首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 211 毫秒
1.
采用室内模拟试验方法,研究了虱螨脲在3种土壤中的降解、吸附和移动特性。结果表明:25℃下,虱螨脲在江西红壤中的降解半衰期为101d,属于中等降解农药;在太湖水稻土和东北黑土中的降解半衰期分别为74.5d和55.5d,属于较易降解农药。土壤有机质含量是影响虱螨脲降解速率的主要因素;3种土壤对虱螨脲具有较强的吸附性,且土壤有机质含量越高,对虱螨脲的吸附性越强;3种土壤对虱螨脲的吸附自由能变化均小于40kJ·mol^-1,属于物理吸附;虱螨脲在土壤中不易移动,正常条件下不会造成地下水的污染。  相似文献   

2.
采用室内模拟试验,研究了壬基酚(NP)在3种土壤中的降解和吸附特性。结果表明,NP在土壤中的降解分为快速和慢速降解阶段,半衰期分别为6.74~9.72d和70.02~78.77d。降解前期3种土壤中的降解速率相差较大,依次为黑龙江黑土〉北京潮土〉广西红壤,与土壤有机质含量相一致,随培养时间推移,降解速率差异减小。NP在土壤中具有不同结合状态及异构体降解性不同可能是出现慢速降解阶段的主要原因。土壤对NP的吸附较为符合Linear等温吸附方程(r≥0.9686),黑龙江黑土、北京潮土和广西红壤中吸附常数Kd值分别为65.52、31.66和32.71,黑龙江黑土对NP的吸附最强,广西红壤和北京潮土的吸附能力较为接近。各土壤理化性质参数中,以土壤有机质含量对NP吸附的影响最大(r=0.9950),阳离子交换量对吸附也有一定影响,粘粒含量和pH对吸附的影响较小。NP在3种土壤中的有机碳吸附常数KOC在3696.22~4334.51之间,移动性很弱,吸附自由能变化均小于40kJ·mol-1,NP在土壤中的吸附以物理吸附为主。  相似文献   

3.
采用室内模拟试验方法,研究了哒螨灵在3种土壤中的降解、吸附和移动特性。结果表明,25℃下,哒螨灵在江西红壤、河南二合土和东北黑土中的降解半衰期分别为41.0、55.9和72.2d,属于易降解农药,其降解速率依次为江西红壤〉河南二合土〉东北黑土。酸性条件有利于哒螨灵的降解,土壤pH值对哒螨灵降解的影响比土壤有机质含量大。3种土壤对哒螨灵农药的吸附均较好地符合Freundich方程,吸附系数鼠值分别为3.35×10^3,6.17×10^3和8.48×10^3,具有极强的吸附性,且土壤有机质含量越高,对哒螨灵的吸附性越强。土壤对哒螨灵的吸附自由能变化均小于40kJ·mol^-1,属于物理吸附。哒螨灵在土壤中不易移动,3种土壤薄层移动试验的Rf值均仅为0.05,正常条件下不会造成对地下水的污染。  相似文献   

4.
土壤中黑碳对农药敌草隆的吸附-解吸迟滞行为研究   总被引:6,自引:0,他引:6  
采用批处理振荡法和连续稀释法分别测定了敌草隆在人工添加黑碳土壤和自然形成的不同有机质和黑碳含量的土壤中的吸附一解吸行为。吸附结果表明,人工添加黑碳的土壤对敌草隆的吸附强度和吸附容量以及吸附等温线的非线性均随土壤黑碳添加浓度的增加而逐步增大;自然土壤的吸附容量和吸附强度随土壤总有机质含量增加而增加,但吸附等温线的非线性则与土壤中黑碳对有机质的相对含量有关,黑碳比例越高,等温线非线性越大。解吸实验结果表明,无论是人工添加黑碳的土壤还是自然土壤,对敌草隆的解吸迟滞作用均随土壤黑碳含量增高而愈明显。  相似文献   

5.
氰戊菊酯在土壤中的降解及其影响因子研究   总被引:4,自引:0,他引:4  
陈莉  章钢娅  胡锋 《土壤学报》2008,45(1):90-97
研究了氰戊菊酯在青紫泥、乌栅土以及黄泥土3种不同类型土壤中的降解,并探讨了土壤理化性质、外界环境条件等对其降解的影响。结果表明:氰戊菊酯在3种土壤中的降解半衰期分别为25.3、19.4、17.7d,降解速率常数分别为0.0274、0.0357、0.0392,即在青紫泥中降解最慢,黄泥土中降解最快。而经过灭菌后的土壤,其降解明显减缓,半衰期延长。由此可见,土壤中降解过程主要是微生物的作用。影响降解的最主要因素是有机质含量,其次为土壤酸碱度,即有机质含量越高,土壤碱性越强,则其半衰期越短,降解速度越快。除此之外,外界环境条件对氰戊菊酯的降解影响也较大,温度越高,湿度越大,降解越快;另外,药剂的添加浓度对降解也有重要的影响,添加浓度越高,降解速率越慢。  相似文献   

