首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new gluten-free bread formulations composed of quinoa, buckwheat, rice flour and potato starch were developed in the present study. Rheological characteristics of the bread batter with increasing amount of quinoa were determined; storage (G′) and loss modulus (G″) values were also measured for investigation of viscoelastic properties. To evaluate the quality of breads; technological and physical (bake loss %, specific volume, texture, microstructure, color), chemical (protein, moisture, ash) and sensory properties were determined. All batter formulations independent of the quinoa amount exhibited pseudoplastic behavior, and G′ values were found to be higher than G″ values in expressing the solid like characteristics of the batter. Amount of quinoa flour addition did not present significant difference on bake loss%, specific volume and protein content (p>0.05); however, 25% quinoa flour bread displayed better results with its higher sensory scores and softer texture. Quinoa and buckwheat flour mixture therefore will be a good alternative for conventional gluten-free bread formulations.  相似文献   

2.
Chenopodium quinoa Willd (quinoa) has been a source of food for millennia by the Andes region native population. Because of its bitter taste, quinoa seeds are commercialized without their coat for human consumption. Quinoa coats are surfactant sub-products of the quinoa food industry, which have been only characterized to contain triterpene saponins. We postulated that this coat should also contain antioxidant molecules as part of the defense system of the quinoa seed. We found that a quinoa seed coats hydroalcoholic extract, displayed thiol compounds in addition to polyphenols, recognized antioxidants. Accordingly, it inhibited microsomal lipid peroxidation and the loss of microsomal thiol content, both oxidative phenomena promoted by Cu2+/ascorbate. Microsomal glutathione S-transferase (GST) is inhibited by reducing agents, which decrease the content of catalytically active disulfide-linked dimers. The effects of this quinoa extract on microsomal GST are consistent with it displaying disulfide reducing properties. The occurrence of thiol compounds in this quinoa extract is discussed in terms of the potential of their antioxidant properties.  相似文献   

3.
The aroma of gluten-free bread has been considered of lower quality than that of the common wheat bread. With the aim of improving the aroma of gluten-free bread, the volatile profiles of the crumb of gluten-free breads made from rice, teff, buckwheat, amaranth and quinoa flours as well as corn starch, respectively, were evaluated. Wheat bread was used as a reference and dynamic headspace extraction together with GC/MS was employed. It was found that the whole grain breads, made with teff, quinoa and amaranth flours, presented a stronger aroma with higher number of important aroma contributors. Rice bread was characterised by the highest levels in nonanal and 2,4-decadienal and corn starch bread by 2,3-pentanedione and 2-furaldehyde. Teff presented the highest abundance of ethyl hexanoate and ethyl nonanoate, but also of alcohols and aldehydes from lipid oxidation. Quinoa and amaranth were classified by the highest content in Strecker and Ehrlich aldehydes as well as 1-propanol, 2-methyl-1-propanol, 3-methyl-1-butanol or 3-hydroxy-2-butanone from fermentation. Corn starch bread was the closest to wheat bread in the PCA due to the highest content mainly in 2,3-butanedione and furfural as well as the lowest contents in 1-propanol, 1-hexanol and pentanal.  相似文献   

4.
The in vitro starch digestibility of five gluten-free breads (from buckwheat, oat, quinoa, sorghum or teff flour) was analysed using a multi-enzyme dialysis system. Hydrolysis indexes (HI) and predicted glycaemic indexes (pGI) were calculated from the area under the curve (AUC; g RSR/100g TAC*min) of reducing sugars released (RSR), and related to that of white wheat bread. Total available carbohydrates (TAC; mg/4 g bread “as eaten”) were highest in sorghum (1634 mg) and oat bread (1384 mg). The AUC was highest for quinoa (3260 g RSR), followed by buckwheat (2377 g RSR) and teff bread (2026 g RSR). Quinoa bread showed highest predicted GI (95). GIs of buckwheat (GI 80), teff (74), sorghum (72) and oat (71) breads were significantly lower. Significantly higher gelatinization temperatures in teff (71 °C) and sorghum flour (69 °C) as determined by differential scanning calorimetry (DSC) correlated with lower pGIs (74 and 72). Larger granule diameters in oat (3–10 μm) and sorghum (6–18 μm) in comparison to quinoa (1.3 μm) and buckwheat flour (3–7 μm) as assessed with scanning electron microscopy resulted in lower specific surface area of starch granules. The data is in agreement with predictions that smaller starch granules result in a higher GI.  相似文献   

