首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decisions about recreational beach closures would be enhanced if better estimates of surfzone contaminant transport and dilution were available. In situ methods for measuring fluorescent Rhodamine WT dye tracer in the surfzone are presented, increasing the temporal and spatial resolution over previous surfzone techniques. Bubbles and sand suspended by breaking waves in the surfzone interfere with in situ optical fluorometer dye measurements, increasing the lower bound for dye detection (≈ 1 ppb) and reducing (quenching) measured dye concentrations. Simultaneous turbidity measurements are used to estimate the level of bubble and sand interference and correct dye estimates. After correction, root-mean-square dye concentration errors are estimated to be <?5% of dye concentration magnitude, thus demonstrating the viability of in situ surfzone fluorescent dye measurements. The surfzone techniques developed here may be applicable to other environments with high bubble and sand concentrations (e.g., cascading rivers and streams).  相似文献   

2.
Results of many independent experimental findings related to fingered preferential flow are combined into a concise, conservative engineering methodology for predicting pollutant transport through fingered flow paths. Preferential flow can occur in all textures of soil, with fingering occurring in less structured coarse soils, giving over to macropore flow in finer-textured soil regimes. A simple example comparing groundwater loading of naphthalene using plug flow and fingered flow assumptions illustrates that fingered flow can increase contaminant loading to groundwater aquifers by over two orders of magnitude at sites with coarse vadose zone materials.  相似文献   

3.
Three microbial tracers – Escherichia coli J6-2, a somatic coliphage (ØESR1) and endospores of Bacillus subtilis var. niger NCIB 8649 tracer strain JHI – were added to effluent flood irrigated onto border dyke strips at a sewage treatment plant near Christchurch, New Zealand. All three tracers, and three effluent indicators – faecal coliforms, F-RNA phages, and chloride – were recovered in a bore, approximately 100 m downstream. A simple spatial model was applied to the breakthrough curves (BTCs) in the bore, using a series of hypothetical “entry points” in the strips. This analysis indicated effluent transport velocities through the 16.8 m deep vadose zone of between 15.7 and 39.2 m hr? 1. The shapes of the BTCs for the microorganisms and chloride were very different, suggesting that they reached the groundwater table via two pathways: – both underwent rapid transport to the groundwater though macropores, but chloride also underwent far slower (matrix) transport though micropores. The BTC shapes also suggested transport velocities in the vadose zone of E. coli J6-2 > B. subtilis JH1 endospores > phage ØESR1, which is consistent with the theory of pore size exclusion, based on particle size. Reductions in microbial concentrations were ≈100 times greater than for chloride, and occurred rapidly, suggesting that up to 99% of the microorganisms underwent early exclusion from macropore flow and were removed during matrix flow. Nevertheless, the results show that substantial numbers of bacteria and viruses will still reach the groundwater through macropores beneath effluent irrigation schemes located on alluvial gravel formations.  相似文献   

4.
Motz  Erin C.  Cey  Edwin  Ryan  M. Cathy  Chu  Angus 《Water, air, and soil pollution》2012,223(2):771-785
The attenuation of Escherichia coli and total coliform from secondary treated wastewater effluent under two “at-grade” effluent distribution systems was evaluated in a sandy silt vadose zone in a cold climate. The two at-grade distribution lines had different designs and hydraulic loading rates. Effluent transport was examined using chloride as a tracer. Coliform fate was evaluated relative to the chloride using a combination of in situ pore water sampling and destructive soil sampling, combined with the observation of a dye tracer along excavation sidewalls. Although bacteria attenuation in the subsoil appeared to decrease during colder, winter temperatures (likely due to decreased viability and decreased predation), the subsoil provided about a four log reduction in E. coli over 90 cm of vertical transport. Horizontal transport of bacteria (up to 1.5 m from the line) was likely aided by flow on top of a microbial biomat observed at the soil surface. Both the subsurface dye patterns and the E. coli sampling suggested less preferential flow occurred below the lower loading rate design. At-grade distribution of secondary treated wastewater appears to be a viable alternative to conventional distribution fields at sites with similar climate and soils.  相似文献   

