首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
叶绿素是评价玉米健康状况的重要生理生化参数,而快速、准确检测玉米叶片叶绿素含量,是实现玉米长势及健康状况精准诊断的关键。为提高玉米叶片叶绿素含量的高光谱反演精度,以玉米试验小区为基础,测定了东北地区玉米不同生长期的叶片光谱反射率及其对应的叶绿素含量。首先采用一阶微分方法提取光谱特征,构建9种高光谱特征参数(Db、Dy、Dr、λb、λy、λr、SDb、SDy和SDr),并分析一阶微分光谱、高光谱特征参数与叶绿素含量间的相关关系,优选出与叶绿素含量相关性较高的3种特征参数作为自变量,分别为535nm处的一阶微分值、蓝边内最大一阶微分值Db、蓝边面积SDb,叶绿素含量实测值作为因变量,随后采用遗传算法对BP神经网络进行优化,建立BP神经网络(BPNN)和遗传算法优化的BP神经网络(GA-BPNN)反演模型,并对模型进行验证;再结合主成分回归(PCR)和偏最小二乘回归(PLSR)模型进行比较。结果表明:叶绿素含量与一阶微分光谱在535nm处具有最大相关系数(R=-0.738),并且与特征参数Db、SDb呈显著相关,相关系数R分别为-0.732和-0.728;遗传算法可以有效地对BPNN初始权值随机化、易陷入局部极值等不足实现优化,并为其定位出理想的搜索空间;GA-BPNN模型的建模集与验证集R2分别为0.878和0.898,RMSE为0.731,与其他反演模型相比,GA-BPNN模型的稳定性和预测能力均表现最好,可为定量预测玉米叶片叶绿素含量提供一定的理论和技术依据。  相似文献   

2.
【目的】探讨龙眼Dimocarpus longan Lour.叶片发育过程中叶绿素含量二维分布变化规律,实现无损检测病虫害对叶片叶绿素含量分布的影响,为评估嫩叶抗寒能力、龙眼结果期的施肥量和老熟叶的修剪提供参考。【方法】利用高光谱成像仪采集龙眼叶片在369~988 nm区间的高光谱图像,自动提取感兴趣区域,利用分光光度法测定叶片叶绿素含量。基于皮尔森相关系数(r)分析了龙眼叶片生长过程中各波段光谱响应与叶绿素含量之间相关性,建立偏最小二乘回归模型。分析了特征波段图像纹理特征与叶绿素含量相关性,将光谱特征和纹理特征结合导入深度学习中的稀疏自编码(SAE)模型预测龙眼叶片叶绿素含量,结合"图谱信息"的SAE模型预测龙眼叶片叶绿素含量的分布情况。【结果】龙眼叶片3个生长发育期相关系数的曲线均在700 nm附近出现波峰,嫩叶、成熟叶和老熟叶3个阶段相关性最高的波长分别为692、698和705 nm;全发育期的最敏感波段相关性远高于3个生长发育期,r达到0.890 3。回归模型中,吸收带最小反射率位置和吸收带反射率总和建立的最小二乘回归模型预测效果最好(R_c~2=0.856 8,RMSEc=0.219 5;R_v~2=0.771 2,RMSEv=0.286 2),其校正集和验证集的决定系数均高于单一参数建立的预测模型。在所有预测模型中,结合"图谱信息"的SAE模型预测效果最好(R_c~2=0.979 6,RMSEc=0.171 2;R_v~2=0.911 2,RMSEv=0.211 5),且预测性能受叶片成熟度影响相对较小,3个生长阶段R_v~2的标准偏差仅为最小二乘回归模型标准偏差的29.9%。【结论】提出了一种自动提取感兴趣区域的方法,成功率为100%。基于光谱特征的回归模型对不同生长阶段的叶片预测效果变化较大,而基于"图谱信息"融合的SAE模型预测性能受叶片成熟度影响相对较小且预测精度较高,SAE模型适用于不同成熟度的龙眼叶片叶绿素含量分布预测。  相似文献   