6.
长期施肥对土壤中氯氰菊酯降解转化的影响   总被引:1,自引:0,他引:1  
采用长期不同施肥处理土壤:有机肥(OM)、无机肥(NPK、PK、NK)和不施肥(CK)研究施肥对氯氰菊酯降解的影响,通过测定土壤中氯氰菊酯残留量及降解产物3-苯氧基苯甲酸生成量来确定其降解速度。结果表明:不同施肥处理对氯氰菊酯在土壤中降解有显著影响,其中在PK、CK土壤中降解较快,半衰期分别为9.6 d和10.7 d,在NK土壤中降解最慢,半衰期为15.1 d,长期施用有机肥(OM)较无机肥(NPK)降解呈增加趋势,但未达显著水平,半衰期分别为10.8 d和11.8 d。相关分析表明土壤中速效氮含量与氯氰菊酯半衰期呈显著负相关,长期偏施氮肥可提高土壤中速效氮的含量,进而能显著降低氯氰菊酯在土壤中降解速度。氯氰菊酯在OM、NPK土壤中降解较慢的原因可能是土壤高有机质含量增加了对农药的吸附,进而抑制了其降解。  相似文献   

7.
为了评价甲氰菊酯在苹果园使用后的生态环境行为和效应,采用室内模拟方法,借助气相色谱分析技术,研究了甲氰菊酯在3种苹果园土壤中的降解半衰期与土壤理化性质和环境条件的关系。结果表明,甲氰菊酯在土壤中的降解主要是微生物降解,非生物降解所占比例较小,降解规律符合一级动力学模型,在25℃时降解半衰期为27.5~30.4d;甲氰菊酯在苹果园土壤中降解的半衰期与土壤有机质含量和土壤pH值呈显著高度负相关,常温下相关系数为0.9;综合微生物降解和非生物降解因素,苹果园土壤中甲氰菊酯降解的适宜温度是30—35℃。  相似文献   

8.
~(14)C-氟乐灵在土壤中的迁移和降解   总被引:2,自引:0,他引:2  
郑麟  王福钧 《核农学报》1993,7(1):37-44
在实验室条件下,用放射性同位素示踪技术研究了~(14)C-氟乐灵(Trifluralin)在土壤中的吸附、迁移和降解。结果表明:氟乐灵在土壤中的吸附性很强,在不同土壤中的吸附率为73.89%~90.66%。土壤有机质含重对吸附有重要影响。氟乐灵在有机质丰富、粘粒含量较高的草甸黑土中淋溶很低,而在砂土中淋溶较高,易向下迁移。在厌氧条件的土壤中,氟乐灵降解较快,30天在土壤提取态中有60.2%~64.2%降解,610天有90.0%~94.7%降解,主要降解产物为R_f值等于0.06,0.15和0.42的化合物。  相似文献   

9.
磺酰脲类除草剂在土壤中的物理化学行为   总被引:15,自引:0,他引:15  
李德平 《土壤》1996,28(3):128-133
本文就磺酰脲类除草剂在土壤中的行为与土壤有关因素间的关系进行了阐述。该类除草剂进入土壤过后,主要经受迁移、转化、吸附、降解等过程,而这些过程又受土壤pH、温度、湿度、微生物和有机质含量的影响。  相似文献   

10.
不同土壤中苯噻草胺的微生物降解   总被引:12,自引:0,他引:12  
研究了除草剂苯噻草胺在不同土壤的降解。结果表明,有机质含量低的土壤中微生物降解是其消失的主要因素,有机质含量高的黑土中吸附结合是其消失的主要因素。水田条件下苯噻草胺消失速率比旱田条件下快,但消失类型不同。被吸附的农药在解吸前不参与微生物降解,土壤有机质含量影响苯噻草胺的实际降解速率。提出反S型函数模型更好地拟合农药在土壤中的消失动态。  相似文献   

11.
Soil organic matter influence on Langmuir isotherms for Cu and Cd in four Italian soils of different pedogenetic origin was investigated. Adsorption processes were carried out either on the whole soils or on soils after destruction of organic matter. Organic matter removal produced a noteworthy decrease of Cu adsorption contrasted by a smaller decrease or even a slight increase of Cd adsorption. Addition of increasing amounts of Cu on soil previously enriched with Cd did not significantly change the Cu adsorption while a rather different pattern was observed when increasing quantities of Cd were adsorbed on the same soil after Cu enrichment. In this case Cu already present in the soil reduced the amount of Cd adsorbed. These findings suggest that the differences found in the adsorption process of such metals primarily depend on the different chelating effectiveness of soil organic matter in the respect to Cu and Cd.  相似文献   

