首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Changes in mineral nutrient concentration, growth, water status and gas exchange parameters were investigated in young banana plants (Musa acuminata cv. ‘Grand Nain’) subjected to gradual soil moisture diminution. Experiments were performed in glasshouse under controlled temperature, and water stress was imposed by ceasing irrigation for 62 days. The data showed a parallel decrease of leaf gas exchange parameters and soil moisture initiated few days after the imposition of water stress. However, the leaf relative water content (RWC) showed a minor decrease in response to drought. The onset of growth reduction evaluated as plant height, pseudostem circumference, number of newly emerged leaves, leaf area, and leaf and root biomass took place approximately between 34 and 40 days after the beginning of the stress period. In addition, drought did not modify nitrogen and phosphorus concentrations in foliar and root tissues; however, it increased potassium, calcium, magnesium, sodium and chloride in leaves, and only calcium, sodium and chloride in roots. Collectively, the data reveal that banana plants show a drought avoidance mechanism in response to water stress. After a prolonged drought period, leaf RWC was hardly reduced, while gas exchange and growth parameters were reduced drastically. Increasing leaf mineral concentration could have help to maintain leaf RWC due to osmotic adjustment mechanism.  相似文献   

2.
Cauliflower (Brassica oleracea L. var. botrytis) is widely used as a vegetable in many countries; however, productivity is adversely affected in areas affected by drought. To investigate the role of exogenously applied ascorbic acid (AsA) in mitigating the negative effects of drought on cauliflower, a pot experiment was performed using two cultivars of cauliflower ‘Local’ and ‘S-78’. Seeds of both cultivars were soaked in 75 mg l1, or in 150 mg l1 AsA, or in water (control) for 16 h. Water-deficit stress suppressed plant growth, reduced leaf chlorophyll concentrations, relative water contents (RWC), shoot and root P and K+ ion concentrations, and total soluble protein concentrations, significantly. However, significant drought-induced increases were observed in relative membrane permeability (RMP), the accumulation of total phenolic compounds, leaf free proline, glycinebetaine (GB), endogenous AsA, and hydrogen peroxide concentrations, and in the activity of superoxide dismutase (SOD). Seed treatment with 75 or 150 mg l1 AsA resulted in lower accumulations of H2O2, while increasing shoot and root fresh weights and dry weights, RWC, total phenolic compound, free proline, GB, and endogenous AsA concentrations, and the activities of SOD and catalase (CAT). No changes were observed in leaf chlorophyll concentrations or in peroxidase (POD) activities, RMP, shoot and root P and K+ ion accumulation, or in total soluble protein concentrations under water stress or non-stress conditions following seed treatment with AsA. ‘Local’ had higher proline concentrations and SOD activities; however, ‘S-78’ had higher RWC values, GB, and AsA concentrations. Overall, a pre-sowing treatment of cauliflower seed with 75 or 150 mg l1 AsA improved seedling tolerance to drought stress in both cultivars, which could be attributed to AsA-induced decreases in RMP and H2O2 concentrations, increases in the activities of CAT and SOD, increased RWC, and higher total phenolic compound, proline, GB, and AsA concentrations. The exogenous application of AsA therefore offers an effective strategy to minimise the adverse effects of drought stress on vegetable crops, including cauliflower.  相似文献   