3.
目前对植物叶片花青素含量的测定主要是湿化学法和高效液相色谱法(high performance liquid chromatography,HPLC),为简化测定方法,降低成本和提高精度,提出一种利用数码相机获取照片提取的颜色参数构建模型无损估测植物叶片花青素含量的方法。试验测定166份紫叶李叶片的花青素含量及其RGB特征值,对15种颜色参数进行皮尔逊相关分析,构建逐步多元线性回归(stepwise multiple linear regression,SMLR)、一元线性回归(single linear regression,SLR)和BP神经网络(BP neural network,BPNN)估算模型;同时对模型进行验证和比较。结果表明,1)BP神经网络模型建模集的R2、RMSE和MAE分别为0.883、0.412、0.323,验证集的R2、RMSE和MAE分别为0.796、0.462和0.353,相关系数均达到极显著水平;一元线性回归模型中,参数G-B与花青素含量的线性相关性最强,相关系数为-0.820,达到极显著水平;逐步多元线性回归模型的相关系数均达极显著水平,其中建模集的R2、RMSE和MAE分别为0.724、0.630、0.459,验证集的R2、RMSE和MAE分别为0.643、0.616和0.509。2)颜色参数与花青素含量之间具有明显的相关性,利用数码相机获取的颜色特征值估测紫叶李叶片花青素含量具有可行性;3)3种模型中,BP神经网络模型的估测效果最好,能有效地估测紫叶李叶片花青素含量,其次为逐步多元线性回归,一元线性回归模型的预测效果相对较差。  相似文献   

4.
针对西北地区水资源紧缺以及辣椒种植氮、磷、钾施用比例无序问题,本文选取氮、磷、钾3因素,设置了5个水平,采用二次通用旋转组合设计,在宁夏中卫市沙坡头区进行了田间试验.结果表明:(1)所获得的辣椒氮、磷、钾耦合模型回归拟合和失拟检验均达到显著性水平,因素与产量的相关系数r=0.856;(2)t检验发现氮肥对辣椒产量影响较...  相似文献   

5.
辣椒//玉米间作条件下,作物氮、磷和钾素吸收利用特征的研究将有助于肥料利用率的提高和辣椒产量的增加.通过田间小区试验,研究了辣椒//玉米间作(10:2)条件下,作物对氮、磷和钾的吸收利用特征.结果表明:(1)间作辣椒第1行土壤碱解氮和速效磷低于单作,问作辣椒中间行碱解氮、速效磷和速效钾含量与单作接近;(2)间作辣椒第1行叶片含氮、磷量低于单作辣椒,间作3、5行辣椒叶片含氮、磷量显著高于辣椒单作,从第1行到第5行逐渐增加.间作辣椒叶片含钾量在前期低于单作辣椒,后期则高于辣椒单作;(3)间作玉米含氮量高于单作玉米.前期间作玉米叶片磷、钾含量与单作玉米前期接近,后期低于单作;(4)辣椒//玉米间作条件下,辣椒和玉米的生物量和产量显著高于单作时的产量.可见,辣椒//玉米间作(10:2)条件下,辣椒第1行的N、P和K的吸收受到玉米一定的影响,辣椒中间行的N、P和K的吸收利用效率增加,辣椒和玉米的产量分别比单作增加13.29%和28.36%.  相似文献   

6.
为了实现叶片水分含量的快速、精准检测,提出一种基于太赫兹成像技术的大豆叶片水分含量测定方法。利用太赫兹光谱成像系统获取96份大豆叶片太赫兹图像,采用干燥法测量叶片含水率,通过主成分分析(PCA)提取出水分敏感特征波段0.557、1.098、1.163 THz,对这3个特征波段下的叶片图像采用自适应阈值分割法,将其分为叶脉图像与叶肉图像,分别求取各自的图像灰度特征,并分为叶片特征组(G1)、叶脉特征组(G2)和叶肉特征组(G3)。分别采用多元线性回归(MLR)、反向传播神经网络(BP-ANN)和最小二乘支持向量机(LS-SVM)算法,以上述3个特征组作为输入,构建出9种大豆叶片水分预测模型。对比分析各模型性能,发现基于G3的LS-SVM模型预测结果最好,校正集和预测集的决定系数和均方根误差分别为0.967 8、0.963 2,0.057 8、0.046 5。试验结果表明,利用太赫兹成像技术来检测叶片中的水分含量具有非常高的预测精度,为作物叶片水分含量测定提供了一种行之有效的检测手段。  相似文献   

