首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 808 毫秒
1.
利用分子生物学技术对天津滨海新区泡桐丛枝病病原进行分类鉴定。采用植原体16S rDNA通用引物R16mF2/R16mR1对患病植株总DNA进行PCR扩增,得到约1.4 kb特异性片段。克隆测序、Blast比对和iPhyClassifier分析结果表明,天津滨海新区泡桐丛枝植原体16S rDNA基因片段长1 432 bp,与国内泡桐丛枝植原体PY株系相似性最高,达99.86%,归属于16SrI组(aster yellows group,翠菊黄化组)D亚组。系统树构建与分析显示,泡桐丛枝病天津滨海株PaWB-TJBH与16SrI其他亚组亲缘关系较近,同在16SrI组进化枝上,与16Sr I-D组亲缘关系最近;16S rDNA序列RFLP电子酶切图谱表明,PaWB-TJBH属于16SrI-D组一个成员,与同源性比较和系统进化分析结果一致。  相似文献   

2.
2016年在生长于海南省澄迈县的卵叶山蚂蝗上发现了丛枝、小叶等疑似植原体感染症状。利用植原体16S rRNA基因的通用引物R16mF2/R16mR1,对卵叶山蚂蝗丛枝样品进行了PCR检测,并对检测到的植原体16S rRNA基因片段(1.4 kb)进行克隆测序、序列比对、虚拟限制性片段长度多态性分析和系统进化树构建分析。结果表明,卵叶山蚂蝗丛枝植原体(beggarweed witches'-broom phytoplasma,MK956144)为来檬植原体(Candidatus Phytoplasma aurantifolia,U15442)的相关株系,属于花生丛枝植原体组A亚组(16SrII-A),这是首次发现植原体感染卵叶山蚂蝗的报道。  相似文献   

3.
泡桐丛枝植原体抗原膜蛋白抗血清的制备及应用   总被引:2,自引:0,他引:2  
 根据报道的泡桐丛枝植原体(Paulownia witches’-broom phytoplasma,PaWB)抗原膜蛋白(antigenic membrane pro-tein,AMP)基因的核苷酸序列设计引物,提取发病泡桐总DNA,经PCR扩增并成功克隆泡桐丛枝植原体amp基因。序列分析表明,amp基因由696个核苷酸组成,编码231个氨基酸残基,与GenBank中登录的2个泡桐丛枝植原体的膜蛋白核苷酸序列同源性为100%。将amp基因91-604 nt部分序列(命名为ampd)克隆到原核表达载体pGEX-4T-3,诱导后,经SDS聚丙烯酰胺凝胶电泳分析,表明融合蛋白在大肠杆菌BL21(DE3)中得到了高效表达。以纯化的带GST标签的AMPD融合蛋白为抗原免疫德国大白兔,制备了PaWB-AMPD抗血清。利用该血清,通过Western印迹、点印迹、ELISA、间接免疫荧光和免疫捕获PCR试验均能在发病泡桐组织中特异检测到泡桐丛枝植原体。  相似文献   

4.
紫花苜蓿丛枝病植原体的分子检测及鉴定   总被引:1,自引:0,他引:1  
 利用植原体16S rRNA基因通用引物对云南昆明发生的苜蓿丛枝病感病植株总DNA进行巢式PCR扩增,得到1.2kb的特异片段,从分子水平证实了苜蓿丛枝病的病原是植原体。从PCR产物的RFLP酶切图谱可看出,该植原体株系的酶切图谱与马里兰翠菊黄化植原体(AY1)相同。对扩增片段进行克隆及序列测定后,利用最小进化法做Bootstrap验证的系统进化树,表明苜蓿丛枝病植原体为Candidatus Phytoplasma asteris成员之一,与植原体16SrI-B亚组成员关系密切。  相似文献   

5.
2020年在广东省湛江市遂溪县田间发现表现明显丛枝?小叶, 类似植原体感染症状的花生病株?本研究利用分子生物学技术对其病原进行鉴定?以花生病叶的总DNA为模板, 利用植原体16S rRNA和SecY基因通用引物进行PCR扩增, 获得广东花生丛枝病植原体(PnWB-GDSX-2020)16S rRNA基因片段(1 430 bp, GenBank登录号为MZ427281)和SecY基因片段(1 709 bp, GenBank登录号为MZ437794)?序列一致性和系统进化分析显示, PnWB-GDSX-2020的16S rRNA序列与16SrⅡ-A?16SrⅡ-D和16SrⅡ-V亚组植原体一致性最高, 亲缘关系最近; 进一步利用iPhyClassifier对16S rRNA序列进行在线虚拟RFLP分析, 结果显示, PnWB-GDSX-2020的虚拟RFLP 图谱与16SrⅡ-V亚组的参照株系‘Praxelis clematidea’ phyllody phytoplasma (GenBank登录号:KY568717) 酶切图谱一致, 相似系数为1.00?因此, PnWB-GDSX-2020属于16SrⅡ-V亚组成员?所获得的PnWB-GDSX-2020 Sec Y基因序列与花生丛枝植原体的一致性最高, 亲缘关系最近?本文确定了广东花生丛枝病相关植原体的分类地位, 为当地病害诊断?检测以及防控提供科学依据?  相似文献   