3.
The plant growth regulator CycocelTM [(2-chloroethyl)trimethylammonium chloride] can be used to produce drought tolerance in grapevine (Vitis vinifera L.) due to a reduction in the ratio between vegetative growth and fruit production. To evaluate the physiological responses of two grapevine cultivars to drought and CycocelTM treatment, a factorial experiment was conducted in a greenhouse. The factors included irrigation frequency (at 5-, 10-, or 15-day intervals corresponding to no, mild, or severe drought stress), CycocelTM concentration (0, 500, or 1000 mg l1), and cultivar (‘Rasheh’ or ‘Bidane-Sefid’). Stomatal conductance (gs) the net rate of CO2 assimilation (Anet), the rate of transpiration (Tr), and chlorophyll a and b concentrations decreased in plants exposed to mild or severe water-deficit stress, whereas carotenoid, proline, and total soluble sugar concentrations increased compared to plants with no drought stress. The relative water content (RWC) of leaves declined only under severe drought stress. A reduction in intercellular CO2 concentrations (Ci) occurred under mild drought stress; however, under severe drought stress, Ci values increased. Under mild drought stress, the reduction in the net rate of photosynthesis was related to stomatal closure, whereas under severe drought stress, non-stomatal factors were dominant. Water-use efficiency (WUE) improved under mild drought stress relative to non-stressed plants, but under severe drought, it declined. Foliar applications of CycocelTM resulted in increased Anet, gs, Tr, and WUE values, as well as proline and soluble sugar concentrations. ‘Rasheh’ was more tolerant to drought stress than was ‘Bidane-Sefid’. Foliar applications of CycocelTM, particularly at 1000 mg l1, mitigated the negative effects of drought stress by increasing Anet, WUE, RWC, compatible solute concentrations, such as proline, soluble sugar, and chlorophyll a and b concentrations.  相似文献   

4.
Summary

Dehydrins are a group of plant proteins which respond to any type of stress that causes dehydration at the cellular level, such as cold and drought stress. Previously, three dehydrins of 65, 60, and 14.kDa were identified as the predominant proteins present in cold acclimated blueberry (Vaccinium corymbosumLinn.) floral buds. Levels were shown to increase with cold acclimation and decrease with deacclimation and resumption of growth. In the present study, to determine if dehydrins are induced in other organs in response to low temperature treatment (48C) and in response to drought, accumulation of dehydrins was examined in leaves, stems, and roots of two cultivars and one wild selection (a V. corymbosum cultivar, a V. ashei Reade cultivar, and a V. darrowi Camp selection) of blueberry by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) followed by immunoblotting. Cold treatment involved placing plants in a cold room maintained at 48C for five weeks; drought stress was imposed by withholding water from potted, greenhouse-grown plants for 34.d. Relative water content (RWC) of shoots was determined periodically throughout the drought treatment. Dehydrins accumulated with both cold and drought stress but their molecular masses varied depending upon blueberry species. Dehydrins accumulated to higher levels in stems and roots than in leaves with cold stress and to higher levels in stems than in either roots or leaves with drought stress. Furthermore, cold treatment combined with dark treatment induced higher levels of dehydrins than cold treatment combined with a 10.h light/14.h dark photoperiod, suggesting that dehydrins may be responsive to changes in photoperiod as well. In the cold-stress experiment, the level of dehydrin accumulation was correlated with expected level of plant cold hardiness in the three genotypes. In the drought stress experiment, dehydrins accumulated prior to significant changes in RWC, and dehydrin levels did not appear to be closely correlated with RWC either among or within genotypes.  相似文献   

5.
Eggplant (Solanum melongena L.) is known to have a higher resistance to drought than have other vegetables. Studies were made to see whether this property can be explained by its physiological responses. Water was withheld from plants and measurements were made of sap osmotic potential (ψos), leaf pressure potential (ψp), stomatal diffusive resistance to water vapour (rs), relative water content of leaf (RWC), whole plant transpiration, leaf water potential (ψleaf), and soil water potential (ψsoil). The first 4 parameters varied linearly with ψleaf and transpiration varied exponentially. There was a parabolic relation between ψleaf and ψsoil. The severely stressed plants were rewatered and underwent the same measurements 1 day later (“recovery treatment”). Compared with some other vegetables reported in the literature, ψp and RWC remained higher in droughted eggplant. This species has also a better stomatal control on transpiration. There was an after-effect of drought on the stomates. In recovery treatment, ψp values exceeded those of the control. This may have functional significance in resumption of growth after stress is alleviated.  相似文献   