5.
The in vitro starch digestibility of five gluten-free breads (from buckwheat, oat, quinoa, sorghum or teff flour) was analysed using a multi-enzyme dialysis system. Hydrolysis indexes (HI) and predicted glycaemic indexes (pGI) were calculated from the area under the curve (AUC; g RSR/100g TAC*min) of reducing sugars released (RSR), and related to that of white wheat bread. Total available carbohydrates (TAC; mg/4 g bread “as eaten”) were highest in sorghum (1634 mg) and oat bread (1384 mg). The AUC was highest for quinoa (3260 g RSR), followed by buckwheat (2377 g RSR) and teff bread (2026 g RSR). Quinoa bread showed highest predicted GI (95). GIs of buckwheat (GI 80), teff (74), sorghum (72) and oat (71) breads were significantly lower. Significantly higher gelatinization temperatures in teff (71 °C) and sorghum flour (69 °C) as determined by differential scanning calorimetry (DSC) correlated with lower pGIs (74 and 72). Larger granule diameters in oat (3–10 μm) and sorghum (6–18 μm) in comparison to quinoa (1.3 μm) and buckwheat flour (3–7 μm) as assessed with scanning electron microscopy resulted in lower specific surface area of starch granules. The data is in agreement with predictions that smaller starch granules result in a higher GI.  相似文献   

6.
Quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus) are nutritious pseudocereals that originate from the Andean region. The aim of this research was to study the effect of germination and the subsequent kilning on the phenolic compounds and proximate composition in selected Peruvian varieties of quinoa (“Chullpi”) and kiwicha (“Oscar Blanco”). The germination process was carried out for 24, 48 and 72 h at 22 °C, and the kilning was performed with samples germinated for 72 h by drying the seeds at 90 °C for 5 min. Both processes increased the protein content of the samples. However, lipid content was reduced during germination. On the other hand, germination and kilning clearly increased the concentration of total phenolic compounds in both quinoa and kiwicha. Germination for 72 h either with or without kilning process resulted in a significant (p < 0.05) increase in the total content of phenolics compared to untreated materials, which was especially due to coumaric acid and a kaempferol tri-glycoside in quinoa and caffeoylquinic acid in kiwicha. Based on the results, germination and kilning may improve the nutritional quality of the Andean grains, encouraging the usage of the processed grains as ingredients in functional products for people with special gluten-free or vegetarian diets.  相似文献   

7.
Samh seeds obtained from Al-Jouf area were ground into flour analyzed and used as a replacement for wheat in the ratio of 10, 20 and 30% for bread and 30, 60 100% for cookies. The rheological effect of the Samh flour on Saudi wheat flour was also studied. The bread and cookies obtained were evaluated physically and by sensory evaluation. The results obtained indicated that samh flour has high protein content and could be used as a replacement for wheat flour upto 30% without adversely affecting the bread specific volume much. Samh flour has improved the cookies appearance specially the colour (chocolate colour) and spreading ratio. The results also revealed that it is possible to make cookies from 100% samh flour. Due to the high protein content of the samh seeds the nutritional value of the bread and cookies made with samh flour will be improved. The results of the sensory evaluation of the bread and cookies indicated that the bread made with samh flour upto 30% has similar characters except for the crumb color and the overall acceptability which were rated as significantly inferior. The sensory evaluation of the cookies showed that the cookies made with samh flour upto 100% were significantly superior (p<0.05) to the cookies made with 100% wheat flour (control).  相似文献   