6.
 本研究通过对表现出丛枝和花变叶症状的芝麻感病植株总DNA进行植原体16S rRNA和rp基因的PCR扩增、克隆、测序及序列分析,明确了两种病株的病原均为植原体,并将其命名为云南元谋芝麻丛枝植原体(SEWB-YNym)和云南元谋芝麻花变叶植原体(SEP-YNym)。两个株系的16S rRNA基因片段长度均为1 248 bp,并且碱基序列完全一致。通过与其他地区报道的芝麻植原体株系16S rRNA基因序列比对后发现这两个株系与来自缅甸的株系不存在位点差异,而与泰国、中国台湾、印度的株系分别存在3~6个位点差异。同时,还从两个株系中获得了长度均为1 171 bp并且碱基序列也完全一致的SEWB-YNym和SEP-YNym的rp基因序列。此rp基因序列包括全部rpl22基因(nt90-476)和部分rps3基因(nt550-1170),分别编码128和206个氨基酸。通过对16S rRNA和rp基因的序列进行同源性比对、构建系统进化树等分析,表明两个株系与候选种‘Candidatus Phytoplasma aurantifolia'相关,为16SrII-A亚组成员,并归属于植原体rp-iii亚进化支。  相似文献   

7.
 利用含泡桐丛枝植原体质粒pPaWBNy-1的3.0 kb片段的克隆为模板,PCR扩增pPaWBNy-1-ORF5的亲水性肽段编码区。目的片段连接到原核表达载体pET28a(+),重组质粒pET28a-ORF5-5转化大肠杆菌(Escherichia coli)Rosseta (DE3)感受态细胞,菌液处在对数生长期时(OD600=0.52),添加IPTG诱导5 h后收集菌体,提取蛋白并进行聚丙烯酰胺凝胶电泳。用六聚组氨酸标签抗体进行Western blot检测,发现分子量约为15 kDa的含多聚组氨酸标签的目的蛋白得到表达。切胶回收融合蛋白,免疫德国大白兔以制备抗血清,间接ELISA法测定抗血清的效价约为1∶8 100。用制备的ORF5编码蛋白的抗血清进行Western blot分析,结果在带菌的介体昆虫茶翅蝽(Halyomorpha halys)中检测到大小约为17 kDa的特异蛋白条带,但在健康和感病泡桐(Paulownia sp.)及无菌茶翅蝽中均未检测到,由此推测pPaWBNy-1-ORF5蛋白与介体昆虫传播植原体有关。  相似文献   

8.
 利用植原体16S rRNA基因及核糖体蛋白基因(ribosomal protein, rp)通用引物对发生在云南元谋的花生丛枝病病株DNA进行PCR扩增,并对扩增片段进行序列测定。扩增获得的云南元谋花生丛枝植原体(PnWB-YNym)16S rDNA、16S-23S rDNA和23S DNA片段总长1 806 bp,rp基因扩增片段长1 171 bp。云南株系与来源于台湾和海南的花生丛枝植原体均有较高同源性。比较16S rDNA片段,发现云南株系在5个位点上与来自台湾或海南的株系存在碱基差异,其中有1个位点的差异是云南元谋株系特异的;再分别比较核糖体蛋白rplV-rpsC 2个基因所编码的氨基酸序列,发现云南株系rpsC编码的第194位氨基酸与台湾和海南的株系存在差异。经16S rDNA片段系统进化及iPhyClassifier在线分析,表明PnWB-YNym在分类上属于16SrII-A亚组成员,与候选种‘Candidatus Phytoplasma australasiae’相关;基于rp基因构建的系统进化树表明,PnWB-YNym与16SrII-A亚组各成员聚为同一亚进化支(iii)。  相似文献   