5.
Understanding wetland hydrogeology is important as it is coupled to internal geochemical and biotic processes that ultimately determine the fate of potential contaminant inputs. Therefore, there is a need to quantitatively understand the complex hydrogeology of wetlands. The main objective of this study was to improve understanding of saturated groundwater flow in a forested riparian wetland located on a golf course in the Lower Pee Dee River Basin in South Carolina, USA. Field observations that characterize subsurface wetland flow critical to solute transport originating from storm-generated runoff are presented. Monitoring wells were installed, and slug tests were performed to measure permeabilities of the wetland soil. A field-scale bromide tracer experiment was conducted to mimic the periodic loading of nutrients caused by storm runoff. This experiment provided spatial and temporal data on solute transport that were analyzed to determine travel times in the wetland. Furthermore, a 3-D numerical, steady-state flow model (MODFLOW) was developed to simulate subsurface flow in the wetland. A particle tracking model was subsequently used to calculate solute travel times from the wetland inlet to the outlet based on flow modeling results. It was evident that observed tracer breakthrough times were not typical of these measured wetland soil matrix conductivity values. Based on surface water sampling results at the wetland outlet, tracer arrival time was about 9 h after the injection of the tracer. These results implied an apparent mean K value of 2,050 m/day, which is 152 times larger than the mean of the measured values using slug tests (13.4 m/day). Modeling efforts clearly demonstrated this implied preferential flow behavior; particle travel times resulting from the calibrated flow model were in the order of hundreds of days, while actual travel times in the wetland were in the order of hours to a few days. This significant difference in travel times was attributed to the presence of macropores in the form of dead root channels and cavities forming a pipe-flow network. The analyses presented in this study resulted in an estimate of the ratio of matrix permeability to matrix plus macropore permeability of approximately 1/150. Eventually, the tracer test and resulting travel times between various points in the wetland were critical to understanding the true wetland flow dynamics. The final conceptual model of the hydraulic properties of the wetland soils comprised a low permeability matrix containing a web of high K macropores. Simulation of tracer transport in this system was possible using a flow model with significantly elevated K values.  相似文献   

6.
田间施肥引起浅层土中氮的蓄积试验分析   总被引:5,自引:1,他引:4       下载免费PDF全文
张云  张胜  刘长礼  侯宏冰 《土壤》2006,38(1):92-98
田间施肥后,未挥发和被作物吸收的剩余N素易淋失运移,引起在浅层包气带土壤中的蓄积,且又易再释放进入下层土或地下水中形成污染,并主要受气候、土质结构、微生物作用等的影响。认识和掌握上述规律现象,将有助于研究农田施肥引起地下水污染的治理方法。对田间超量施肥灌溉后,作历时近1年的浅层包气带土壤中N的蓄积试验研究,结果显示:短期内土壤中N的显著蓄积主要发生在土层1.5m以浅部位,随时间、深度及入渗水量的变化而波动。这为探索根治由此引起的地下水污染,提供了较好的应用基础和科学依据。  相似文献   

7.
Contaminant elution and tracer (CET) tests are one method for characterizing the impact of mass transfer, transformation, and other attenuation processes on contaminant transport and mass removal for subsurface systems. The purpose of the work reported herein is to explore specific well-field configurations for improving CET tests by reducing the influence of preferential flow and surrounding plume effects. Three injection-extraction well configurations were tested for different domain conditions using a three-dimensional numerical model. The three configurations were the traditional configuration with a single pair of injection-extraction wells, modified configuration I with one extraction well located between two injection wells, and modified configuration II with two pairs of injection-extraction couplets (one nested within the other). Elution curves for resident contaminant and breakthrough curves from simulated tracer tests were examined for specific landmarks such as the presence and extent of steady state (relatively high concentrations) and asymptotic (asymptotic decrease to low concentrations) phases, as well as distinct changes in slope. Temporal moment analysis of the breakthrough curves was conducted to evaluate mass recovery. Effective diffusion coefficients were obtained by fitting selected functions to the elution curves. Based on simulation results for a homogeneous domain, full isolation of the inner extraction well from the surrounding plume was obtained for the modified configuration II, whereas the extraction wells are impacted by the surrounding plume for the other two configurations. Therefore, configuration II was used for additional simulations conducted with layered and heterogeneous domains. Tracer test simulations for homogeneous and layered domains indicate 100% mass recovery for the inner extraction well. For the heterogeneous domain, decreasing the distance between the inner injection-extraction well couplet and adjusting the pumping rate distribution between the two extraction wells increased the mass recovery from 69 to 99%.  相似文献   

