf water potential under water stress was induced by tissue dehydration since leaf turgor potential also decreased and non-osmotic adjustment was observed. The drought effects on water relations were similar in both low and high air humidity. The leaf stomatal conductance was also reduced by both types of stress, leading to a decrease in the rate of photosynthesis at the end of the nursery phase. Both water deficit and low air humidity showed their value as nursery acclimation processes, improving the survival of seedlings following transplanting and non-irrigation conditions (establishment phase). The stomatal regulation and a shift in the allocation of assimilates from shoot to root were the acclimation mechanisms showed by R. alaternus under both types of stress. The accumulated effects in low air humidity and water deficit plants could explain the highest percentage of survival at the end of the establishment period (97%) for the combined treatment.  相似文献   

4.
Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) are leafy vegetable crops grown in south-east Asian countries where rainfall varies dramatically from excess to deficit within and between seasons. We investigated the physiological and growth responses of these plants to waterlogging and water deficit in a controlled experiment in a glasshouse. Juvenile plants were subjected to waterlogging or water deficit for 19 days in case of Chinese kale and 14 days in case of Caisin and compared with well-watered controls. Caisin tolerated waterlogging better than Chinese kale because it produced hypocotyl roots and gas spaces developed at the stem base. In Chinese kale, waterlogging reduced plant fresh weight (90%), leaf area (86%), dry weight (80%) and leaf number (38%). In contrast, waterlogging had no impact on leaf number in Caisin and reduced plant fresh and dry weights and leaf area by 60–70%. Water deficit reduced leaf area, fresh weight and dry weight of both species by more than half. Leaf number in Chinese kale was reduced by 38% but no effect occurred in Caisin. Water deficit increased the concentration of nitrogen in the leaf dry matter by more than 60% in both species and the leaf colour of water deficient plants was dark green compared with the leaf colour of well-watered plants. Soil water deficit delayed flowering of Caisin while waterlogging accelerated it. Thickening and whitening of the cuticle on the leaves of Chinese kale probably increased its ability to retain water under drought while Caisin adjusted osmotically and Chinese kale did not. Waterlogging and water deficit had strong effects on leaf gas exchange of both Brassica species. Water deficit closed the stomata in both species and this was associated with a leaf water content of 9 g g−1 DW. In contrast, waterlogging reduced conductance from 1.0 to 0.1 mol H2O m−2 s−1 in direct proportion to changes in leaf water content, which fell from 11 to 5 g g−1 DW. This separation of the effects of water deficit and waterlogging on conductance was reflected in transpiration, internal CO2 concentration and net photosynthesis. In conclusion, Chinese kale and Caisin showed rather different adaptations in response to waterlogging and water deficit. Caisin was more tolerant of waterlogging than Chinese kale and also showed evidence of tolerance of drought. There is genetic variation to waterlogging within the Brassica genus among the leafy vegetables that could be used for cultivar improvement.  相似文献   

5.
In the northeast of Brazil the drought period determines the yield period of the sugar apple (Annona squamosa L.). As a result, the use of irrigation is essential to stagger production over the course of the year. The results shown here represent an analysis of water status levels in sugar apples in daylight and seasonal periods in semi-arid regions. Two plant groups were studied: one without irrigation and the other with irrigation during drought months. This study showed that younger leaves displayed greater stomatal conductance and transpiration. In drought months, even in irrigated plants, the high air moisture deficit had a strong influence on the stomatal closure, which did not translate into a reduction in transpiration. Over the same period, the leaf water potential was −1.8 and −2.9 MPa at mid-day in irrigated and non-irrigated plants, respectively, and only the irrigated plants could recover their leaf hydration level at night. With a water deficit, plants showed greater control of transpiration through stomatal closure, with a linear relationship between stomatal conductance and transpiration.  相似文献   