7.
粳稻氮素含量的快速、无损、准确估算,可以及时掌握粳稻的生长状况,对指导粳稻田间管理具有重要意义。为提高粳稻冠层氮素含量的高光谱反演精度,利用沈阳农业大学路南试验基地2018年粳稻3个关键生育期无人机高光谱影像和同步测定的粳稻冠层氮素含量作为数据源,选用从粳稻冠层光谱中提取的高光谱位置变量、面积变量和植被指数变量3种类型20个光谱特征参数与氮素含量进行相关性分析,选出各个生育期内相关性较高的前3个光谱特征参数作为模型输入分别建立偏最小二乘回归(PLSR)、BP神经网络(BPNN)和思维进化算法优化BP神经网络(MEA-BPNN)3种粳稻冠层氮素含量反演模型并验证。结果表明:在粳稻分蘖期、拔节期、抽穗期,与粳稻氮素含量相关性最好的高光谱特征参数均为红边面积SDr,相关系数分别为0.771,0.664,0.775;MEA-BPNN反演模型与PLSR、BPNN相比,无论在模型精度还是预测能力都有明显提高,在各个生育期,MEA-BPNN模型的建模集和验证集决定系数R~2均达到0.700以上,RMSE均低于0.400以下,说明MEA-BPNN反演模型是筛选出的最佳粳稻冠层氮素含量反演模型。综上研究,该模型能够快速无损反演粳稻冠层氮素含量,可为后续施肥决策提供支持。  相似文献   

8.
叶片叶绿素与植被生长状况息息相关,SPAD值能够反映作物叶片叶绿素含量,不同品种辣椒外形和生理生态参数具有明显差异,因此,准确、快速地估算SPAD值具有重要意义。以4个不同品种辣椒为研究对象,测量其SPAD值,对原始光谱进行倒数、对数、倒数对数、一阶微分和二阶微分变换,通过将变换光谱替换原始光谱来优化植被指数,对比优化植被指数和经典植被指数搭建模型的差异,最终得到不同品种辣椒SPAD值和高光谱之间的关系,寻找SPAD值的最优反演模型。结果表明:不同品种辣椒冠层光谱特性存在差异;辣椒叶片建模集、验证集和全样本SPAD值的变化趋势均为线椒大于朝天椒;基于倒数对数光谱优化的植被指数除了CIrededge外,其余植被指数的相关系数均高于经典植被指数;基于lg1/R-VI搭建的随机森林模型无论是建模集还是验证集精度均较好,适合于不同品种辣椒SPAD值的估算,其中全样本模型测试集决定系数(R2)为0.83,平均绝对误差(MAD)为1.90,验证集R2和MAD分别为0.45和1.26。  相似文献   

9.
近红外光谱法测定土壤全氮和碱解氮含量   总被引:1,自引:0,他引:1  
为探寻采用近红外光谱技术在野外快速测定土壤全氮和碱解氮含量的方法,采集土壤光谱信号,结合偏最小二乘法和主成分分析法,分别建立土壤全氮和碱解氮含量测定的定标模型。结果表明,采用PLS方法建模时,土壤全氮和碱解氮含量测定定标模型的精度较高。为提高模型的预测精度,采用多元散射校正、标准归一化、基线校正、卷积平滑和小波变换5种方法对光谱信号进行预处理,当用小波变换法对光谱信号进行去噪处理,并与PLS方法结合时,模型的预测精度最高,土壤全氮样品校正模型的相关系数为0.838 5,均方根误差为0.153 1,对应验证模型的相关系数为0.754 9,均方根误差为0.184 2,校正集和验证集土壤全氮含量预测值(y)与实测值(x)之间的关系模型分别为y=0.685 8x+0.198 0和y=0.621 4x+0.237 9;土壤碱解氮样品校正模型的相关系数为0.866 5,均方根误差为0.007 7,对应验证模型的相关系数为0.796 1,均方根误差为0.009 4,校正集和验证集土壤碱解氮含量预测值(y)与实测值(x)之间的关系模型分别为y=0.749 8x+0.019 4和y=0.700 7x+0.023 3。综合分析结果表明,应用近红外光谱技术对土壤全氮和碱解氮含量进行定量预测是可行的,且应用小波变换方法对光谱冗余信息进行预处理后,再与偏最小二乘法相结合可有效地提高模型的精度。  相似文献   

10.
油桐氮磷钾营养诊断   总被引:2,自引:0,他引:2  
1989~1990年,在金华地区利用叶分析方法对油桐进行了氮、磷、钾三元素的营养诊断试验。结果表明:叶片中氮、磷、钾的含量与施肥量之间,油桐桐果产量与叶片中氮、磷、钾的含量之间存在着显著的回归关系。它们的相关系数分别为0.8461,0.7576,0.8313和0.5209,0.4767,0.5259.本文还给出了叶片中氮、磷、钾含量的临界水平值。  相似文献   