8.
Gluten free (GF) flour (amaranth, buckwheat, chickpea, corn, millet and quinoa) was blended with rice flour to compare their impact on dough rheological characteristics and bread quality. The potential of some GF-rice blends in breadmaking has already been studied on blends with prevailing content of rice flour. The impact of added flour may be expected to rise with increasing amount of flour; therefore blends containing 30 g/100 g, 50 g/100 g and 70 g/100 g of GF flour in 100 g of GF-rice blend were tested. Under uniaxial deformation, peak strain was not impacted by the addition of GF flour; stress (12.3 kPa) was, however, significantly (P < 0.05) decreased (2.9–6.2 kPa). The reduction initiated by the presence of buckwheat, chickpea, quinoa and partly amaranth, together with thermally-induced dough weakening initiated by buckwheat and quinoa flour, may be related to significantly better crumb porosity. Overall acceptability of composite breads containing amaranth, chickpea and quinoa was negatively impacted by the aroma and taste of these flours. Higher potential to improve rice dough behavior and bread quality was found in the blend containing buckwheat flour (30 g/100 g; 50 g/100 g). Millet and corn flour deteriorated dough and bread quality.  相似文献   

9.
为了解青蒿素对小麦种子萌发和幼苗生长的影响,运用室内培养皿法,分析了不同浓度的青蒿素溶液浸种后小麦种子发芽率及幼苗高度、根长、整株鲜重、根和茎鲜重及干重、根系活力等指标的变化。结果表明,青蒿素对小麦种子萌发及幼苗生长有抑制作用,且浓度越高,抑制作用越显著。与无菌水对照相比,青蒿素浸种处理显著降低了小麦的种子发芽率、苗高、根长、根鲜重和茎的鲜、干重,增加了根干重和根冠比。小麦的根系活力和可溶性蛋白含量随青蒿素浓度的增加而递减,可溶性糖含量则随之递增,叶绿素含量则呈先升高后降低的趋势,以20mg·L-1处理含量最高。此外,青蒿素浸种处理对小麦幼苗各项指标的影响与15mg·L-1多效唑相似。  相似文献   

10.
Bread with 48.5% soy ingredients was assessed for quality during frozen storage of the dough. Soy protein was hypothesized to prevent water migration during frozen storage, thereby producing dough that would exhibit fewer structural changes than traditional wheat bread. Wheat and soy bread were baked from dough that was fresh or frozen (−20 °C, 2 or 4 wks). Dough and bread were assessed for physical properties including moisture content, percent “freezable” and “unfreezable” water, dough extensibility, and bread texture. The bread was subjected to an untrained sensory panel. The soy bread was denser, chewier, and had a higher moisture content than wheat bread. When baked from fresh or frozen dough, soy bread was rated “moderately acceptable” or higher by 70% of panelists. Soy minimized changes in dough extensibility and resistive force to extension, leading to minimal changes in bread hardness. Although consumers could distinguish between bread baked from soy dough that was fresh or frozen for 4 wks, sensorial and textural data suggested that the rate at which the quality of the soy dough deteriorated was slower than that of wheat dough. In conclusion, the dough of consumer-acceptable soy bread retained quality characteristics during frozen storage slightly better than wheat dough.  相似文献   

11.
The effect of 40 h solid-state fermentation with Rhizopus oligosporus on selected parameters of white and coloured quinoa was studied, as compared to standard (30 h) product and cooked seeds.The reducing power (RP) and the activity against synthetic free radicals of standard tempe were higher by on average 140% (white) and 64% (coloured quinoa) than that of cooked seeds. The OH scavenging activity was increased by more than 7 fold (white), and over 2 fold (coloured quinoa). Prolongation of the fermentation caused further improvement in this potential, on average by 27% (OH, RP) and 24% (DPPH, ABTS+ assays). The soluble phenols i.e. vanillic acid, protocatechuic acid and rutin levels in 40 h tempe were significantly higher than in cooked quinoa. Fermented products contained 470% (white) and on average 150% (coloured quinoa) more riboflavin and 100% more thiamine (white quinoa) than cooked seeds. The levels of total protein, free amino acids and proteins releasable during the in vitro digestion, were improved as a result of 40 h fermentation. The essential amino acids profile of quinoa tempe was consistent with the reference pattern.The prolonged tempe-type fermentation of quinoa can be recommended as a method of the value-added food production.  相似文献   