6.
The purpose of this study was to analyze the physiological and morphological response of carnation plants to different levels of irrigation and to evaluate regulated deficit irrigation as a possible technique for saving water through the application of controlled drought stress. Carnations, Dianthus caryophyllus L. cultivar, were pot-grown in an unheated greenhouse and submitted to two experiments. In the first experiment, the plants were exposed to three irrigation treatments: (control); 70% of the control (moderate deficit irrigation, MDI) and 35% of the control (severe deficit irrigation, SDI). In the second experiment, the plants were submitted to a control treatment, deficit irrigation (DI, 50% of the control) and regulated deficit irrigation (RDI). After 15 weeks, MDI plants showed a slightly reduced total dry weight, plant height and leaf area, while SDI had clearly reduced all the plant size parameters. RDI plants had similar leaf area and total dry weight to the control treatment during the blooming phase. MDI did not affect the number of flowers and no great differences in the colour parameters were observed. RDI plants had higher flower dry weight, while plant quality was affected by the SDI (lower number of shoots and flowers, lower relative chlorophyll content). Leaf osmotic potential decreased with deficit irrigation, but more markedly in SDI, which induced higher values of leaf pressure. Stomatal conductance (gs) decreased in drought conditions more than the photosynthetic rate (Pn). Osmotic adjustment of 0.3 MPa accompanied by decreases in elasticity in response to drought resulted in turgor less at lower leaf water potentials and prevented turgor loss during drought periods.  相似文献   

7.
The effect of brassinosteroid (BR) on relative water content (RWC), stomatal conductance (gs), net photosynthetic rate (PN), intercellular CO2 concentration (Ci), lipid peroxidation level, activities of antioxidant enzymes and abscisic acid concentration (ABA) in tomato (Lycopersicon esculentum) seedlings under water stress was investigated. Two tomato genotypes, Mill. cv. Ailsa Craig (AC) and its ABA-deficient mutant notabilis (not), were used. Water stress was achieved by withholding water and both the AC and not plants were treated with 1 μM 24-epibrassinolide (EBR) or distilled water as a control. The RWC, gs, Ci and PN were significantly decreased under water stress. However, EBR treatment significantly alleviated water stress and increased the RWC and PN. EBR application also markedly increased the activities of antioxidant enzymes (catalase, ascorbate peroxidase and superoxide dismutase) while it decreased gs, Ci and the contents of H2O2 and malondialdehyde (MDA). Interestingly, ABA concentration in AC and not plants was markedly elevated after EBR treatment although the increasing rate and amplitude of ABA in not plants treated by EBR was significantly lower than those in AC plants. Our study suggested that amelioration of the drought stress of tomato seedlings may be caused by EBR-induced elevation of endogenous ABA concentration and/or the activities of antioxidant enzymes.  相似文献   

8.
This study examines the feasibility of using saline irrigation water for commercial pot cultivation of three ornamentals: Calceolaria hybrida, Calendula officinalis and Petunia hybrida. Two saline treatments were assayed: irrigation with low saline tap water (electrical conductivity = 1.16 dS m−1), and irrigation with a high saline solution of NaCl 100 mM + CaSO4 10 mM + MgSO4 2.5 mM (electrical conductivity = 12.5 dS m−1). When the control plants reached marketable size the watering was stopped and the plant response to drought was studied. Petunia and Calceolaria were tolerant to salinity. Petunia saline-treated plants reduced their growth slightly and increased N and chlorophyll contents in the leaves. Calceolaria experienced a strong reduction in growth and a delay in flowering but no toxicity symptoms or mortality was recorded. These species were moderate NaCl accumulators. Calendula was sensitive to salinity: 16% of the plants died and the surviving ones experienced a heavy reduction of growth, a decrease in chlorophyll and a large accumulation of NaCl in the leaves. Saline pre-conditioned plants of Calceolaria and Petunia were tolerant to drought. In these plants, leaf water content and, specifically, leaf relative water content were sustained longer than in non-pre-conditioned plants throughout the drought period. In Calendula, leaf relative water content decreased at the same rate in pre-conditioned and non-pre-conditioned plants. Consequently, salinization did not confer drought resistance upon this species. Possible factors determining the tolerance to drought in saline pre-conditioned plants are discussed.  相似文献   