9.
对内蒙古农业大学校园内表现花器绿变症状的菊花样品进行采集和DNA提取,应用植原体16S rRNA基因和rp基因的引物进行巢式PCR扩增,从感病样品中分别扩增得到了长度均约为1.2 kb的片段。序列一致性分析表明,菊花绿变植原体16S rRNA基因与翠菊黄化植原体匈牙利风信子株系(GenBank登录号MN080271)、印度玉米株系(KY565571)、印度繁缕株系(KC623537)和印度马铃薯株系(KC312703)的核酸一致性最高,为99.9%,rp基因序列与翠菊黄化植原体立陶宛洋葱株系(GU228514)的核酸一致性最高,为99.8%。基于16S rRNA基因和rp基因构建系统进化树时发现,菊花绿变植原体均与16SrI-B亚组成员聚为一起。16S rRNA基因相似性系数分析表明,菊花绿变植原体与洋葱黄化植原体(AP006628)的相似性系数最高为1.00,洋葱黄化植原体(AP006628)在分类上属于16SrI-B亚组。因此,我们可以确定该菊花绿变植原体属于16SrI-B亚组。这是我国首次报道菊花绿变病的发生。  相似文献   

10.
通过透射电子显微镜,在从宁夏回族自治区固原市彭阳县红河镇采集的表现叶片上卷、红叶、气生薯症状的马铃薯样品叶脉韧皮部筛管细胞内观察到大量直径为500~700 nm的球形植原体粒子。以提取的感病和健康马铃薯叶片总DNA为模板,应用植原体16S rRNA基因和rp基因通用引物进行PCR扩增,从感病样品中扩增得到了长度均约为1.2 kb的片段。对获得基因核酸一致性比较分析表明,马铃薯僵顶植原体宁夏株系16S rRNA基因与‘Candidatus Phytoplasma fragariae’槭树株系(MK501642)16S rRNA基因核酸一致性最高,为99.7%,rp基因与‘Ca.P.fragariae’云南马铃薯YN-2G株系(KJ144889)rp基因核酸一致性最高,为100%;基于16S rRNA基因和rp基因构建系统进化树发现,马铃薯僵顶植原体宁夏株系与16SrⅫ-E亚组成员聚在一起。基于透射电镜观察和基因序列比较分析,证明宁夏发生的马铃薯僵顶病与植原体侵染相关,该植原体在分类地位上属于植原体16SrⅫ-E亚组。  相似文献   

11.
Tsuchiya D  Taga M 《Phytopathology》2001,91(4):354-360
ABSTRACT Cytological karyotypes with mitotic metaphase chromosomes were analyzed for Cochliobolus heterostrophus, C. carbonum, and C. sativus by the germ tube burst method (GTBM). Prior to karyotyping, procedures of GTBM suitable to Cochliobolus were established by examining several crucial conditions such as incubation period of conidia. The estimated chromosome numbers of C. heterostrophus and C. carbonum were n = 15 or 16 and n = 13 or 15 depending on the strains, respectively. In C. sativus, n = 15 was estimated. Morphological information of chromosomes including chromosome size and a threadlike-specific structure representing the nucleolar organizing region was also obtained. Our results for some standard strains are in agreement with previous estimates by pulsed field gel electrophoresis (PFGE) or PFGE coupled with restriction fragment length polymorphism genetic linkage analysis, but inconsistent with the previous estimates for other strains by conventional light microscopic cytology. Additionally, PFGE analysis of C. heterostro-phus strains indicated that chromosome number was not determinable solely by PFGE, which is hampered by comigration and clumping of DNA bands.  相似文献   

12.
我国几种植物植原体的快速分子鉴别与鉴定的研究   总被引:6,自引:3,他引:3  
 选用桑萎缩病(Mulberry dwarf,MD)、枣疯病(Jujube witches'-broom,JWB)、酸枣丛枝病(Wild jujube witches'-broom,WJWB)、泡桐丛枝病(Paulownia witches'-broom,PaWB)和苦楝丛枝病(Chinaberry tree witches'-broom,CWB)5种不同植物植原体和来源于3个不同地区PaWB和JWB材料进行16S rDNA和23S rDNA PCR扩增、异源双链迁移率分析(HMA)、PCR产物的RFLP分析和16S rDNA的克隆和测序等比较研究,建立了一种快速确定未知植原体种类和分类地位的分子鉴别与鉴定优化程序;并可对田间采集的各种植物植原体样品进行快速鉴定和鉴别。16S rDNA PCR产物HMA分析结果显示,JWB与CWB、MD和PaWB皆可形成明显的异源杂交双链;而CWB、MD和PaWB植原体之间未能形成异源双链。JWB和PaWB不同地区样品之间、JWB和WJWB之间也未发现异源杂交双链的形成。而23S rDNA PCR产物HMA分析则可以将MD与PaWB区分开。进一步对未知分类地位的CWB序列测定及与其它植原体16S rDNA的RFLP和同源性比较结果显示,CWB与PaWB同源性为99.5%,其中与MD的同源性高达99.7%,因而应将CWB归为翠菊黄花组16Sr I-B,16Sr I-B (rp-B)。  相似文献   