12.
The impact of 48 h sprouted quinoa (SQ) was assessed in bread-making. Wheat flour (WF) was replaced with SQ at different levels (i.e., 10:90, 20:80 and 30:70, SQ:WF ratio). Once the optimal replacement level of SQ was identified, the bread-making performance of this ingredient was compared with those of pearled quinoa (PQ), commonly used in bread-making.Starch pasting properties and gluten aggregation behavior were not strongly affected at 20:80 level. Regardless the replacement level, SQ caused an increase in dough water absorption and in softening degree, and a decrease in stability, suggesting weakening of the gluten network. During leavening, SQ improved dough development and gas production, due to increased sugar content (i.e. maltose, sucrose and D-glucose). The best bread-making performance (highest bread specific volume and lowest crumb firmness) was obtained at 20:80 replacement level. Compared to PQ, SQ exhibited the best leavening capacity (high dough development, gas production and gas retention) and bread properties (high specific volume and low crumb firmness), likely due to its higher sugar content. Moreover, 20SQ bread was characterized by a decreased bitterness assessed by electronic-tongue. In conclusion, sprouting might be considered a valid alternative to pearling to improve the characteristics of quinoa enriched bread  相似文献   

13.
The effect of Chenopodium quinoa seeds on lipid profile, glucose level, protein metabolism and selected essential elements (Na, K, Ca, Mg) level was determined in high—fructose fed male Wistar rats. Fructose decreased significantly LDL [42%, p < 0.01] and activity of alkaline phosphatase [20%, p < 0.05], and increased triglycerides level [86%, p < 0.01]. The analysis of blood of rats fed quinoa indicated, that these seeds effectively reduced serum total cholesterol [26%, p < 0.05], LDL [57%, p < 0.008] and triglycerides [11%, p < 0.05] when compared to the control group. Quinoa seeds also significantly reduced the level of glucose [10%, p < 0.01] and plasma total protein level [16%, p < 0.001]. Fructose significantly decreased HDL [15%, p < 0.05] level in control group but when the quinoa seeds were added into the diet the decrease of HDL level was inhibited. Quinoa seeds did not prevent any adverse effect of increasing triglyceride level caused by fructose. It was shown in this study that quinoa seeds can reduce most of the adverse effects exerted by fructose on lipid profile and glucose level.  相似文献   

14.
Germination can be used to improve the sensory and nutritional properties of cereal and pseudocereal grains. Oat and quinoa are rich in minerals, vitamins and fibre while quinoa also contains high amounts of protein of a high nutritional value. In this study, oat and quinoa malts were produced and incorporated in a rice and potato based gluten free formulation. Germination of oat led to a drastic increase of α-amylase activity from 0.3 to 48 U/g, and minor increases in proteolytic and lipolytic activities. Little change was observed in quinoa except a decrease in proteolytic activity from 9.6 to 6.9 U/g. Oat malt addition decreased batter viscosities at both proofing temperature and during heating. These changes led to a decrease in bread density from 0.59 to 0.5 g/ml and the formation of a more open crumb, but overdosing of oat malt deteriorated the product as a result of excessive amylolysis during baking. Quinoa malt had no significant effect on the baking properties due to low α-amylase activity. Despite showing a very different impact on the bread quality, both malts influenced the electrophoretic patterns of rice flour protein similarly. This suggests that malt induced proteolysis does not influence the technological properties of a complex gluten free formulation.  相似文献   