8.
The occurrence of human enteric viruses in ground water has been well documented in the literature. Bacteriophages such as MS-2 and PRD1 have properties similar to pathogenic human viruses suggesting that bacteriophages can be used as proxies for virus transport. The objective of this study is to investigate a “worst case scenario” for virus transport in a ground water aquifer, i.e., sand and gravel aquifer under a forced-gradient, by using bacteriophages. Field studies have been conducted to trace large-scale (34 m) and small-scale (10 m) virus transport under natural- and forced-gradients through a sand and gravel aquifer at a ground water research site at the Texas A&M University. Virus transport was monitored under natural and forced-gradient conditions using MS-2 and PRD-1 as virus tracers and bromide as a conservative tracer. Results indicate virus and bromide transport to down-gradient monitoring wells in both the large- and small-scale field tests. During the tests conducted, MS-2 transport appears to exhibit little longitudinal dispersion, showing a narrow peak at the well nest 34 m down-gradient in 13 days which is 20 days before the bromide breakthroughs, indicating that bacteriophage transport through the aquifer was mainly by advective flow. Differences in tracer transport can be attributed to the heterogeneity of the sand and gravel aquifer at the site, different injection methods, different sampling methods, and different tracer properties. Heterogeneity of the aquifer would cause virus transport through preferential flow paths.  相似文献   

9.
In situ and laboratory measurements of aerobic respiratory and denitrifying activities were studied in the vadose zone (almost 2.5 m thick) of a fluvic hypercalcaric cambisol characterized by transitory anaerobic conditions. A field experiment was conducted in a bare soil, over a 7-month period starting just after maize harvest and incorporation of maize crop residues. Weather variables (air and soil temperature, rainfall), soil water content, soil solutes (NO3 and dissolved organic carbon) and soil gases (CO2 and N2O), were recorded throughout the experiment. Four soil layers were defined. Bacterial counts were performed in each layer using the most probable number (MPN) method. Aerobic respiratory and denitrifying activities were estimated from laboratory measurements. In situ microbial activity, as revealed by CO2 and N2O measurements in the soil atmosphere, was strongly influenced by weather. Laboratory measurements showed that potential aerobic respiratory activity (ARA) occurred throughout the soil profile, whereas semi-potential denitrifying activities SPDA (i.e. measured under organic-C limiting condition) occurred mainly in the top 30 cm soil layer. In the soil profile, the CO2 concentration gradient was stronger than the N2O concentration gradient. Seasonal variations in microbial activities increased with depth, whereas DOC concentrations, and variations in those concentrations, decreased with depth, suggesting that DOC quality investigations are necessary in the deep vadose zone to understand microbial activities seasonal variations. Laboratory measurements of potential activities agreed well with in situ microbial activity in natural environmental conditions. NO3 was a stronger limiting factor for SPDA than was denitrifier density in the soil profile.  相似文献   

10.
The impact of biosolid and soil type on the movement of faecal coliforms through the vadose zone was investigated following the application of animal manure to soil. Two types of biosolid, solid and liquid manure, were applied to two soil types at a wide range of initial water contents. Bacteria present in the soil solution were collected using calibrated ceramic-porous-cup samplers. Estimated bacterial migration velocities in the soil profile were consistent with the hypothesis that bacteria move mostly through soil macropores, as the rate of transport was faster than the average pore-water velocity. Macropore transport was more likely to occur in wet soils, but it was not necessarily restricted to soils with high initial soil water content. A larger soil clay content, lower total soil porosity, and lower saturated hydraulic conductivity resulted in a greater likelihood that suspended bacteria would be funnelled through pores of larger diameter and faster pore water velocity, increasing the potential vertical transport length of bacteria through the vadose zone. Total porosity was not a significant factor in enhancing deep transport of faecal bacteria. The potential of faecal bacteria to be transported to depth in soil was correlated with the water content of the manure. We conclude that application of animal manure to soil can readily lead to groundwater contamination with faecal bacteria especially under moist soil conditions, and that macropores are important in the transport.  相似文献   