6.
Summary

The relationship between maximum daily shrinkage in trunks (MDS), daily trunk growth (DTG), predawn water potential (Ψpd) and midday stem water potential (Ψstem) were studied in an irrigation experiment in peach trees. Control trees were irrigated to replace evapotranspiration, with trees receiving regulated deficit irrigation (RDI) watered at 35% of this rate during Stage II of fruit development and after harvest. The RDI trees were watered as controls during Stage III of fruit development. Minimum (Ψpd and Ψstem fell to –0.6.MPa and –1.2 MPa, respectively in RDI plots compared with –0.2 and –0.6 MPa in the controls. Trunk growth was less in the RDI plots than in the controls during drought. In contrast, MDS was higher when deficit irrigation was applied in the RDI trees. When site differences were considered the correlation between (Ψpd and accumulated trunk growth over an ample period was loose, while maximum daily shrinkage and midday stem water potential remarkably improved such a correlation. However, pooling all available data, the correlation between Ψstem and MDS was very poor (R2=0.44) and it substantially improved only when using data from specific phenological periods (i.e. R2=0.75). A seasonal drift in MDS values was observed and it was related to the seasonal changes in trunk growth rates, (i.e. highest shrinkage was found when growth rates were lowest). We concluded that phenology in combination with drought reduce the reliability of the water status information obtained from MDS.  相似文献   

7.
The effects of regulated deficit irrigation (RDI) and partial root-zone drying (PRD) on tomato fruit growth and cell wall peroxidase activity in tomato exocarp were investigated in growth chamber conditions. The RDI treatment was 50% of water given to fully irrigated (FI) plants and the PRD treatment was 50% of water of FI plants applied to one half of the root system while the other half dried down, with irrigation shifted when soil water content of the dry side decreased 15–20%. RDI significantly reduced fruit diameter, though PRD reduced fresh weight while having no significant effect on fruit diameter. The activity of peroxidase was significantly higher in RDI and PRD treated plants compared to those of FI. Differences between RDI and PRD were expressed on temporal basis. In the fruits of RDI treated plants peroxidase activity began to increase in the phase when fruit growth started to decline with the peak of enzyme activity of 6.1 HRPEU g−1 FW reached in the phase of mature green fruits when fruit growth rate was minimal. Increase of peroxidase activity in PRD fruits coincided with the ripening phase and the peak of enzyme activity (5.3 HRPEU g−1 FW) was measured at the end of fruit ripening. These data potentially identified contrasting and different roles of tomato exocarp cell wall peroxidase in RDI and PRD treated plants. In RDI treated plants peroxidase may have a role in restricting fruit growth rate, although the increase in enzyme activity during ripening of PRD treated fruit pointed out that peroxidase may also control fruit maturation by inducing more rapid process.  相似文献   

8.
The shortage of water in many parts of the world has led to the development of new irrigation strategies such as regulated deficit irrigation and sustained deficit irrigation. Water deficit induces different morphological and physiological responses in ornamental plants, but the application of irrigation strategies can obtain quality plants well adapted to the environment. Deficit irrigation controls plant growth, and can be considered a sustainable technique which avoids the use of plant growth regulators. In addition, root system morphology can be modified by water stress to improve the ability to extract water from the soil and strengthen a plant’s physical support. In addition, the application of deficit irrigation during nursery period is a technique frequently used to harden plants before transplanting. Water deficit affects morphological and physiological aspects that might provide a capacity to adapt to adverse conditions. All these features contribute to increasing water use efficiency and the root to shoot ratio and root density, promoting the more rapid establishment of ornamental plants in garden or landscape settings. In view of the results obtained, it is possible to apply and validate the most appropriate irrigation strategy for each species and to obtain the full benefits of applying deficit irrigation.

Abbreviations: DI, Deficit irrigation; ETc, Crop evapotranspiration; gs, stomatal conductance; Pn, Net photosynthesis; RDI, Regulated deficit irrigation; SLA, Specific leaf area; WUE, Water use efficiency  相似文献   


9.
Greenhouse-grown hot pepper was used to investigate the effect of Time-Space deficit irrigation (TSDI), a newly developing irrigation technique based on regulated deficit irrigation (RDI) and partial rootzone drying (PRD), by measuring plant growth, yield and irrigation water use efficiency. The treatments consisted of factorial combinations of three factors, organized following an orthogonal L9 (3)4 test design with four growing stages. Three irrigation strategies (conventional furrow irrigation with full-water when soil water content was lower by 80% of field capacity (F), conventional furrow irrigation with 50% of full-water (D) and alternate furrow irrigation with 50% of full-water (P)) as the main plot factor were applied to select the optimum irrigation parameter at different stages of crop development, the treatment in which irrigation water was applied to both sides of root system when soil water content was lower by 80% of field capacity during all stages was considered as control (FFFF). Water consumption showed some significant effect of irrigation treatment during the growing period of different drought stress patterns application, and therefore decreased in these treatments to a level around 54.68–70.33% of FFFF. Total dry mass was reduced by 1.17–38.66% in TSDI treatments compared to FFFF. However, the root–shoot ratio of FFFF was lower than other treatments and the differences from FFFF and other TSDI treatments were statistically significant. The highest total fresh fruit yield (19.57 T ha−1) was obtained in the FFFF treatment. All deficit irrigations increased the water use efficiency of hot pepper from a minimum of 1.33% to a maximum of 54.49%. At harvest, although there was difference recorded as single fruit weight and single fruit volume were reduced under the TSDI treatments, total soluble solids concentration of fruit harvested under the water-deficit treatments were higher compared to FFFF.  相似文献   