15.
为探究小麦种子休眠解除期间的成分变化对发芽率的影响,了解种子休眠解除机制,以铭贤169为材料,在收获后不同储藏时间(间隔20 d)取样,通过显微设备观察了种子后熟期间的结构变化,测定了相关生理指标和成分,以探究铭贤169种子休眠性原因。结果表明,铭贤169种子休眠解除过程中,种皮细胞结构、组织结构、淀粉粒结构、蛋白基质等均发生变化,淀粉含量、粒径、糊化特性、热稳定性随贮藏时间延长变化显著。铭贤169的离体胚在花后25 d就具有发芽能力,但种子在花后35 d仍处于休眠。收获后熟期间,种胚活性、种子吸水率、含水量、淀粉含量、淀粉糊化谷值粘度和峰值时间、热稳定性逐步上升,与发芽率正相关。A型淀粉粒表面破损,淀粉粒与蛋白质结合紧密,种皮结构松散;淀粉粒径、淀粉酶活性、可溶性糖含量和沉降值减小;面筋和粗蛋白含量变化不大。推测铭贤169种子的休眠性与种子母体成分有关,休眠解除期间发芽率变化受种皮结构、淀粉的分解程度、淀粉粒与蛋白质的结合方式、可溶性糖含量、淀粉含量和性质以及淀粉酶活性等因素影响。  相似文献   

16.
为了明确冀南地区大田小麦籽粒质量现状及食品加工利用潜力,本研究以2013-2016年冀南地区10个小麦主产县抽取的360份农户大田小麦籽粒样品为试验材料,参照国家标准,分析了小麦籽粒质量性状。结果表明, 2013-2016年冀南地区大田小麦籽粒容重平均值为817±20 g·L-1,籽粒蛋白含量平均值为14.4%±1.0%,籽粒湿面筋含量平均值为29.3%±2.5%,稳定时间平均值为7.0±9.4 min。冀南地区大田小麦整体水平达到中强筋小麦水平。除气候、栽培条件以外,小麦品种年际变化是造成该区域小麦籽粒质量变化的主要原因。湿面筋含量较低、稳定时间较短是冀南地区大田强筋小麦优质率较低的主要因素。冀南地区大田小麦可以较好地满足传统中式食品(面条、馒头、饺子)的生产需求。  相似文献   

17.
Extrusion processing characteristics of Cherry Vanilla quinoa flour (Chenopodium quinoa Willd) were investigated using a three factor response surface design to assess the impact of feed moisture, temperature, and screw speed on the physicochemical properties of quinoa extrudates. Specific mechanical energy (SME) required to extrude this quinoa variety was higher (250–500 kJ/kg) than previously reported for quinoa. The following characteristics of the extrudates were observed: expansion ratio (1.17–1.55 g/cm3), unit density (0.45–1.02 g/cm3), water absorption index (WAI) (2.33–3.05 g/g), and water solubility index (WSI) (14.5–15.87%). This quinoa flour had relatively low direct expansion compared to cereal grains such as corn or wheat, suggesting that it is not well suited for the making of direct expanded products. The study further suggests that there is a need to understand the processing characteristics of new quinoa varieties for cultivation. Understanding extrusion and other quality traits in advance will help to select the appropriate varieties that would allow food processors to meet consumer needs.  相似文献   

18.
LA浸种对小麦种子萌发和幼苗生理特性的影响   总被引:1,自引:0,他引:1  
为了解拉肖皂苷元(LA)对植物生长的调控作用,以小麦品种小偃22为试验材料,研究了不同浓度LA浸种处理对小麦种子萌发和幼苗生理特性的影响。结果表明,0.001 m·L-1 LA浸种处理下小麦种子的发芽率、发芽势和发芽指数最高,分别较对照提高了13.13%、214.81%和55.17%。0.005 mg·L-1 LA浸种处理下小麦幼苗的根长和真叶长较对照分别提高了92.21%和46.75%。小麦幼苗的株高、鲜重和干重以0.001 mg·L-1处理最高,分别比对照提高了26.53%、32.91%和122.22%。0.001 mg·L-1LA浸种处理下,小麦叶片SOD、POD和CAT活性分别提高了39.43%、136.62%和60.42%,MDA含量降低60.49%。0.005 mg·L-1 LA浸种处理下小麦幼苗的可溶性糖、可溶性蛋白以及游离脯氨酸的含量较对照提高了70.74%、32.12%和34.47%,差异显著。综上所述,适宜浓度LA浸种可显著促进小麦种子的萌发和幼苗的生长,提高小麦幼苗的抗氧化酶活性和渗透调节物质含量,对于小麦壮苗具有重要意义。  相似文献   