11.
为更好地了解采煤扰动下潜水位及包气带水分变化规律,在陕北典型矿区开展了降雨、潜水位、包气带土壤含水率等水循环要素的野外原位观测试验,基于观测数据,采用Spearman秩相关系数检验、小波分析等方法,分析了未开采区及采空区潜水位和包气带水分的变化特征。结果表明:未开采区地下水位对于降水的响应明显且时间上存在4、5个月的滞后,采煤扰动后,地下潜水位持续下降,与降水响应关系微弱;在垂向上,未开采区较大降水可对100 cm以下埋深的土壤含水率产生影响,采空区土壤含水率总体减小,且同降水的响应程度不显著,含水率最大值相对于未开采区出现时间提前,50 cm以下埋深的土壤含水率对小强度降水无响应。采煤扰动潜水位下降后造成包气带增厚,包气带损耗的水量增加,随之造成降雨入渗补给地下水减少,进一步加剧了潜水位下降。  相似文献   

12.
Reaeration coefficient (k), the rate of oxygen exchange between the atmosphere and water surface, is an important parameter for understanding water quality impairment and stream metabolism. We modified the propane injection method to measure gas exchange coefficients and evaluated its application for small streams. The tracer solution was prepared by solubilizing propane directly in a conservative solute solution, and it was injected as a constant-rate injection, a single slug, or an extended slug. Water samples were taken at four to five sampling stations along the study reach at the tracer concentration peak, and propane and conductivity were measured. The propane exchange rate (k propane) was calculated using the regression method with the propane/conductivity ratio against solute travel time (in hours). The mixed tracer injection method was conducted in four streams, and all k propane measurements (n?=?8) were statistically significant (p?<?0.05). The short-duration constant rate injection and extended slug injection provided k propane estimates with higher r 2 than the single slug injection. The k 20 measured with propane injection ranged from 5.4 to 40.0?day?1, and they were significantly correlated with empirically estimated k. The mixed tracer injection method with propane could potentially reduce field time, crew demands, and field equipment; thus, it would potentially lower the overall cost of gas exchange coefficient measurements and be an effective method in small, remote streams.  相似文献   

13.
Potassium (K) delivery to the roots of cereal plants in soils is determined by both soil and plant factors, root growth and root length density in particular, being of major importance. In Part A of this paper an evaluative framework is shown for sandy and loamy-silty soils for determination of root length density based on available field capacity, soil depth in 10 cm steps and the climatic water balance. A good correlation (r2 = 0.86) was found when the root length densities were determined at ear emergence. With the help of correction functions root length densities can be subsequently estimated for the other phenological stages (stem elongation, flowering and yellow ripeness). The method described is suited for determining root length densities in water and nutrient transport simulation models. In Part B exchange resins were used to simulate the K delivery from the soil to the root. Measurements were made for different soils and water contents. The depletion zone near the exchange resin was 6 mm thick after 4 days. This corresponds to results obtained from root measurements. Comparisons between a sandy and a loamy-silty soil show, that K delivery by diffusion for equal concentrations depends primarily on soil moisture and pore tortuosity. This leads to the conclusion, that soil physical properties must be taken into consideration when evaluating chemical soil analysis and recommendating fertilizer applications.  相似文献   

14.
The risk assessment procedure for identifying the remediation actions which may be adopted at a mercury contaminated site, when the plants are upgraded in the future, is proposed. The potentially active exposure/migration pathways in the future arrangement of the area will be due to Hg contaminated subsoil as a primary source (vapor inhalation and groundwater leaching) and to groundwater as a possible secondary source (transport to the point of compliance). The data of mercury concentration in the soil were acquired through environmental monitoring campaigns, and were processed to establish the three-dimensional distribution of contamination in subsoil, to locate sources and to define their geometrical and chemical characteristics. Speciation tests of mercury in the soil indicated that the most abundant species present were poorly leachable under the site-specific environmental conditions, confirming the coefficient distribution value obtained by the leaching tests. Analytical and numerical fate and transport modeling tools were used to locate digging zones in the contaminated subsoil, so as to reduce the possible groundwater contaminant loading and to avoid the down-gradient exceeding the concentration limit according to regulations. Remediation actions additional to civil works were required, which consists of soil digging within one contamination source, for about 22,200 m3 of soil. In order to evaluate the Hazard Index (HI) for human receptors due to Hg vapor inhalation, the air concentration of volatile mercury at the exposure point was estimated, based on direct measurements carried out at the site. Simulation gave HI values below 1 for all tested scenarios, suggesting that public health is protected without any additional actions to the already scheduled plant upgrading and digging for groundwater protection.  相似文献   