9.
Summary

Greenhouse experiments were carried out to study the effect of drought stress on morphological and physiological parameters of Pelargonium hortorum, to define the most sensitive indicators that could be used to evaluate genotypes for tolerance to water stress. Nine genotypes of P. hortorum and two genotypes of the parental species (P. inquinans L. and P. zonale L.) were examined. Drought stress was induced by withholding water until the soil water potential reached –80 kPa, followed by recovery and applying another drought stress cycle. Growth decreased with drought stress with regard to all parameters and all genotypes, compared to well-watered plants. Production and loss of leaves were sensitive indicators of drought stress to discriminate between genotypes. A classification of genotypes was obtained from these parameters. Changes in leaf area, the density of stomata (mm–2 or per leaf), leaf water content and leaf cell osmolarity during the drought cycle and after recovery were also studied. Changes in stomata mm–2, leaf surface and cell osmolarity were found to be sensitive indicators of drought stress. Correlations between different parameters made it possible to obtain a robust classification of genotypes using only a few parameters. Significant variation was found between genotypes of P. hortorum in their response to drought stress.The different mechanisms which can be used by tolerant genotypes to adapt to drought stress are discussed. The present study provides a simple method to evaluate and select for water stress-tolerance in P. hortorum genotypes.  相似文献   

10.
Callistemon is an Australian species used as ornamental plant in Mediterranean regions. The objective of this research was to analyse the ability of Callistemon to overcome water deficit in terms of adjusting its physiology and morphology. Potted Callistemon laevis Anon plants were grown in controlled environment and subjected to drought stress by reducing irrigation water by 40% compared to the control (irrigated to container capacity). The drought stress produced the smallest plants throughout the experiment. After three months of drought, the leaf area, number of leaves and root volume decreased, while root/shoot ratio and root density increased. The higher root hydraulic resistance in stressed plants caused decreases in leaf and stem water potentials resulting in lower stomatal conductance and indicating that water flow through the roots is a factor that strongly influences shoot water relations. The water stress affected transpiration (63% reduction compared with the control). The consistent decrease in gs suggested an adaptative efficient stomatal control of transpiration by this species, resulting in a higher intrinsic water use efficiency (Pn/gs) in drought conditions, increasing as the experimental time progressed. This was accompanied by an improvement in water use efficiency of production to maintain the leaf water status. In addition, water stress induced an active osmotic adjustment and led to decreases in leaf tissue elasticity in order to maintain turgor. Therefore, the water deficit produced changes in plant water relations, gas exchange and growth in an adaptation process which could promote the faster establishment of this species in gardens or landscaping projects in Mediterranean conditions.  相似文献   

11.
Rational irrigation scheduling based on sensing drought stress directly in plants is becoming more important due to increasing worldwide scarcity of fresh water supplies. In order to evaluate a set of potential biochemical and physiological stress indicators and select the best drought stress markers in apple trees, two experiments with potted trees and an experiment with intensive orchard grown apple trees ‘Elstar’ and ‘Jonagold Wilmuta’ were conducted in early summer in tree following years. Biochemical parameters: ascorbic acid, glutathione, tocopherols, chlorophylls, carotenoids, free amino acids, soluble carbohydrates, and physiological parameters already known as stress indicators in apple trees: predawn and midday leaf water potential, net photosynthesis (Pn), stomatal conductance (gs), transpiration (Tr) and intercellular CO2 concentration (Ci) were measured in leaves of apple trees subjected to different intensities of slowly progressing drought or no drought. Our study pointed out zeaxanthin and glutathione as the best drought stress markers in apple trees. Ascorbate and sorbitol appeared to be reliable indicators of moderate drought only. Responses of other tested biochemical parameters were not consistent enough to prove their role as drought stress markers in apple trees. Relative air humidity should be taken in consideration when physiological parameters gs, Pn, Tr and Ci are used as drought stress markers in apple trees. Our study revealed that in situations where low relative air humidity affects gs and with gs connected physiological parameters, biochemical markers may be better tool for determination of drought stress intensities in apple trees.  相似文献   