12.
Sorption-desorption of the azole fungicide triadimefon [1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2, 4-triazol-1-yl)-2-butanone] on eight soils and a series of single, binary, and ternary model soil colloids was determined using the batch equilibration technique. Regression analysis between Freundlich sorption coefficients (K(f)) and soil properties suggested that both clay and organic C (OC) were important in triadimefon sorption by soils, with increasing importance of clay for soils with high clay and relatively low OC contents. Triadimefon sorption coefficients on soil were not significantly affected by the concentration of electrolyte or the presence of soluble soil material in solution, but they were highly dependent on the soil:solution ratio due to the nonlinearity of triadimefon sorption on soil. Freundlich sorption isotherms slopes were very similar for all soils (0.75 +/- 0.02). Desorption did not greatly depend on the concentration at which it was determined and showed higher hysteresis for more sorptive soils. Results of triadimefon sorption on model sorbents supported that both humic acid and montmorillonite-type clay constituents contribute to triadimefon retention by soil colloids.  相似文献   

13.
Abstract

Copper (Cu) is bound strongly to organic matter, oxides of iron (Fe) and manganese (Mn), and clay minerals in soils. To investigate the relative contribution of different soil components in the sorption of Cu, sorption was measured after the removal of various other soil components; organic matter and aluminum (Al) and Fe oxides are important in Cu adsorption. Both adsorption and desorption of Cu at various pH values were also measured by using diverse pasture soils. The differences in the sorption of Cu between the soils are attributed to the differences in the chemical characteristics of the soils. Copper sorption, as measured by the Freundlich equation sorption constants [potassium (K) and nitrogen (N)], was strongly correlated with soil properties, such as silt content, organic carbon, and soil pH. The relative importance of organic matter and oxides on Cu adsorption decreased and increased, respectively, with increasing solution Cu concentrations. In all soils, Cu sorption increased with increasing pH, but the solution Cu concentration decreased with increasing soil pH. The cumulative amounts of native and added soil Cu desorbed from two contrasting soils (Manawatu and Ngamoka) during desorption periods showed that the differences in the desorbability of Cu were a result of differences in the physico‐chemical properties of the soil matrix. This finding suggests that soil organic matter complexes of Cu added through fertilizer, resulted in decreased desorption. The proportions of added Cu desorbed during 10 desorption periods were low, ranging from 2.5% in the 24‐h to 6% in the 2‐h desorption periods. The desorption of Cu decreased with increasing soil pH. The irreversible retention of Cu might be the result of complex formation with Cu at high pH.  相似文献   

14.
Abstract

The adsorption and mobility of herbicide, metamitron, in 41 soils samples from the province of Salamanca (Spain) was studied. Thirty‐four of the samples assayed were from irrigated soils and seven were from natural, uncultivated soils with organic matter contents above 3%. The correlations between the Freundlich K constants, Kd distribution coefficients, and Rf mobility parameters and the soils parameters were determined. Considering all the soils, the soils with organic matter contents above 2% or the soils with organic matter contents below 2%, significant correlations (p<0.001 to p<0.05) were found between K and Kd and the organic matter content of the soils. There were also a significant correlations (p<0.05) of K and Kd with clay+silt and clay contents of soils with organic matter contents below 2%. The adsorption of the herbicide by isolated soil components confirmed the results obtained with the soils and point to the importance of the exchangeable cation nature of the samples in the adsorption process. Based on Rf values obtained by TLC, the herbicide was found to be moderately mobile in 74% and mobile in 26% of the soils studied. The results of metamitron leaching by thin layer chromatography (TLC) and in undisturbed soil columns indicated the influence of organic matter content and of soil texture on the mobility of this herbicide.  相似文献   

15.
安徽凤阳几种土壤对锌的吸附   总被引:3,自引:0,他引:3  
李粉茹 《土壤通报》2006,37(5):961-963
研究了凤阳县几种土壤吸附锌的性能,讨论了这几种土壤对锌的吸附性能与它们的理化性质的关系。结果表明:供试土壤吸附锌的能力比较接近,土壤吸附锌的量随平衡液浓度的增加而增加,吸附符合Freund lich吸附、Langmu ir吸附和Temk in吸附关系;在土壤质地比较接近的情况下,土壤对锌的最大吸附量与土壤的酸碱度、有机质含量、质地等因素有关。  相似文献   