11.
采集烤烟不同叶位烟叶图像并进行预处理,提取烟叶叶长、叶宽、面积、周长和最小外接矩形面积5个叶片绝对形态特征参数,计算狭长度、矩形度、圆形度、叶宽最大处占比、叶宽轴与质心夹角5个相对形态特征;通过主成分分析筛选出特征向量,构建基于K近邻算法(KNN)、逻辑回归(LR)、基于线性核函数和径向基核函数的支持向量机(SVM)和BP神经网络的烟叶部位识别模型,并对比5种模型的识别效果。结果表明:基于图像轮廓特征所提取的形态特征参数可以较为有效地反映烤烟部位特征;5种识别模型中,基于BP神经网络模型的识别效果最好,识别准确度为93.75%,训练集和测试集的模型决定系数均高于90%。  相似文献   

12.
基于RGB颜色空间的早稻氮素营养监测研究   总被引:1,自引:1,他引:0  
针对双季稻区水稻过量施肥带来环境污染和成本提高问题,设计不同品种氮肥梯度大田试验,应用数码相机获取早稻冠层数字图像,研究不同色彩参数及早稻氮素营养指标的时空变化特征,以期确立双季早稻氮素营养预测模型。结果表明:不同品种同一氮肥处理下图像色彩参数差异不大;拔节期数字图像参数对氮素营养指标敏感;模型构建结果显示,图像参数INT与水稻氮素营养指标构建的模型决定系数(R2)最大,模型预测效果最佳,R2分别为0.895 7和0.924 7;进一步采用多元回归分析和BP神经网络分析法进行预测,预测效果均较好。对预测结果进行检验,发现品种对于模型的构建影响不大,以BP神经网络分析法构建的叶片氮浓度(LNC)模型和以INT为敏感色彩参数构建的叶片氮积累量(LNA)回归模型效果最优,而多元回归分析方法则效果不佳。早稻冠层RGB颜色空间敏感参数与氮素营养指标间相关性较好,可以实现氮素营养的无损监测诊断。  相似文献   

13.
为了快速精准检测油茶籽含水量,解决传统烘干检测法费时费力等问题,提出一种基于高光谱技术的油茶籽含水量无损检测方法。以油茶籽为研究对象,测定油茶籽含水量,建立光谱模型,对油茶籽光谱分别进行Savitzky-Golay(S-G)卷积平滑、一阶微分、二阶微分和多元散射校正(MSC)预处理,通过逐步回归提取有效敏感波长,并采用偏最小二乘回归(PLSR)、BP神经网络和径向基(RBF)神经网络方法分别建立预测模型,对模型进行外部验证,选出最优预测模型。研究表明:相关系数较高的光谱敏感波段为410~450、600~620、780~880、940~971 nm。基于MSC预处理光谱建立的PLSR模型,在校正集上的相关系数为0.953 4、均方根误差为0.22%,在验证集上的相关系数为0.939 9、均方根误差为0.27%,优于BP神经网络模型和RBF神经网络模型。结果说明,采用高光谱技术检测油茶籽含水量是可行的,研究内容可为油茶籽含水量的在线无损检测提供有效依据。  相似文献   

14.
人工神经网络用于有机磷酸酯类定量结构活性关系研究   总被引:1,自引:1,他引:0  
何琴  黄保军 《安徽农业科学》2012,40(4):2087-2089
采用人工神经网络(ANN)建立了35种有机磷酸酯类化合物的结构及其对家蝇急性毒性之间的定量关系模型(ANN模型),以35种有机磷酸酯类化合物的分子电性距离矢量作为输入、对家蝇的急性毒性作为输出,采用内外双重验证的办法分析和检验所得模型的稳定性,所构建网络模型的相关系数为0.999 9、交叉检验相关系数为0.995 8、标准偏差为0.114 1、残差绝对值≤0.40,应用于外部预测集,外部预测集相关系数为0.986 0。而多元线性回归(MLR)法模型的相关系数为0.976 0、标准偏差为0.256 8、残差绝对值≤0.57,外部预测集相关系数为0.975 8。结果表明,ANN模型获得了比MLR模型更好的拟合效果。  相似文献   