13.
This study determined the tuf gene sequence of the phytoplasma specific to paulownia witches’‐broom from Nanyang, China (hereby designated PaWB‐Ny). The PaWB‐Ny tuf gene was 1185 nucleotides in length and confirmed that the phytoplasma belongs to subgroup 16SrI‐D of aster yellows. Three characteristic GTP‐binding protein motifs were identified based on the peptide deduced from the tuf gene sequence. Results suggested that the elongation factor EF‐Tu was localized in the cytoplasm and lacked hydrophobic transmembrane domains. Antibodies against PaWB‐Ny EF‐Tu were prepared by rabbit immunization with glutathione‐S‐transferase (GST)‐tagged EF‐Tu fusion protein expressed in Escherichia coli. EF‐Tu exhibited a molecular weight of ~43 kDa and was detected in PaWB‐infected paulownia plants by western blot analysis. Indirect enzyme‐linked immunosorbent assays (ELISA) and dot blotting analyses were performed with freezing and thawing treatments during antigen preparation. Dilution of extracts to an appropriate scale significantly reduced non‐specific reactions. The resultant PaWB EF‐Tu antibody reacted with antigens from plants infected with periwinkle virescence and chinaberry tree witches’‐broom phytoplasmas, but not those infected with jujube witches’‐broom or bishopwood witches’‐broom phytoplasma. The EF‐Tu was characteristically localized within the phytoplasmal cytoplasm of infected plant phloem tissues.  相似文献   

14.
ABSTRACT Rathayibacter toxicus is a nematode-vectored gram-positive bacterium responsible for a gumming disease of grasses and production of a highly potent animal and human toxin that is often fatal to livestock and has a history of occurring in unexpected circumstances. DNA of 22 strains of R. toxicus from Australia were characterized using amplified fragment length polymorphism (AFLP) and pulsed-field gel electrophoresis (PFGE). AFLP analysis grouped the 22 strains into three genetic clusters that correspond to their geographic origin. The mean similarity between the three clusters was 85 to 86%. PFGE analysis generated three different banding patterns that enabled typing the strains into three genotypic groups corresponding to the same AFLP clusters. The similarity coefficient was 63 to 81% for XbaI and 79 to 84% for SpeI. AFLP and PFGE analyses exhibited an analogous level of discriminatory power and produced congruent results. PFGE analysis indicated that the R. toxicus genome was represented by a single linear chromosome, estimated to be 2.214 to 2.301 Mb. No plasmids were detected.  相似文献   

15.
ABSTRACT Chromosome sizes of 71 phytoplasmas belonging to 12 major phylogenetic groups including several of the aster yellows subgroups were estimated from electrophoretic mobilities of full-length chromosomes in pulsed-field gels. Considerable variation in genome size, from 660 to 1,130 kilobases (kb), was observed among aster yellows phytoplasmas. Chromosome size heterogeneity was also observed in the stolbur phytoplasma group (range 860 to 1,350 kb); in this group, isolate STOLF contains the largest chromosome found in a phytoplasma to date. A wide range of chromosome sizes, from 670 to 1,075 kb, was also identified in the X-disease group. The other phytoplasmas examined, which included members of the apple proliferation, Italian alfalfa witches' broom, faba bean phyllody, pigeon pea witches' broom, sugarcane white leaf, Bermuda grass white leaf, ash yellows, clover proliferation, and elm yellows groups, all have chromosomes smaller than 1 megabase, and the size ranges within each of these groups is narrower than in the aster yellows, stolbur, and X-disease groups. The smallest chromosome, approximately 530 kb, was found in two Bermuda grass white leaf phytoplasma isolates. This not only is the smallest mollicute chromosome found to date, but also is the smallest chromosome known for any cell. More than one large DNA band was observed in several phytoplasma preparations. Possible explanations for the occurrence of more than one band may be infection of the host plant by different phytoplasmas, the presence of more than one chromosome in the same organism, or the presence of large extrachromosomal DNA elements.  相似文献   