15.
Factors affecting preferential flow and transport in the vadose zone need to be investigated by experiments and simulations to protect groundwater against surface applied chemicals. The objectives of this study were to investigate the effects of several factors (soil structure, initial soil water content (SWC), and application rate) and their interactions on the extent of preferential flow and transport in a sandy clay loam field soil using the time domain reflectometry (TDR) for measuring SWC and electrical conductivity (EC) in 12 treatments, modeling (by HYDRUS-1D and VS2DTI) the measured SWC and EC, and conducting statistical tests for comparing the means of the measured and modeled SWC and EC and solute transport parameters (pore water velocity and dispersion coefficient) obtained by inversely fitting in the CXTFIT program. The study results showed that the applied solution moved faster in the undisturbed, wet initial SWC, and higher application rate experimental conditions than in the disturbed, dry initial SWC, and lower application rate, respectively, based on the analysis of the changes in TDR measured SWC and EC with depth at 1, 2, 5, and 15?h of the experiments. However, the effects of interactive factors or treatments on water flow and solute transport were not clear enough. The modeling results showed that HYDRUS-1D was better than VS2DTI in the estimation of EC and especially SWC, but overall the models had relatively low performances in the simulations. Statistical test results also showed that the treatments had different flow and transport characteristics because they were divided into different groups in terms of the means of SWC and EC and solute transport parameters. These results suggest that similar experiments with more distinct interactions and modeling studies with different approaches need to be considered for better understanding the complex flow and transport processes in the vadose zone.  相似文献   

16.
The three-phase flow and contaminant transport of NAPL in a non-isothermal system is modelled as a system of six coupled non-linear partial differential equations. The coupled flow of water, air, water vapour and heat is assumed to follow the theory of Philip and De Vries. Gravity, viscous and capillary forces are included in addition to volatilisation and dissolution of NAPL which are based on either local equilibrium or first order kinetics. The modified Galerkin weighted residual method is used in the spacial discretisation while the generalised mid-point rule is employed for time integration. The non-linearities are handled by both the Newton-Raphson algorithm for the flow equations and the iterative Picard Method for the transport and energy equations. Mass balance errors are minimised by specific treatment of the mass storage coefficients. The model was tested against several isothermal and non-isothermal analytical and `benchmark' problems whenever available. A variety of problems constituting a subset of the general formulation have been simulated. Very good agreements were obtained between this model and the analytical solutions for the case of both one-dimensional and two-dimensional transient heat transfer. Additionally, the analytical results of steady transport in water and gas with and without biodegradation have been very well reproduced. The particular effect of the surface temperature variation on the flow of LNAPL and DNAPL in the subsurface was investigated and it has been shown to have significant impact on both the imbibition and redistribution stages. During the imbibition stage, the quantity of LNAPL or DNAPL contaminating the system is largely affected by the surface temperature. The resulting relative variation of NAPL saturation during the redistribution stage can reach about 30% for the range of surface temperature of 5–30 °C, mainly in the vadose zone near the ground surface.  相似文献   

17.
季节性冻土区占据中国超过一半的国土面积,冻融作用会显著改变土壤性质与包气带水、热传输过程,并且由于季节性冻土广泛分布在干旱半干旱地区,温度与气态水对于土壤水分运移影响显著,开展水汽热耦合研究不仅更符合季节性冻土区实际情况,同时对于揭示土壤水循环机制十分关键。本文综述了包气带水汽热耦合运移理论的提出与发展历程,阐述了季节性冻融作用对水汽热耦合运移研究中水力参数及水分相态转化过程的影响,探讨了水汽热耦合模型适用性,并归纳总结了温度梯度驱动下气态水运移规律及其重要性。最后,对该领域尚需加强研究的方向提出看法与建议,以期为深化包气带水汽热耦合运移理论以及解决季节性冻土区相关实际问题提供科学依据。  相似文献   