10.
Oleander (Nerium oleander L.) is an evergreen shrub of great ornamental interest which, in recent times, has been increasingly used as a flowering pot plant. Plants grown in pots undergo more frequent water stress conditions than those grown in the soil, due to the limited volume of substrate available for the roots. Oleander is a species adaptable to dry conditions and able to survive long periods of drought. It is well known that under water stress conditions all plants reduce photosynthetic activity, resulting in reduced plant growth. In case of severe water stress, leaves undergo strong wilting and senescence resulting in the loss of ornamental value. In the present work, a study was conducted to evaluate the ecophysiological response to water stress in four oleander cultivars previously recognised (on the basis of traits such as size, habit, earliness, abundance and duration of flowering, aptitude for cutting propagation and rapidity of growth) as suitable for pot plant production. Our data confirm the high drought tolerance of oleander. In the studied cultivars, plants submitted to water stress showed only minor variations in leaf gas exchange parameters [transpiration (E), stomatal conductance (gs) and CO2 net assimilation (A)] for at least 10 days without a change in leaf water content [assessed as relative water content (RWC)] for 22 days from the beginning of the stress treatment. During this period, non-irrigated plants maintained the same water status as control plants and were visually undistinguishable from them. Moreover, plants survived without water supply for one month. Following the supply of water again, they were able to restore RWC, gas exchange parameters and instantaneous water use efficiency [A/E ratio (WUEinst)] to the values of control plants. Furthermore, if at the end of the stress period plants appeared withered and were pale green in colour, they regained their normal appearance after they were irrigated again. Although the four studied cultivars showed some minor differences in leaf gas exchange parameters and in the manner in which the latter parameters changed after irrigation was stopped, the response to water stress was essentially the same. Therefore, as far as drought tolerance is concerned, all these cultivars have a good aptitude for use as flowering pot plants.  相似文献   

11.
Summary

The effect of different doses of nitrogen on water stress in tomato (Lycopersicon esculentum Mill. ‘Royesta’) plants grown in a sandy soil and exposed, or not, to long-term water stress was studied. Nitrogen dose treatments consisted of Hoagland’s solution (N1 treatment), Hoagland’s solution + 40 mM NO3 (N2 treatment), or Hoagland’s solution + 80 mM NO3 (N3 treatment) applied every 3 d, for a total of seven applications following plant establishment. Subsequently, daily application of 80% (stressed) or 100% (unstressed) of the water evapotranspired by control plants the previous day was combined, factorially, with the three nitrogen treatments, for a period of 2 weeks. The leaf fresh weight (FW) at full turgor:leaf dry weight (DW) ratio was high in plants under the N1 and N3 stress treatments, with no significant difference between them soon after the start and at the end of the water stress treatment. However, the N2 treatment produced a significant increase in the ratio in well-watered plants, but not in water-stressed plants at the end of the stress period. The surface area per leaf was greater in stressed than in control plants, except for N2. Leaf water potential was greatly reduced in stressed N2 and N3 plants, but was unaltered in their well-watered counterparts. The significant increases in relative water content at the turgor loss point (around 3%) and in cell membrane rigidity (an increase of more than 125% in the bulk modulus of elasticity) clearly indicate an osmotic adjustment in stressed N2 plants, confirming that this N dose moderated the effects of the water stress imposed on N2 plants.  相似文献   