12.
以湘研5号辣椒为试材,采用盆栽控水试验,设置轻度干旱、中度干旱和正常灌水(对照)3个水分梯度,研究干旱胁迫对辣椒果实中辣椒素、二氢辣椒素和VC含量的影响,同时研究了干旱胁迫后植株叶片光合特性的变化。结果表明:在开花后60d,轻度干旱处理能显著提高辣椒果实中辣椒素和二氢辣椒素的含量,分别比对照提高63.36%和63.03%。在开花后40d和50d,不同程度的干旱胁迫均能显著提高辣椒果实中的VC含量。在开花后60d,轻度干旱处理使辣椒果实中的VC含量达到最高,而中度干旱胁迫下辣椒果实中的VC含量显著低于对照。不同程度的干旱胁迫处理后,辣椒植株的净光合速率均呈现先上升后下降的趋势,并且随着干旱程度的增加而逐渐降低。  相似文献   

13.
The application of plant growth regulators and the use of different culture media are common practices in potted ornamental crops. We report the results of a study to evaluate the effect of two substrates (peat moss or coconut fiber) and spraying 30 ppm paclobutrazol (PAC) on water resource management of zonal geranium (Pelargonium × hortorum L.H. Bailey) seedlings growing in a greenhouse during spring–summer. Growth, water consumption, leaching, evapotranspiration rate (ET), water use efficiency (WUE) and leaf water potential were determined. Plant growth was greater in peat moss (peat) than in coconut fiber (coconut), while the use of PAC decreased plant growth in both substrates, although more markedly in peat. Coconut produced a higher leaching fraction than peat in both PAC-treated plants and non-treated plants, although PAC application increased the leaching fraction in both substrates. Water consumption was lower in coconut than in peat and decreased in response to PAC. Peat was more effective at improving the water-use efficiency and increased the electrical conductivity in the leachate, while PAC decreased the latter in this same substrate. Daily ET showed a maximum of 200 mL/pot in peat and a minimum of 60 mL/pot in the coconut-PAC treatment. During the experimental period, accumulated ET values were higher in peat than in coconut, while the application of PAC reduced the value in peat but increased it in coconut. The evolution of ET per hour during the day showed that the highest rate (23 mL/h) was registered at midday in peat, while about 90% of ET occurred between 10 and 18 h in all treatments. When a cycle of water stress and recovery was applied, the peat induced the highest ET values of all treatments during the first days of drought, but the lowest ET after a week of drought. PAC modified this response, favoring a more balanced behavior of ET, although after the second cycle of drought this effect disappeared. Based on these results, the best strategy in normal irrigation conditions would be to use coconut fiber and not apply PAC, because this provides plants of excellent commercial quality with low water consumption. In plants at moderate water deficit PAC played a more important role than the substrate, improving the water status of plants with both substrates used. However, in the face of severe water stress the effect of PAC disappeared and peat acted as a better substrate than coconut fiber.  相似文献   