16.
The widespread use of sodium p-perfluorous nonenoxybenzene sulfonate(OBS), a typical alternative to perfluorooctane sulfonate, has resulted in potential threats to the environment, but the adsorption behavior of OBS in soils has not yet been reported. In this study, the adsorption behaviors of OBS on five soils with different physicochemical properties were investigated. The rate of OBS adsorption was fast, and most of the OBS uptake was completed within 12 h. The good model fit of OBS adsorption to the pseudo-second-order and Elovich models indicated the occurrence of chemical adsorption. The adsorption isotherms of OBS on the soils were better described by the Freundlich model than by the Langmuir model, suggesting that the OBS adsorption sites on the soils were heterogeneous. This is possibly associated with various adsorption mechanisms including hydrophobic, π-π, hydrogen bonding, and electrostatic interactions,further confirmed by the good model fit to the D-R isotherm. Adsorption of OBS occurred on the soils, and the adsorption process was spontaneous and endothermic. In addition, the soils were more suitable for OBS adsorption at lower pH values due to the stronger electrostatic adsorption. The OBS adsorption on the soils decreased with the increase of soil depth from 0 to 30 cm. Moreover, the presence of organic matter and ammonia nitrogen in the soils was favorable for OBS adsorption, and these parameters decreased with increasing soil depth, making OBS adsorption less prominent in the deeper soil. This study indicates that OBS is easily enriched in surface soils, and that soil organic matter and ammonia nitrogen significantly affect OBS migration in soil.  相似文献   

17.
Adsorption-desorption of triazole fungicides, hexaconazole [2-(2,4-dichlorophenyl)-1-(1H-1,2,4,-triazol-1-yl) hexan-2-ol], triadimefon [1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl) butan-2-one], and penconazole[1-(2,4-dichloro-beta-propyl phenethyl)-1H-1,2,4-triazole] was studied in five Indian soils using batch method. The adsorption isotherms fitted very well to the Freundlich equation. Adsorption of various triazole fungicides increased in this order: triadimefon > hexaconazole > penconazole. The product of the Freundlich adsorption constants, K(f)(1/n), showed good correlation with the soil organic carbon (OC) content, suggesting that soil OC is the main controlling factor for triazoles adsorption. Clay and silt content of the soil also affected the adsorption constants. Adsorption of hexaconazole and triadimefon was nearly reversible in two low OC soils (soil 3, soil 5) where 90-100% of the sorbed fungicides was released in a single washing step. Otherwise, desorption of triazole fungicides showed hysteresis, and 30-60% of the triazole fungicides were retained by the soil after single washing. IR spectra showed that H-bonds and charge-transfer bonds between humic acid and fungicides probably operated as mechanisms of adsorption.  相似文献   

18.
黑土肥力变化特点及其与土壤复合胶体性质的关系   总被引:7,自引:3,他引:7  
李庆民  尹达龙 《土壤学报》1982,19(4):351-359
黑土占黑龙江省耕地面积一半以上,是肥沃的土壤.但是,开垦后用养结合不好,土壤肥力呈现明显下降的趋势.本文拟从研究黑土肥力下降及其与土壤复合胶体的关系,以及有机质培肥黑土的效果及其对土壤复合胶体的影响,探索黑土肥力下降原因及培育高产黑土的技术途径,以便为快速培育高产黑土提供科学依据.为此,我们采集不同开垦年限的黑土和施用有机质不同程度培肥的黑土,进行了比较研究.  相似文献   

19.
The degradation of triadimefon [1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-one] was studied in two soils, mollisol and inseptisol, under varying conditions of moisture and temperature, and the role of cow manure amendment and soil sterilization on fungicide degradation was ascertained. The soil moisture content affected the pathway followed for triadimefon degradation. In nonflooded soils (60% water-holding capacity), triadimefon was reduced to triadimenol, and in flooded soils, it was metabolized to the diol derivative [1-(1H-1,2,4-triazol-1-yl)-3,3-dimethylbutan-2-one-1,4-diol]. In nonflooded soils, triadimefon was more persistent in soil having more organic carbon content (mollisol), and the amendment of cow manure (5%) further enhanced its persistence. On the contrary, in flooded soil systems, the higher the soil organic carbon content was, the less persistent was the fungicide, and amendment of cow manure further enhanced its degradation. Triadimefon degradation was faster at 35 degrees C than at 27 degrees C. Triadimefon degradation in soils was mediated by the microorganisms, and no triadimefon degradation was observed in sterile soils. Triadimefon (1 mg/kg) did not affect soil phosphatase activity in either of the soils; however, soil dehydrogenase activity was significantly reduced, especially in mollisol soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号