12.
Although low water use landscaping is becoming common in arid regions, little is known about drought tolerance and drought responses of many ornamental plants, especially herbaceous perennials. Drought responses were assessed for six herbaceous ornamental landscape perennials in a 38 l pot-in-pot system in northern Utah over a 2-year period. The first year was an establishment period. During the second year, drought responses were evaluated for established Echinacea purpurea (L.) Moench, Gaillardia aristata Pursh, Lavandula angustifolia P. Mill., Leucanthemum × superbum (J.W. Ingram) Berg. ex Kent, ‘Alaska’, Penstemon barbatus Roth var. praecox nanus rondo, and Penstemon × mexicali Mitch. ‘Red Rocks’. Plants were irrigated at frequencies of 1 (control), 2, or 4 weeks between June and September, simulating well-watered conditions, moderate drought, or severe drought. Osmotic potential (Ψs), gas exchange, visual quality, leaf area, and dry weight were assessed. In a confined root zone, P. barbatus showed the greatest tolerance to all levels of drought, avoiding desiccation by increasing root:shoot ratio and decreasing stomatal conductance as water became limiting. L. angustifolia and P. × mexicali showed tolerance to moderate drought conditions, but died after exposure to the first episode of severe drought. Neither G. aristata nor L. superbum were able to regulate shoot water loss effectively. Instead, both species displayed drought avoidance mechanisms, dying back when water was limiting and showing new growth after they were watered. Compared to control plants, G. aristata shoot dry weight was reduced by 50% and 84%, and L. superbum shoot dry weight was reduced by 47% and 99% for the 2- and 4-week irrigation intervals, respectively. Root dry weights were affected similarly for both species. E. purpurea exhibited poor visual quality at all irrigation intervals, in particular wilting severely in both drought treatments, but regaining turgor when watered again. P. barbatus is recommended for ornamental landscapes that receive little or no supplemental irrigation, while E. purpurea is not recommended for low water landscapes because of low visual quality under even mild drought.  相似文献   

13.
Young clonal cacao trees have been grown under controlled soil moisture conditions for 20 months in a glasshouse. Weighable soil containers were used, and water was added to restore the soil to field capacity each time the total available water, which was about 40 lb. for each plant, had been depleted to 85% (wet treatment), 50% (medium treatment) or 15% (dry treatment). Plants were either given one of these treatments for the whole experiment, or one treatment was given during the natural dry seasons and another during the natural wet seasons.

Plants given a dry treatment at any time lost their apical dominance and flushed vigorously about 10 days after each watering, though many flushes subsequently withered. The other plants flushed normally, except that the continuously wet plants ceased to flush towards the end of the experiment. The mean expanded area of each leaf was greatest during wet and least during dry periods, and plants which had suffered the least soil moisture deficit throughout growth had the greatest net leaf area and dry weight accumulation. There was little difference in the rate of transpiration per unit leaf area between plants during periods of high compared to medium soil moisture, but the rate was less during dry periods. Dry weight increases both per unit of water transpired and per unit of net leaf area were greatest in the wettest plants.

There was little difference between the effects of the wet and the medium treatments on flower production or setting or on cherelle wilt, though ultimately slightly more pods ripened on the wet plants. Plants in a dry period developed few flowers, but initiation was apparently stimulated, for in a subsequent wet or medium period flowering was exceptionally heavy ; setting was poor and cherelle wilt high, however.

It is concluded that irrigation on a greater scale than is practised at present is likely to be beneficial to the growth and yield of cacao.  相似文献   

14.
The effects of partial root-zone drying (PRD), as compared to deficit irrigation (DI) and full irrigation (FI), on strawberry (cv. Honeoye) berry yield, yield components and irrigation water use efficiency (WUEI) were investigated in a field lysimeter under an automatic rain-out shelter. The irrigation treatments were imposed from the beginning of flowering to the end of fruit maturity. In FI the whole root zone was irrigated every second day to field capacity viz. volumetric soil water content (θ) of 20%; while in DI and PRD 60% water of FI was irrigated to either the whole or one-half of the root system, respectively, at each irrigation event. In PRD, irrigation was shifted from one side to the other side of the plants when θ of the drying side had decreased to 8–11%. Compared to FI plants, leaf water potential was significantly lower in DI and PRD plants in 3 out of 10 measurement occasions, while stomatal conductance was similar among the three treatments. Leaf area, fresh berry yield (FY), individual berry fresh weight, berry water content, and berry dry weight (DW) were significantly lower in DI and PRD plants than those of FI plants; whereas the total number of berry per plant was similar among treatments. Compared with FI, the DI and PRD treatments saved 40% of irrigation water, and this led to a 28 and 50% increase of WUEI based on berry FY and DW, respectively, for both DI and PRD. Conclusively, under the conditions of this study PRD had no advantage compared to DI in terms of berry yield and WUEI. DI and PRD similarly decreased berry yield and yield components and thus cannot be recommended under similar conditions.  相似文献   