18.
Degradation and binding of atrazine in surface and subsurface soils   总被引:1,自引:0,他引:1  
Understanding the dissipation rates of chemicals in unsaturated and saturated zones of subsurface soils will help determine if reductions of concentrations to acceptable levels will occur. Chemical properties and microbial biomass and activity were determined for the surface (0-15 cm), lower root (50-105 cm), and vadose (175-220 cm) zones in a Huntington silty clay loam (Fluventic Hapludoll) collected from an agricultural field near Piketon, OH. The rates of sorption, mineralization, and transformation (formation of bound residues and metabolites) of atrazine were determined. Microbial activity was estimated from the mineralization of (14)C-benzoate. We observed decreased levels of nutrients (total organic carbon, N, and P) and microbial biomass with depth, while activity as measured with benzoate metabolism was higher in the vadose zone than in either the surface or the root zones. Sorption coefficients (K(f)) declined from 8.17 in the surface to 3.31 in the vadose zone. Sorption was positively correlated with organic C content. Rates of atrazine mineralization and bound residues formation were, respectively, 12-2.3-fold lower in the vadose than in the surface soil. Estimated half-lives of atrazine ranged from 77 to 101 days in the surface soil, but increased to over 900 days in the subsurface soils. The decreased dissipation of atrazine with increasing depth in the profile is the result of decreased microbial activity toward atrazine, measured either as total biomass or as populations of atrazine-degrading microorganisms. The combination of reduced dissipation and low sorption indicates that there is potential for atrazine movement in the subsurface soils.  相似文献   

19.
Abstract. In an exploratory study land use in 27 catchments covering most of England and Wales was assessed (using the land use classification devised by the then Institute of Terrestrial Ecology, now a part of the Centre for Ecology and Hydrology) and related to loads and concentrations of total nitrogen, phosphorus (mainly as orthophosphate (Op)) and some pesticides in river flows reaching the surrounding seas in the years 1990–1993. There are good correlations between seven land use types and the concentrations of total nitrogen ( r =0.83) and Op ( r =0.73) entering the seas. The correlations for individual land use types are best for arable land: total nitrogen, r =0.77; Op, r =0.65; and are positive. However, except for the mixed arable and grassland, the relationships between the other five land use types (improved grassland, upland grassland, upland moorland, upland mixed, and afforested and upland) and contaminant concentrations are negative. If data from the Mersey catchment are discarded, on the grounds that contaminant concentrations in the river seem unduly high, correlations between land use and contaminant concentrations reaching the seas are improved for all land uses: total nitrogen, r =0.89; Op, r =0.83; and atrazine, r =0.78. Loads and concentrations of pollutants in rivers entering the sea could be used to validate models of losses from catchments. Models may need to take greater account of runoff and transport of soil particles than they do presently.  相似文献   

20.
基于薄层水流中的热传递过程,提出测量水流流速的示踪方法,并设计对应的测量系统。在室内试验坡面上,设计不同试验工况(坡度为5°,10°,20°,流量为2,5,8 L/min),以盐示踪法为对照,研究热示踪测量薄层水流流速的可行性及其影响因素。结果表明,测量系统能准确地测得热示踪剂的运移过程;热与盐2种示踪剂测得流速范围为0.408~1.522 m/s,线性拟合斜率为1.006,R2为0.993,表明两者具有显著的线性关系,热示踪法具有较高的可靠性;由于物理属性差异,部分水力工况下示踪剂的释放方式对盐和热的测量结果影响显著,表明此时2种示踪剂测量流速的代表性不同;可采用盐与热联合示踪的方法,取二者测量结果的均值作为薄层水流的平均流速,以提高测量结果的代表性。研究结果可为复杂下垫面、盐渍化和禁用化学成分等特殊坡面上薄层水流流速的准确测量提供新方法和理论参考。薄层水流流速的准确测量对地表水文和土壤侵蚀领域的研究具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号