19.
为了解黄腐酸、褪黑素、水杨酸三种浸种剂对硫酸盐胁迫下小麦种子萌发期耐盐性的调节效应,分别采用不同浓度的黄腐酸(0.5、1.0和1.5 g·L-1)、褪黑素(0.01、0.05和0.10 mmol·L-1)、水杨酸(0.1、0.5和1.0 mmol·L-1)对小麦进行浸种处理,随后与未处理的小麦种子一并采用100 mmol·L-1 Na2SO4溶液培养,测定各处理下小麦种子萌发期的生长生理指标,并通过主成分分析综合评价其耐盐性。结果表明,0.5~1.5 g·L-1的黄腐酸、0.01~0.10 mmol·L-1褪黑素、0.1~0.5 mmol·L-1水杨酸浸种均提升了小麦根系活力、体内抗氧化酶活性,降低了小麦体内超氧阴离子自由基■产生速率及丙二醛(MDA)含量,缓解了盐分对小麦种子萌发的胁迫程度,增强了小麦种子萌发期的耐盐性,促进了小麦的萌发生长。其中,1.5 g·L-1的...  相似文献   

20.
The growing interest in the benefits of wholegrain products has resulted in the development of baked products incorporating less utilised and ancient grains such as, millet, quinoa, sorghum and teff. However, addition of wholegrains can have detrimental effects on textural and sensory bread product qualities.Enzymes can be utilised to improve breadmaking performance of wholegrain flours, which do not possess the same visco-elastic properties as refined wheat flour, in order to produce a healthy and consumer acceptable cereal product.The effects of Teff grain on dough and bread quality, selected nutritional properties and the impact of enzymes on physical, textural and sensory properties of straight dough and sourdough Teff breads were investigated.Teff breads were prepared with the replacement of white wheat flour with Teff flour at various levels (0%, 10%, 20%, and 30%) using straight dough and sourdough breadmaking. Different combinations of enzymes, including xylanase and amylase (X + A), amylase and glucose oxidase (A + GO), glucose oxidase and xylanase (GO + X), lipase and amylase (L + A) were used to improve the quality of the highest level Teff breads. A number of physical, textural and sensory properties of the finished products were studied. The nutritional value of breads was determined by measuring chemical composition for iron, total antioxidant capacity, protein, fibre and fat. The obtained results were used to estimates intakes of nutrients and to compare them with DRIs.The incorporation of Teff significantly (P < 0.05) improved dietary iron levels as 30% Teff breads contained more than double the amount of iron when compared to corresponding wheat bread (6 mg/100 g v 2 mg/100 g). Addition of Teff also significantly (P < 0.05) improved total antioxidant capacity from 1.4 mM TEAC/100 g to 2.4 mM TEAC/100 g. It was estimated that an average daily allowance of 200 g of Teff enriched bread would contribute to DRIs in the range of 42-81% for iron in females, 72-138% for iron in males; 38-39% for protein in males, 46-48% for protein in females; and 47-50% of fibre in adults.The major challenge was encountered in producing the highest level of Teff bread with good textural and sensory attributes. Increasing the level of Teff significantly (P < 0.05) increased dough development time, degree of softening, crumb firmness and bitter flavour whilst decreasing the dough stability, specific loaf volume and overall acceptability of the bread. Teff breads produced with the addition of enzyme combinations showed significant improvements (P < 0.05) in terms of loaf volume, crumb firmness, crumb structure, flavour and overall acceptability in both straight dough and sourdough breadmaking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号