14.
The role of drought-induced proline accumulation in coconut leaves is still unclear. With the objective of evaluating the impact of water shortage on leaf osmotic potential, proline accumulation and cell membrane stability in young plants of two Brazilian Green Dwarf coconut ecotypes from contrasting areas (Brazilian Green Dwarf from Una, Bahia, UGD, and from Jiqui, Rio Grande do Norte, JGD), a pot experiment was conducted under greenhouse conditions. Three drought cycles consisting of suspension of irrigation until the net photosynthetic rate (A) approached zero and rewatering until recovery of A to 85% of the irrigated control plants. Pre-dawn leaf water potential (ΨPD) reached −1.2 MPa at the point of maximum stress (PMS). Dry matter production and leaf area were severely reduced by drought treatment in the two ecotypes. Corrected values of osmotic potential were significantly reduced in stressed plants of the two ecotypes. Green dwarf coconut palm showed low osmotic adjustment (from 0.05 to 0.24 MPa) and significant accumulation of proline (from 1.5 to 2.1 times in relation to control) in leaflets in response to water deficit. Considering the growth reduction observed in both ecotypes, proline was not associated to osmoregulation. On the other hand, the absence of membrane damage, as indicated by electrolyte leakage method, suggests that the protective role of proline in this specie can be more important. The two ecotypes of Green dwarf coconut palm behaved similarly in the present experiment for most traits evaluated. Slight differences among the ecotypes were observed with respect to the response to treatments, such as higher proline accumulation in JGD.  相似文献   

15.
王微 《北方园艺》2011,(23):57-60
通过对结缕草在土壤干旱及复水过程中叶片相对含水量(RWC)、游离脯氨酸含量(Pro)、叶绿素含量、超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量、可溶性糖(TSC)含量等生理指标的测定,研究土壤干旱对结缕草生理特性的影响.结果表明:干旱胁迫引起结缕草的叶片相对含水量明显下降,游离脯氨酸含量、丙二醛含量及可溶性糖含量均随干旱天数的增加呈持续增加的趋势,而叶绿素含量和SOD酶活性先增后减.复水后各项生理指标除相对含水量、游离脯氨酸含量外均随着复水时间的增加逐渐恢复至对照水平.干旱胁迫下,结缕草水分平衡的保持、SOD酶活性及丙二醛含量的增加以及脯氨酸和可溶性糖等渗透调节物质的积累,是结缕草抗旱的重要生理机制.  相似文献   

16.
The aim of this work was to study the association between leaf anatomical characteristics and response to short-term drought stress in Ziziphusmauritiana Lamk. Six Z. mauritiana cultivars (Seb, Gola, Umran, Keitly, Q-29 and B-5/4) under field conditions in Israel's Negev desert were studied. Width of palisade mesophyll, spongy mesophyll and epidermis, xylem number and diameter in mid-vein were investigated with light microscopy. Short-term (3 weeks) drought stress tolerance was evaluated by monitoring plant response (leaf transpiration, diffusive resistance, chlorophyll fluorescence, leaf water potential and leaf relative water content). Greater epidermis and mesophyll widths and xylem diameters and densities were associated with increased tolerance to short-term water deficit expressed by preliminary wilting symptoms and proportional differences between initial and final physiological parameters. Significantly larger differences were found in Keitly, Umran and B-5/4 than in Seb, Gola and Q-29, indicating that the former cultivars are more sensitive to drought stress. Our results indicate that tolerance in descending order was Seb, Q-29, Gola, B-5/4, Keitly and finally Umran. The existence of an association between anatomical characteristics and short-term drought stress tolerance based on physiological responses is suggested.  相似文献   

17.
Citrus rootstock responses to water stress   总被引:1,自引:0,他引:1  
Tolerance to drought-stress (DS) of the citrus rootstock Forner–Alcaide no. 5 (FA-5) was tested and compared with that of its parents, Cleopatra mandarin (CM) and Poncirus trifoliata (PT). Nine-month-old seedlings of CM, PT and FA-5 and 15-month-old grafted trees of ‘Valencia’ orange scions on these three rootstocks were cultivated in sand under glasshouse conditions and irrigated with a nutrient solution. Plants were drought-stressed by withholding irrigation until leaves were fully wilted. Survival time of both seedlings and grafted trees under DS was linked to the water extraction rate from the soil, which depended mainly on leaf biomass and on transpiration rate. Seedling responses to DS affecting leaf water relationships and gas exchange parameters varied among genotypes. FA-5 seedlings survived longer than the other seedlings, maintaining the highest levels of water potential, stomatal conductance, transpiration rate and net CO2 assimilation towards the end of the experiment, when water stress was most severe. Thus, FA-5 was more resistant to DS than its parents (CM and PT). Moreover, rootstock affected the performance of grafted trees under water stress conditions. The higher drought tolerance induced by FA-5 rootstock could be related to the greater osmotic adjustment (OA), which was reflected by smaller reductions in leaf relative water content (RWC) and in higher turgor potentials and leaf gas exchange than the other rootstocks.  相似文献   