15.
以新红星和红富士苹果叶片为试材,利用P-V分析技术研究了在水分胁迫条件下叶片细胞的膨压维持方式以及细胞膨压维持对苹果叶片的光合速率、叶面积及干物质积累(叶片干重)等生理特性的效应。结果表明,两品种叶片在不同水分胁迫条件下细胞膨压维持能力不同,中度水分胁迫下膨压维持是以渗透调节和弹性调节并存,具有膨压维持能力,严重水分胁迫下渗透调节和弹性调节均消失,膨压维持能力丧失。细胞膨压的维持能够减少叶片叶绿素的破坏,维持干旱条件下(中度水分胁迫)的光合作用较正常进行,叶片正常生长及干物质积累。  相似文献   

16.
Water efficiency is a key concept to solve water-shortage problems in semiarid areas. Deficit irrigation (DI) in many crops has frequently proved to be an efficient tool to optimise water-use efficiency. Three different DI strategies were studied for commercial orchards of mature sweet orange (Citrus sinensis L. Osbeck, cv. Salustiana and cv. Navelina) from 2006 to 2008: sustained deficit irrigation (SDI), regulated deficit irrigation (RDI), and low-frequency deficit irrigation (LFDI) all defined physiologically with stem-water potential thresholds. The experimental research plots were located in the Guadalquivir river basin, SW Spain. The effects of DI treatments on the fruit yield and on the crop-water status, by the integrated stem-water potential (Ψint) were analysed. Also, the benefits of DI in terms of agricultural water-use efficiency (WUEagr) and financial water-use efficiency (WUEf) were estimated for each irrigation strategy. Different relationships were estimated between these parameters and irrigation and total water applied, in order to establish the best irrigation strategy for different irrigation regimes. Yield and Ψint showed significant differences consistent with the water amounts applied, although the crop response was influenced by other parameters such as crop variety and irrigation strategy. In this sense, treatments with similar irrigation rates and Ψint resulted in different yield values, evidencing the importance of these factors. Regarding the crop variety, the results showed that cv. Salustiana responded better than cv. Navelina to DI, from the physiological and agricultural perspectives. In terms of water savings, the RDI and LFDI reduced water use by between 1000 and 1250 m3 ha−1, respectively, with similar yields in comparison to the fully irrigated treatment, significantly improving the WUE. Consequently, the WUEf, and WUEagr were more strongly affected by deficit-irrigation strategy rather than the total water supplied. Thus, the amount of irrigation water would have a relative importance but other variables such as the irrigation strategy, would decidedly influence prudent water management in semiarid areas.  相似文献   

17.
In order to screen almond genotypes for drought tolerance, three different irrigation levels including moderate and severe stress (Ψs = −1.2 and −1.8 MPa respectively) and a control treatment (Ψs = −0.33 MPa) were applied for five weeks to six different cultivated almond seedlings. A factorial experiment was conducted with a RCBD which included 3 irrigations factors, 6 genotype factors and 3 replications. Seeds were prepared from controlled pollination of the bagged trees (after emasculation and flower isolation using isolator packets in the previous year). Genotypes included: homozygote sweet (Butte), heterozygote sweet (SH12, SH18, SH21 and White) and homozygote Bitter (Bitter Genotype). Leaf and root morphological and physiological traits including; midday relative water content, midday leaf (xylem) water potential, shoot dry weight and growth, total leaf area, leaf size, total leaf dry weight, specific leaf area, leaf greenness (SPAD), stomatal size and density, root and leaf nitrogen content and chlorophyll fluorescence were measured throughout the study. Results showed the six genotypes had different reactions to water stress but all genotypes showed an ability to tolerate the moderate and severe stresses and they showed different degrees of response time to drought stress. Almond seedling leaves could tolerate Ψw between −3 and −4 MPa in short periods. Water availability did not significantly affect stomatal density and size of young almond plants. The analysis of leaf anatomical traits and water relations showed the different strategies for almond genotypes under water stress conditions. Although almond seedlings even in severe stress kept their leaves, they showed a reduction in size to compensate for the stress effects. All genotypes managed to recover from moderate stress so Ψw = −1.2 could be tolerated well by almond seedlings but Ψw = −1.8 limited young plant growth. Leaf greenness, leaf size, shoot growth, shoot DW, TLDW and stomatal density were not good markers for drought resistance in almond seedlings. Root DW/LA, lower stomatal size and lower SLA might be related to drought resistance in cultivated almonds. Butte had the least resistance and White showed better performance during water stress while other genotypes were intermediate. Bitter seedlings showed no superiority in comparison with other genotypes under water stress conditions except for better germination and greater root DW which might make them suitable as rootstocks under irrigation conditions.  相似文献   