15.
基于近红外光谱技术的成年橡胶树叶片氮素含量检测   总被引:1,自引:0,他引:1  
为了快速并无损地检测成年橡胶树叶片的氮素含量,使用近红外光谱检测技术获取叶片的光谱数据,采用多元散射校正(MSC)对光谱数据预处理后,使用SPA(连续投影算法)提取光谱数据的有效波长,PCA(主成分分析法)提取光谱数据主成分,然后分别将提取的光谱数据特征值输入到线性回归模型PLS(偏最小二乘回归)、非线性回归模型BPNN(BP神经网络)和LSSVM(最小二乘支持向量机)中,得到6个现有主流模型:PCA-BPNN、PCA-PLS、PCA-LSSVM、SPA-BPNN、SPA-PLS和SPA-LSSVM。用这6个模型去预测实验样本数据,经比较发现SPA-LSSVM模型对于该组实验样本的预测效果最好,其预测相关系数Rp和预测残差均方根RMSEP分别为0.9253和0.1190。因此对于成年橡胶树氮素含量的光谱快速检测,SPA-LSSVM算法模型的性能更为突出,有较好的应用潜力。  相似文献   

16.
采用误差反传前向人工神经网络(artificial neural network,ANN)建立了21种2-(4-取代-苯基)-3-异噻唑啉酮类化合物的结构与其抗菌活性之间的定量关系模型(ANN模型),以21种3-异噻唑啉酮类化合物的量子化学参数和拓扑指数作为输入、抗菌活性作为输出,所构建网络模型的交叉检验相关系数为0.991 6、标准偏差为0.080 1、残差绝对值≤0.221,应用于外部预测集,预测集相关系数为0.973 1;而多元线性回归(multiple linearregression,MLR)法模型的相关系数为0.841 8、标准偏差为0.303 9、残差绝对值≤0.636。结果表明,ANN模型获得了比MLR模型更好的拟合效果。  相似文献   

17.
以机载高光谱为数据源,对研究区土壤光谱分别进行去除包络线(CR)、倒数(IR)、对数(LR)、一阶导数(FDR)、二阶导数(SDR)、倒数&一阶导数(IFDR)、对数&一阶导数(LFDR)、倒数&对数(ILR)变换,并分别构建归一化光谱指数(NDSI)(分别相应记为NDSI-CR、NDSI-IR、NDSI-LR、NDSI-FDR、NDSI-SDR、NDSI-IFDR、NDSI-LFDR、NDSI-ILR)。对NDSI与胡敏酸含量的相关性进行分析,筛选出特征光谱,利用多元线性回归(MLR)、偏最小二乘(PLSR)、反向神经网络(BPNN)、支持向量机(SVM)方法构建模型,以决定系数(R2)、均方根误差(RMSE)、相对分析误差(RPD)为评价指标,筛选最佳建模方法,用于田间尺度胡敏酸含量的高效估算。结果表明:NDSI-FDR、NDSI-SDR、NDSI-IFDR、NDSI-LFDR与胡敏酸含量的相关性更高。在396~1 000 nm,有3处与胡敏酸含量敏感的波段密集区域,分别位于480~550 nm与510~570 nm组合处、730~790 nm与740~800 nm组合处、880~930 nm与880~930 nm组合处。基于NDSI-LFDR建立的BPNN模型,建模集和验证集上的R2分别为0.916、0.805,RMSE分别为0.799、1.107,RPD值为2.189,可满足田间尺度胡敏酸含量估算的精度要求。  相似文献   

18.
基于光场相机的大豆冠层叶面积无损测量方法研究   总被引:1,自引:0,他引:1  
大豆上、中、下冠层叶面积分布是大豆植株株型状况评价、产量预测的重要依据,而传统上、中、下冠层叶面积测量方法采用大田切片法,该方法过程繁琐,且会对叶片造成伤害。针对这一问题,引入光场相机重聚焦技术分别得到聚焦在上、中、下叶片的重聚焦图像,通过图像处理技术提取聚焦平面的叶片,去掉离焦平面的叶片,分别得到上、中、下层的投影面积。选用开花期103盆宏秋品种大豆植株作为校正集,根据光场相机的标定计算各冠层叶片的校正系数,获得修正后的各冠层叶片投影面积。建立大豆植株各冠层投影面积和真实叶面积的回归模型,并选20盆作为预测集来验证各回归模型。研究发现:上层叶面积模型的决定系数为0.945,预测集的最大误差为4.48%,均方根误差为4.376;中层叶面积模型的决定系数为0.796,预测集的最大误差为13.62%,均方根误差为7.273;下层叶面积模型的决定系数为0.914,预测集的最大误差为8.63%,均方根误差为1.529。上层和下层叶面积测量模型相关性高,由于上层叶片的遮挡,中层叶面积模型相关性略低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号