18.
Summary

The effects of heat injury induced by long exposures were evaluated in strawberry (Fragaria × ananassa ‘plants’) Camarosa in this study. Seedlings were grown in 14 × 12 cm pots using perlite for three weeks at 25/10°C day/night temperature, and watered daily by modified 1/3 Hoagland nutrient solution. Half of the plants were transferred to a growth chamber with a constant 25°C, 16/8 h (light/dark) photoperiod regime and 1200 lux light intensity for a week to acclimate the plants. Temperature was increased stepwise (5 K per 48 h) to 30, 35, 40°C and finally to 45°C. In addition to others, plants were transferred from the outside to the growth chamber, at each temperature step to impose a heat shock. Leaf relative water content (RWC, %), loss of turgidity, chlorophyll content (Spad value) and heat-stress tolerance (HTS; LT50) were measured in control and stressed plants. Total soluble proteins and total DNA were extracted from the leaves following the above treatments using standard procedures and total protein contents were determined using a Bradford assay. In general, effects of gradual heat stress (GHS) and shock heat stress (SHS) on the variables studied were mostly significant, except for chlorophyll content, while the effect of temperatures was significant for all the variables. Interaction between the heat stress type and temperature treatments was not significant for leaf RWC, loss of turgidity and chlorophyll content. Data also indicated that total protein and DNA contents were changed significantly by heat stress types (GHS and SHS) and/or temperature treatments. The plants exposed to GHS exhibited a significant increase in HST compared with the plants exposed to SHS (LT50 of 41.5°C and 39°C, respectively). Consequently, gradual heat stress increased HST in strawberry leaves. Increased HST may be associated with the accumulation of several heat-stable proteins in GHS plants.  相似文献   

19.
Summary

Floral induction in tropical trees generally follows a check in vegetative growth. However, it is not easy to identify the environmental factors involved in flowering, which normally occurs during the dry season when temperatures are also often lower. The separate and combined effects of temperature and water supply on floral induction were investigated in ‘Hass’ avocado (Persea americana), ‘Lisbon’ lemon (Citrus limon). ‘Wai Chee’ litchi (Litchi chinensis) and ‘Sensation’ mango (Mangifera indica). Low temperatures (15°/10°C or 15°/10°C and 20°/15°C compared with 30°/25°C and 25°/20°C) generally decreased vegetative growth and induced flowering in well-watered avocado, litchi and mango. A pre-dawn leaf water potential (ψL) of ?1.7 to ?3.5 MPa compared with ?0.4 to ?0.7 MPa in control avocado and litchi, and a pre-dawn relative water content (R.W.C.) of 90-93% compared with 97% or above in control mango plants also reduced or eliminated vegetative growth, but did not induce flowering. Low temperatures (15°/10°C compared with 20°/5°C, 25°/20°C or 30°/25°C) and water stress (pre-dawn ψL of ?2.0 to ?3.5 MPa compared with ?0.7 to ?0.8 MPa in controls) reduced or eliminated vegetative growth in lemon. In contrast to the response in avocado, litchi and mango, flowering in lemon was very weak in the absence of water stress at 15°/10°C or outdoors in Brisbane in subtropical Australia (Lat. 28°S), and was greatest after a period of water stress. The number of flowers increased with the severity and duration of water stress (two, four or eight weeks) and was generally greater after constant rather than with cyclic water stress. In lemon and litchi, net photosynthesis declined with increasing water stress reaching zero with a midday ψL of ?3.5 to ?4.0 MPa. This decline in carbon assimilation appeared to be almost entirely due to stomatal closure. Despite the reduction in midday CO2 assimilation, starch concentration increased during water stress, especially in the branches, trunk and roots of lemon. Leaf starch was uniformly low. The number of flowers per tree in lemon was strongly correlated with starch in the branches (r2=77%, P<0.01) and roots (r2=74%, P<0.001). In litchi, starch was lower than in lemon roots and was not related to flowering.