16.
The chromosome number and electrophoretic karyotype of Japanese isolates of Verticillium dahliae were investigated. In a genomic Southern blot analysis of seven isolates probed with a telomere consensus sequence (TTAGGG)5, 12 or 14 bands were observed. Furthermore, pulsed-field gel electrophoresis (PFGE) of these isolates revealed five or six chromosomal bands. A band (approx. 3.5 Mbp) common to all isolates apparently contained more than two chromosomes. From these results, we concluded that each isolate’s chromosome number is six (an eggplant pathotype isolate) or seven (all isolates of tomato and sweet pepper pathotypes). Although the chromosome sizes differed among isolates, karyotypes were similar within tomato and sweet pepper pathotypes. A small chromosome (approx. 1.8 Mbp) was observed only in the sweet pepper pathotype. Subsequent PFGE-Southern hybridization analyses revealed that the three DNA fragments specific to tomato pathotype are located on the same chromosome. These results suggest that the tomato-pathotype-specific DNA sequences might coexist on one chromosome.  相似文献   

17.
ABSTRACT To better understand the nature of recent outbreaks of leaf scald disease of sugarcane in a number of sugarcane production regions of the world including Florida, Guadeloupe, Louisiana, Mauritius, Taiwan, and Texas, a study of the worldwide genetic variation of the pathogen was undertaken. A total of 218 strains from 31 geographic locations were examined. Genomic DNA of each strain was digested with the rare cutting restriction enzyme SpeI, and the fragments were separated by pulsed-field gel electrophoresis (PFGE). A total of 102 bands were identified, and 54 different DNA banding patterns (haplotypes) were observed. Eight groups of banding patterns, designated PFGE groups A through H, were consistently detected by visual, principal component, and cluster analyses. Five groups were comprised of multiple haplotypes representing numerous strains, and three were comprised of single haplotypes representing one strain each. The leaf scald outbreaks in Florida, Louisiana, Texas, and possibly Guadeloupe and Taiwan could be attributed to the introduction of strains belonging to PFGE group B. When infection by two strains each of the newly introduced strains (PFGE group B) and those previously present in Florida (PFGE group A) was analyzed in 22 sugarcane cultivars by reisolation 24 weeks after inoculation, a significantly greater mean frequency was detected for PFGE group B strains and no cultivar by PFGE group interaction was observed. Inadvertent dispersal of the pathogen among plants, possibly by means of aerosols or splashing water, was detected in a subsequent experiment. Strains of PFGE group B were recovered from the internal tissues of some plants inoculated with PFGE group A strains and were also found to be epiphytic colonizers of nonsymptomatic, noninoculated plants adjacent to the inoculated plants; whereas strains of PFGE group A were recovered only from plants that had been inoculated with them. Thus, the possibility became more apparent that strain variation might be associated, at least in part, with factors governing plant-to-plant spread of the pathogen in nature.  相似文献   

18.
The molecular karyotype of Paranosema grylli Sokolova, Seleznev, Dolgikh et Issi, 1994, a monomorphic diplokaryotic microsporidium, comprises numerous bright and faint bands of nonstoichiometric staining intensity. Restriction analysis of chromosomal DNAs by "karyotype and restriction display" 2-D PFGE has demonstrated that the complexity of molecular karyotype of P. grylli is related to the pronounced length polymorphism of-homologous chromosomes. The background of this phenomenon is discussed in the context of ploidy state, reproductive strategy and population structure in this microsporidium. We propose that the remarkable size variation between homologous chromosomes in P. grylli may be a consequence of ectopic recombination at the chromosome extremities.  相似文献   

19.
ABSTRACT Partial resistance to rice blast in the Oryza sativa japonica group cv. Chubu 32 is controlled by Pi34, a major quantitative trait locus (QTL) on chromosome 11, and several uncharacterized QTLs. The objectives of the study were (i) high-resolution genetic and physical mapping of Pi34 and (ii) identification of new QTL imparting resistance to rice blast. Chubu 32 was crossed with a susceptible chromosomal segment substitution line (CSSL) of cv. Koshihikari. From 4,012 of segregating individuals, 213 recombinants in the Pi34 region were screened by using polymerase chain reaction-based markers and tested resistance in the field and greenhouse. The Pi34 locus is located in the 54.1-kb region on the genomic sequence of cv. Nipponbare. We constructed a bacterial artificial chromosome (BAC) library of Chubu 32, selected the clone containing Pi34, and sequenced it. The Pi34 locus consequently was located on an interval of 65.3 kb containing 10 predicted open reading frames (ORFs). Two of these ORFs were predicted only in Chubu 32 and encoded transposable elements. The other eight ORFs were found in both Chubu 32 and Nipponbare and one of them, which encoded an unknown protein, showed significantly different amino acid sequences between two cultivars. The new QTL, Piq6(t), was detected on the short arm of chromosome 6 and the genetic distance of flanking markers was 16.9 centimorgans in Nipponbare. Pi34 and Piq6(t) acted additively on resistance to rice blast but the effect of Piq6(t) was relatively small compared with Pi34.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号