18.
Summary

Calamagrostis brachytricha Steud. (feather reed grass) and Festuca glauca Lam. (blue fescue) were grown in mini-lysimeters under four irrigation regimes based on maximum crop evapotranspiration [ETc; 100% ETc (control)], 75% ETc, 50% ETc, or 25% ETc in order to estimate potential water savings in landscape management. Plant responses showed that shoot width, the number of tillers, and shoot dry weights (DWs) in feather reed grass were affected by deficit irrigation, and that there were significant linear correlations between these measurements and irrigation regime. However, in 2006, none of these parameters showed any significant difference between 75% ETc irrigation and the 100% ETc control. In 2007, plant height and the number of tillers gave similar results. There were significant linear correlations between irrigation regime and shoot height, shoot width, and shoot DW in blue fescue plants in 2006 and in 2007, while plants irrigated at 75% ETc showed no significant differences from control 100% ETc plants in both years. To save water and ensure high aesthetic value, a 75% ETc irrigation regime is recommended for both species. Crop coefficients (Kc) were calculated for both species in order to estimate the supplementary irrigation required under historical average conditions (between 1841-1993). Based on these Kc values, historical reference evapotranspiration, and average precipitation, the model indicated that both species required supplementary irrigation during May, June, September, and October. Annual supplementary irrigation was 349.1 mm for feather reed grass and 163.3 mm for blue fescue at 100% ETc. Neither feather reed grass nor blue fescue required supplementary irrigation in July and August, which accounted for 62.4% of annual precipitation. Deficit irrigation at 75% ETc would save 33.1% and 40.3% of annual water use for feather reed grass and blue fescue, respectively.  相似文献   

19.
Flowering is generally considered to be advanced by water deficits in many woody perennial species. A long-standing paradigm being that as a plant senses severe environmental conditions resources are diverted away from vegetative growth and towards reproduction before death. It is demonstrated that in Rhododendron flowering is promoted under water deficit treatments. However, the promotion of flowering is not achieved via an increase in floral initiation, but through separate developmental responses. If regulated deficit irrigation (RDI) is imposed prior to the time of initiation, fewer vegetative nodes are formed before the apical meristems switch to floral initiation, and chronologically, floral initiation occurs earlier. Both RDI and partial rootzone drying (PRD) treatments stimulate the development of more flowers on each inflorescence if the treatments are continued after the plant has undergone floral initiation. However, floral initiation is inhibited by soil water deficits. If the soil water deficit continues beyond the stages of floral development then anthesis can occur prematurely on the fully formed floral buds without a need for a winter chilling treatment. It is hypothesised that inhibition of floral initiation in plants experiencing severe soil water deficits results from the inhibitory action of ABA transportation to the apical meristem from stressed roots. It is demonstrated that ABA applications to well-watered Rhododendron inhibit floral initiation.  相似文献   

20.
This study examines the feasibility of using saline irrigation water for commercial pot cultivation of three ornamentals: Calceolaria hybrida, Calendula officinalis and Petunia hybrida. Two saline treatments were assayed: irrigation with low saline tap water (electrical conductivity = 1.16 dS m−1), and irrigation with a high saline solution of NaCl 100 mM + CaSO4 10 mM + MgSO4 2.5 mM (electrical conductivity = 12.5 dS m−1). When the control plants reached marketable size the watering was stopped and the plant response to drought was studied. Petunia and Calceolaria were tolerant to salinity. Petunia saline-treated plants reduced their growth slightly and increased N and chlorophyll contents in the leaves. Calceolaria experienced a strong reduction in growth and a delay in flowering but no toxicity symptoms or mortality was recorded. These species were moderate NaCl accumulators. Calendula was sensitive to salinity: 16% of the plants died and the surviving ones experienced a heavy reduction of growth, a decrease in chlorophyll and a large accumulation of NaCl in the leaves. Saline pre-conditioned plants of Calceolaria and Petunia were tolerant to drought. In these plants, leaf water content and, specifically, leaf relative water content were sustained longer than in non-pre-conditioned plants throughout the drought period. In Calendula, leaf relative water content decreased at the same rate in pre-conditioned and non-pre-conditioned plants. Consequently, salinization did not confer drought resistance upon this species. Possible factors determining the tolerance to drought in saline pre-conditioned plants are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号