In separate experiments to test the interaction between temperature and water supply, low day/night temperatures (23°/18° and 18°/15°C compared with 29°/25°C) reduced vegetative growth and induced flowering in avocado, litchi and mango. None of these species flowered at 29°/25°C or as a result of water stress (ψL of ?1.5 MPa compared with ?0.3 MPa for avocado and ?2.0 MPa compared with ?0.5 MPa for litchi, and R.W.C, of 90-93% compared with 95-96% in mango). In contrast, in lemon, flowering was very weak (<10 flowers per tree) in the absence of water stress (pre-dawn ψL of ?2.0 MPa compared with ?0.5 MPa) and was only heavy (>35 flowers per tree) after stressed trees were rewatered. There were slightly more flowers at 18°/15°C than at 23°/18° and 29°/25°C in control plants, but no effect of temperature in stressed plants. Starch concentration in the roots of avocado, lemon, litchi and mango was generally higher at 18°/15°C and 23°/18°C than at 29°/25°C. Water stress increased the starch concentration in the roots of lemon and litchi and decreased it in avocado. There was no effect in mango. There was a weak relation (r2=57%, P<0.05) between the number of flowers per tree in lemon and the concentration of starch in the roots. In contrast, there was no significant relationship between flowering and starch levels under the various temperature and water regimes in the other species. In another experiment, only vegetative growth in litchi and mango occurred at 30°/25°C and only flowering at 15°/10°C. Six weeks of water stress (pre-dawn ψL of ?2.5 MPa compared with ?1.0 MPa or higher in litchi, and R.W.C, of 90-93% compared with 95% or higher in mango) in a heated glasshouse (30°C days/20°C night minimum) before these temperature treatments did not induce flowering.

Temperatures below 25°C for avocado and below 20°C for litchi and mango are essential for flowering and cannot be replaced by water stress. The control of flowering in lemon over the range of day temperatures from 18°C to 30°C differed from that of the other species in being mainly determined by water stress. Flowering was generally weak in well-watered plants even with days at 18°C. Starch did not appear to control flowering.  相似文献   

20.
The effect of water deprivation on plant water status, photosynthetic gas exchange and fluorescence parameters in two different olive tree varieties (Olea europaea L. var. ‘koroneiki’, ‘Meski’) was studied. Two-year-old olive trees, grown in pots in greenhouse, were subjected to one of three drought treatments (i.e., mild, moderate and severe drought stress) and compared to control trees. Both the leaf water potential (Ψw) and the relative water content (RWC) of the two varieties decreased with increasing levels of drought stress. Koroneiki showed higher (less negative) values of Ψw and lower values of RWC than the Meski, particularly during severe drought stress.

Net photosynthetic assimilation and stomatal conductance declined with drought. This inactivation of photosynthetic activity was accompanied by changes in the fluorescence characteristics. The PSII maximal photochemical efficiency (Fv/Fm), the intrinsic efficiency of open PSII reaction centres (Fv′/Fm′), the photochemical efficiency of PSII (ΦPSII) and the total electron flow (Jt) decreased during the development of drought stress.

The non-quenching photochimique (qN) showed an increase in the response to water deficit. These observations are discussed in relation to the strategies developed to grow drought-resistant olive trees in arid areas.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号